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MITIGATION OF FLASH FLOODS IN ARID REGIONS  

USING ADJOINT SENSITIVITY ANALYSIS 
 

Hossam Elhanafy *, Graham J.M. Copeland **. 
 

 

ABSTRACT: 
     This paper presents an analysis of the sensitivities of flood wave 

propagation to variations in certain control variables and boundary conditions 

by means of the adjoint method. This uses a variational technique to find the 

relationships between changes in predicted flood water levels and changes in 

control variables such as the inflow hydrograph, bed roughness, and bed 

elevation. The sensitivities can be used for optimal control of hydraulic 

structures, for data assimilation, for decision makers' procedures, for the 

analysis of the effects of uncertainties in control variables on the predictions of 

floods water levels, and for investigating both the sensitivities of model flood 

forecasts to model parameters, boundary and initial conditions. Example of the 

last application of the sensitivity analysis is presented and discussed 

These methods are developed and implemented through a numerical hydraulic 

model of channel flow based on the Shallow Water Equations (SWEs) and the 

corresponding adjoint model. The equations are integrated using finite 

difference methods and a new modified method of characteristics is used to 

define the open boundaries. Results of validation tests on both the forward 

hydraulic model and on the adjoint model are presented. 
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INTRODUCTION: 
     Floods are considered one of the most dangerous environmental hazards that 

threaten lives, properties, and cultivated lands. Flood wave propagation models 

are often used when planning flood management strategies, Moussa et al. [1] 

and it is important to consider what control actions could mitigate flood impact. 

Such controls could be hydraulic structures such as gates, locks, and weirs 

Sanders & Katapodes [2] or the diversion of water into canals and floodplain 

storage facilities, Sanders & Katapodes [3]. However, the term ‘control’ also is 

used for a user-defined value that determines the result of a model forecast, 

rather than offering an actual engineering control. Examples of these controls 



 2

are the values of the inflow hydrograph, downstream water level, bed 

roughness, and bed slope. This paper presents an analysis of how a model 

prediction of flood water level at a certain location is sensitive to variations in 

some of these control values. These sensitivities can be used to select the most 

appropriate location and rate of abstraction for flood control, Ding & Wang [4], 

to optimize water abstraction for irrigation, Sanders & Katapodes [3] or to 

identify Manning's roughness coefficient, Ding et al. [5]. The sensitivities can 

also be used for data assimilation, Cacuci [6] and Navon [7] and to quantify the 

consequential effects of sensitivities in some control values on predicted flood 

levels or flood volume as shown in this paper.  

The adjoint sensitivity analysis has been implemented through the development 

of two numerical models; a forward model, based on the nonlinear Shallow 

Water Equations (SWEs) used to simulate the propagation of the flood wave, 

and an adjoint model used to evaluate the time-dependent sensitivities with 

respect to a variety of control variables under different flow conditions. The 

adjoint method requires that the forward problem and its associated adjoint 

problem are solved sequentially. Sensitivity expressions which are functions of 

the forward and adjoint variables can be applied to assess the change in 

outcome resulting from changes in control values. The adjoint sensitivity 

analysis is used here to establish relationships between certain controls and the 

system responses. A particular control problem is defined by selection of an 

appropriate objective function. This may require to be minimized in the case of 

data assimilation or, for example, it may measure flood water levels in excess 

of some threshold as discussed in this paper. Once this objective function is 

defined, the adjoint sensitivity analysis is used to evaluate the gradient of this 

function with respect to the control variables or in other word the sensitivities. 

 

 

1. GOVERNING EQUATIINS FOR THE OPEN CHANNEL 

FLOW: 
     The one dimensional Shallow Water Equations (SWEs) form a system of 

partial differential equations which represents mass and momentum 

conservation along the channel and include source terms for the bed slope and 

bed friction. These equations may be written as: 
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Where: 

q : is the discharge per unit width (m
2
s

-1
). 

g : is the gravitational acceleration. 

H : is the total water depth 

S0 : is the bed slope = - 
x

z

∂

∂
. 

z : vertical distance between the horizontal datum and the channel bed as function 

(x,t). 
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t : is the time (s). 

x : is the horizontal distance along the channel (m). 

Sf : is the bed friction slope = 3gH

qq
k  

k : is a friction factor = g/C
2
 according to Chezy or = gn

2
/ H

(1/3)
 according to 

Manning . 

x

qu

∂

∂ )(
 : is the momentum flux term, or convective acceleration  

 

     In simulating an unsteady channel flow during a flood wave event the one 

dimensional SWEs, Equation (1) and Equation (2) are subjected to initial and 

boundary conditions. Initial conditions are q(x,0) and H(x,0) and the boundary 

conditions are q(0,t) and H(L,t) where x = L is the downstream limit of the 

model domain. Values q(0,t) comprise the inflow hydrograph and H(L,t) are 

interpolated from within the domain using the method of characteristics (MOC), 

Abbott [13] and French [14] after modifying it to suit the case of sloping  rough 

bed described below to provide a transparent downstream boundary through 

which the flood wave can pass without reflection. 
 

 

2.  ADJOINT SENSTIVITY ANALYSIS FOR THE (SWEs): 

2.1. Defining the objective function: 
     If the application of the analysis is to the control or assessment of risk of 

flood water levels then it is convenient to compare predicted levels with known 

threshold values above which flooding could occur. A measure of the 

difference between these levels can be used to quantify the effect of a control. 

In particular, we are interested in water levels that exceed threshold values at 

certain locations (xo) and at certain times (to). As a surrogate for level we can 

use local depth H (provided the local bed level z is known) and so define a 

quadratic objective function that quantifies the water depths greater then some 

specified threshold flood depths H d. 

r = 0.5{(H  -  H d) │ H  -  H d│} δ(x – xo) δ(t – to)                (3)  

Where: 

H (x, t) is the water depth calculated by the forward hydraulic model, and 

H d (xo, to) are threshold values at x = x o, and t = to.  
 

 

2.2. Governing equation for the sensitivity analysis: 
      Adjoint sensitivity analysis evaluates the sensitivities of the objective 

function to certain control variables. This is achieved by creating the 

Lagrangian and taking the first variation. The method follows closely that 

described by Sanders & Katopodes [3], Gejadze & Copeland [8], and 

Copeland& El-hanafy [9] as follow: 

The cost function J is defined by integrating the weighted sum of the objective 

function and the residuals of the SWEs over the entire computational domain as 

follows: 
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     where the weights φ and ψ are Lagrange multipliers later to be revealed as 

the adjoint variables. The sensitivities and the adjoint equations are evaluated 

by taking the first variation of J in Equation (4) with respect to all flow 

variables and control variables, taking into consideration that 
x

z

∂

∂
= -So, 

qu =
H

q 2

, Sf = 3gH

qq
k , 2C

g
k =  and using integration by parts, the final 

expression for the variation in J , Jδ , is given by the sum of the following 6 

integrals:- 
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      We are seeking variations in J that are caused by possible variations in q 

and H as the initial conditions and at the upstream and downstream boundaries. 

We also are looking for the effects of variations in controls C, and Z in the 

domain. These are expressed by integrals 1, 2, 4, and 5 respectiveley in 

Equation (5).  We are not looking for the effects of variations in q and H within 

the domain as expressed by integral 3 in Equation (5). Hence this integral is 

required to equal zero for any variations in q and H. This conditions leads to 

the identification of the two adjoint equations from the kernal of this integral as 

follows:-  

02
2

2

32
=

∂

∂
+

∂

∂
+−

∂

∂
+

∂

∂
−

∂

∂

H

r

xH

q

HC

qq
g

x

z
g

x
gH

ψ
ψψ

ψ

τ

φ
   

022
22

=
∂

∂
+

∂

∂
−+

∂

∂
−

∂

∂

q

r

xH

q

HC

q
g

x

ψ
ψ

φ

τ

ψ
                          

Where   τ = (T – t), measured in reverse time direction. 

     Solution of adjoint equations, Equation (6), for given flow conditions q and 

H ensures that integral 3 in Equation (5) equals zero and provides values for φ 

  (6) 
 

  (5) 
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and ψ everywhere in the domain. These values can be used in conditions 

derived from integrals 1, 2, 4, and 5 in Equation (5) to quantify the 

sensitivitiesas shown below. 

 

2.3. Derivation of the sensitivities: 
2.3.1. Sensitivity to the upstream channel flow: 

     Sensitivities to initial condtions are revealed by integral 1 in Equation (5).  

If we impose the conditions φ(x,T) = ψ(x,T) = 0, that is no sensitivity 

information propagates into the domain at t = T, then the sensitivity to initial 

conditions is just φ
δ

δ
−=

)0,(xH

J  and ψ
δ

δ
−=

)0,(xq

J
 at each discrete location 

along the channel. If we do not want to control the solution to any initial 

condition then we may set )0,(xqδ = )0,(xHδ = 0 then integral 1 vanishes. 

Sensitivities to boundary conditions are revealed by integral 2 in Equation (5). 

If we impose the condition δq(L,t) = 0, that is q(L,t) is not used as a control,  

then the sensitivity to inflow q(0,t) is shown to be   
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at each time step or perturbation time from t = 0 to T. 

Similarly by imposing condition δH(0,t) = 0, that is H(0,t) is not used as a 

control, then the sensitivity to downstream depth H is shown to be  
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Figure (1) shows all of the required boundary conditions. We note that the 

boundary conditions for ψ(0,t) and φ(L,t) are both required and must be defined 

such that both boundaries are transparent to the outgoing peturbations created 

within the adjoint domain. This is achieved by interpolation from available 

values within the domain using the method of characteristics (MOC), the 

formulation will be given below. 

 
 

 

 

 

 

 

 

 

 

 

Figure (1) Boundaries and initial conditions for the solution domain 

 

2.3.2. Sensitivity to the Bed elevation: 
      The bed elevation can be considered as a control variable which can affect 

the flood level at x = xo.  Sensitivities to the bed elevation at both the upstream 

and boundary conditions are revealed by integral 2 in Equation (5). If we 

x 

t 

L  
0 

T 

φ(x,T) = ψ(x,T) = 0 

δH(0,t)   =0 

   ψ(0,t) is obtained using MOC 

 

δq (L,t) =0 

φ(L,t) is obtained using MOC 
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impose the condition δZ(L,t) = δZ(0,t) =0, that is Z(L,t) and Z(0,t) are not used 

as a control, then the sensitivity with respect to the bed elevation within the 

whole domain, from integral 6 in Equation (5),  is written as: 
( )

dtdx
x

H
zg

z

J T L
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0 0
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δ
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From Equation (9) the spatial and temporal variations of the sensitivity with 

respect to the bed elevation can be evaluated after the two adjoint equations, 

Equation (6) are solved. 

 

 

2.3.3. Sensitivity to the Bed friction: 
       The bed friction, in terms of Chezy coefficient can be also considered as a 

control variable which should affect the flood level, hence the sensitivity is 

written as: 
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From Equation (10) the spatial and temporal variations of the sensitivity with 

respect to Chezy coefficient can be evaluated after the two adjoint equations, 

Equation (6) are solved 
 

 

3. NUMERICAL APPROACH: 

3.1. Discretising the Forward Model: 
     The finite difference mesh for discretising the domain is depicted in        

Figure (2) that follows a simple space and time staggered. A regular mesh of 

dimension (∆x), spacing of grid points in x-direction by (∆t), spacing in the 

time direction, so now if [0,L] is discretised by (nx) equally spaced then 

1nx −
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L
x , and by the same concept 
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T
t , so the discretised values of 

a function (h) at (i ∆x , j ∆t) will be denoted 
j

i
h = h(i,j) = h(i ∆x,j ∆t) the 

superscription (j) refer to time discretization and is called time step or time 

level, while the subscript (i) refers to space discretization and is called space 

step or space level. The approximation of the derivatives 
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1  ,a first order upwind scheme is used to stabilize the solution of 

the shallow water equation, the convective term 
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point upwind difference expression or a weighted average of centered and 

upwind difference expressions: 
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See Fletcher [10], Leonard [11] and Falconer & Liu [12] for more details. The 

discharge q is marched forward in time using the momentum equation as 

follow: 
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The water depth H is marched forward in time using the continuity equation: 
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     The initial conditions are 
1

iH  and 
1

iq  while the boundary conditions are 
1

1

+j
q  

at the upstream boundary and 
1+j

nxH  at the downstream boundary, the upstream 

condition is the inflow hydrograph; the downstream condition must be 

interpolated using the method of characteristics (MOC) as described in Abbott 

[13] and French [14]. 
 

 

3.2. Discretising the Adjoint Model 
     The adjoint model which is represented by Equation (6) is discretized using 

a simple space and time staggered explicit finite difference scheme as 

illustrated in Figure (2). The adjoint variable φ is marched backwards in time 

using the discrete form as following 
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While the adjoint variable ψ is marched backwards in time using the discrete 

form as following: 
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Figure (2)  The discretization scheme for the forward and adjoint model 

 

3.3. Method Of Characteristics (MOC): 
     Following a standard text such as Abbott [13] and French [14], the 

characteristics of the linearized (SWEs) are identified as: 

Hi,j 

(14) 
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While characteristics of the adjoint model are identified as: 
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Where ∆ indicates a total change in variable along the characteristic path. 
 

 

4. MODELS VERIFICATIONS: 

4.1. Forward model verifications: 
4.1.1 Introduction: 
     Developing a complete test to check and validate an exact solution for the 

nonlinear Shallow Water Equations (SWEs) is not possible.  It is possible 

however to develop simple tests to compare the model results with analytical 

solutions of certain idealized cases. Several tests have been carried out to verify 

the model from uniform steady flow to non-uniform unsteady flow; we will 

mention here just the two most important tests. 
 

4.1.2 Validation test 1 – non-uniform unsteady flow: 
     The main objectives of this test are to assure the following: 

- The value of both the discharge (q) and the water depth (H) at the upstream 

propagate downstream without any change. 

- The relationship between q and H follow the analytical solution of the 

shallow water wave. 
The analytical solution of the shallow water wave: 

     The analytical solution of the shallow water equation in deep water initially, 

20 m. with a driving upstream hydrograph following sinusoidal wave concept 

of amplitude 2.0 m. as illustrated at Figure (3), where; a: is the amplitude of the 

wave, T: is wave period, t: time, c: wave speed = √ g.H. , and H: is the total 

water depth is η = a .{1+ sin(θ)} = 2.0 m  which lead to H max= 22.0 m and     

q = a . √ (g. H). (1+sin (Θ)) + q 0  which lead to q max= 28.01 m
3
/s/m. and the 

traveling speed is equal to √ (g. H) = 14.69 m/s 

19.5

20

20.5

21

21.5

22

22.5

0.0 0.5 1.0 1.5 2.0

(t_cycles ) number of wave cycle

H
 (

 m
 )

 
Figure (3) The driving hydrograph shape 
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     The results of the model are a driving upstream boundary hydrograph of 

peak discharge q = 28.24 m
3
/s/m and the calculated upstream boundary 

hydrograph of peak value, H max = 21.96 m. while the wave speed is 14.74 

m/s. so, the first conclusion is that the relationship calculated by the model 

typically follow the shallow wave equation and although there is discrepancy 

between the calculated values from the model and the analytical solution but 

this discrepancy could be interpreted due to the values of distance step = 3.025 

Km and time step of 108 s, the second conclusion is that the hydrograph 

traveled from the upstream boundary to the down stream boundary with a small 

change in the peak discharge from 28.01 m
3
/s/m to 28.24 m

3
/s/m and from 

21.96 m to 21.94 m for the peak water depth as illustrated at Figure (4) and this 

acceptable diffusion is duo to the numerical dissipation of the used explicit 

scheme. The last conclusion is that the wave traveled a distance of 151.26 Km. 

within 10260 sec. so its speed is 14.74 m/s. while the speed of the wave should 

equal to √ (g. H) = 14.69 m/s which is nearly the same. So finally, it is clear 

there is a good agreement between the analytical solution and the developed 

model and also there is no numerical dissipation. 

 
Figure (4) Water depth (H) within the domain 

 

4.1.3 Validation test 2 - Unsteady flow within a sloping channel and rough 

bed: 
     There are two main objectives of this test; the first objective is simply to 

look for the whole channel as a control volume to assure there is no significant 

losses or accumulation in volume within the simulated domain and the results 

of this tests will not be compared with the analytical solution only, but will be 

compared with other model results as well, the second objective is to assure the 

volumetric conservation principal at different time steps is always valid and no 

numerical oscillation at the wave front. If we considered the initial water depth 

is Hi and at the end of the simulation is Hf. While the driving discharge 

upstream is q u and downstream is q d so we could say: 
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Total volume enters the channel is ∫∫ −=∆ dtqdtqV du1 , while the total volume 

leaves the channel is ∫∫ −=∆ dxHdxHV if2 , to be in equilibrium, it should be 

21
VV ∆=∆ . The model was applied for non-uniform unsteady flow conditions 

within a slopping channel and rough bed. The initial water depth was chosen H 

initial = 20.0 m. The result of the flood wave propagation within the domain is 

presented at Figure (5). 

 
Figure (5) Water depth (H) within the domain 

 

95.528463.2740358.80253
1

=−=−=∆ ∫∫ dtqdtqV
ud

 m
3
/m 

36.5330494669.64000005
2

=−=−=∆ ∫∫ dxHdxHV
fi

 m
3
/m

 

So, 41.4512 ≅∆−∆ VV  m3 ≈ 0.86  ٪ which is acceptable and it is very small 

error compared to several previously developed model such as Abiola [15] 

which was overestimates by 28 %. 
 

 

4.2. Adjoint verifications: 
     In the following experiment, a direct simulation is done first with a chosen 

boundary q1 and the results at certain location are now considered as the 

observations q1(x = x0). Then the model is re-run again with a new boundary q2 

and the results at same location are recorded q2(x = x0). The discrepancy 

between the two solutions at (x = x0) is used to measure the cost function. Then 

by using the conjugate gradient minimization the cost function is minimized at 

each iteration to cover q1 from q2 as shown in Figure (6). This technique where 

the same model is used to do the data assimilation and to get the observations is 

called the identical twin experiment. 
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Run forward model

Set q1 upstream

Run forward model

Set q2 = a q1 upstream

Calculate cost fn. 

Run the adjoint model

Recover q2 upstream (k+1) from q2 upstream (k)

Run forward model

Calculate cost fn. = chosen 

accuracy limit (e)

stop
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Conjugate gradient minimization

Set the first twin Set the second twin

Compute q1(x=x0) , H1(x=x0) Compute q2(x=x0) , H2(x=x0)

Calculate  gradient

 
Figure (6) Identical twin experiment flow chart 

 

     The convergence was rapid that the inlet hydrograph, q1 was found after 

only 14 iterations that a reduction of the measuring function by a factor 100000 

was achieved in about 10 iterations and about 97 % of q1 had been recovered 

after only three iterations as illustrated in Figure (7) and Figure (8).  
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Figure (7) Cost function convergence. 
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Figure (8) recovering of q1 from q2 as a result of 

The identical twin experiment. 

 

4. TEST CASE: 
     In this case, a 30 Km-long channel with an upstream hydrograph following 

a sinusoidal wave shape as shown in Figure (3) that will be used to run the 

forward model and then the adjoint equations (6) are solved, the values of the 

adjoint variables [φ, ψ] are then obtained within the whole domain as shown in 

Figure (9) .  
 

 
A – φ 

 

B – ψ 

Figure (9) Solution of the adjoint variables [φ, ψ] 
 

     The same time step and spatial increment will be used for both the forward model 

and the adjoint model, the maximum threshold water level is assumed to be 20.9 m. at 

15.0 Km down stream from the inlet. The sensitivity of the driving upstream 
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discharge described in Equation (7), the temporal variation of the sensitivity ),0( ptq

J

δ

δ
 

is shown in Figure (11) which is consistent to the driving hydrograph upstream, 

shown in Figure (10) 
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Figure (10) The inlet driving hydrograph. 
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Figure (11) The sensitivity with respect to the upstream hydrograph. 

 
 

The variations of the sensitivity to the bed elevation described in Equation (9), 
z

J

δ

δ
in 

space and time is shown in Figure (12). While the variations of the sensitivity with 

respect to the Chezy coefficient described in Equation (10), C

J

δ

δ
in space and time is 

shown in Figure (13). 



 14

 
 

Figure (12) The sensitivity with respect to the bed elevation. 
 

 
Figure (13) The sensitivity with respect to Chezy Coefficient. 

 

 

5. CONCUSIONS: 
     The sensitivities expressions relation to the predefined objective function 

response to upstream driving conditions and to some important control 

variables which are spatially and temporarily distributed have been derived, 

and it is clear from Figure (11) that the sensitivity of the flood level at the 

specified location (x0) to the upstream discharge follow the hydrograph shape, 
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in other word the sensitivity increases as the discharge increases and decreases 

as the discharge decreases. While the sensitivity to the bed elevation which is 

illustrated in Figure (12) explain the effect of the bed elevation from the 

upstream boundary to the down stream boundary on the threshold water level. 

Finally, Figure (13) show that the effect of the channel roughness from the 

upstream boundary till the specified location (x0) is much more greater than 

from the specified location (x0) till the down stream boundary duo to the 

backwater effect that agree with the basic hydraulic concepts in that any 

information could propagate upstream only in subcritical flow, which is case 

studied in this paper.  These sensitivities could now be functioned for several 

purposes, it could be used for parameters identification or it could be used by 

decision makers to help in prioritizing the most important parameters, in the 

case studied in this paper as an example, it is clear that the most important 

control variable is the driving upstream discharge compared to the bed 

elevation and the channel roughness expressed in Chezy coefficient. or it may 

be used as a tool to mitigate the flood hazards at certain locations along the 

channel by identifying the threshold water level not only at x = (x0) but as 

function along the studied channel and select the most appropriate location for 

a certain control action which may be a reservoir or detention dam or a 

diversion channel. The proper numerical solution and achieving open 

boundaries for both the forward model and the adjoint problem lead to 

formulation of an adjoint solution which is consistent with the basic problem. 

In the near future, the research is to be extended to evaluate both the effect of 

individual uncertainty in each control variable on the flood event and the global 

uncertainty from all the control variables on the flood impact. 
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