
Strathprints Institutional Repository

Fox, M. and Gough, J. and Long, D. (2007) Detecting execution failures using learned action models.
In: Proceedings of AAAI 2007. Association for the Advancement of Artificial Intelligence. ISBN 978-
1-57735-323-2

Strathprints is designed to allow users to access the research output of the University of Strathclyde.
Copyright c© and Moral Rights for the papers on this site are retained by the individual authors
and/or other copyright owners. You may not engage in further distribution of the material for any
profitmaking activities or any commercial gain. You may freely distribute both the url (http://
strathprints.strath.ac.uk/) and the content of this paper for research or study, educational, or
not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to Strathprints administrator:
mailto:strathprints@strath.ac.uk

http://strathprints.strath.ac.uk/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/9016412?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://strathprints.strath.ac.uk/
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk
http://strathprints.strath.ac.uk/


 
 
 
Fox, M. and Gough, J. and Long, D. (2007) Detecting execution failures 
using learned action models. In: Proceedings of AAAI 2007. Association 
for the Advancement of Artificial Intelligence. ISBN 978-1-57735-323-2 
 
 
 
 
http://eprints.cdlr.strath.ac.uk/3424/
 
 
 
This is an author-produced version of a paper published in Proceedings 
of AAAI 2007. Association for the Advancement of Artificial Intelligence. 
ISBN 978-1-57735-323-2 . This version has been peer-reviewed, but 
does not include the final publisher proof corrections, published layout, 
or pagination. 
 
Strathprints is designed to allow users to access the research 
output of the University of Strathclyde. Copyright © and Moral 
Rights for the papers on this site are retained by the individual 
authors and/or other copyright owners. Users may download 
and/or print one copy of any article(s) in Strathprints to facilitate 
their private study or for non-commercial research. You may not 
engage in further distribution of the material or use it for any 
profitmaking activities or any commercial gain. You may freely 
distribute the url (http://eprints.cdlr.strath.ac.uk) of the Strathprints 
website. 
 
Any correspondence concerning this service should be sent to The 
Strathprints Administrator: eprints@cis.strath.ac.uk 
 

http://eprints.cdlr.strath.ac.uk/3424/


Detecting Execution Failures Using Learned Action Models

Maria Fox and Jonathan Gough and Derek Long
Department of Computer and Information Sciences

University of Strathclyde, Glasgow, UK
{firstname.lastname}@cis.strath.ac.uk

Abstract

Planners reason with abstracted models of the behaviours
they use to construct plans. When plans are turned into the
instructions that drive an executive, the real behaviours in-
teracting with the unpredictable uncertainties of the environ-
ment can lead to failure. One of the challenges for intelligent
autonomy is to recognise when the actual execution of a be-
haviour has diverged so far from the expected behaviour that
it can be considered to be a failure. In this paper we present
an approach by which a trace of the execution of a behaviour
is monitored by tracking its most likely explanation through
a learned model of how the behaviour is normally executed.
In this way, possible failures are identified as deviations from
common patterns of the execution of the behaviour. We per-
form an experiment in which we inject errors into the be-
haviour of a robot performing a particular task, and explore
how well a learned model of the task can detect where these
errors occur.

1 Introduction
In the machine learning literature, methods are described
for learning classifications of behaviours based on analy-
sis of raw data. These techniques have been applied to in-
terpret both human behaviour (Liao, Fox, & Kautz 2004;
Ravi et al. 2005; Wilson & Bobick 1999; Nam & Wohn
1996) and robot behaviour (Koenig & Simmons 1996; Fox
et al. 2006; Schr̈oteret al. 2004). In our earlier work [to be
cited] we show that behavioural models can be learned us-
ing a fully automated process of abstraction from unlabelled
sensor data. These models capture the underlying patterns
in the execution of fundamental operations of some execu-
tive system. We now show that it is possible to use such a
learned model to track a robot while it executes the corre-
sponding behaviour in order to follow the evolution of the
behaviour at a more abstracted level. This is significant, be-
cause it forms a bridge from the primitive sensor level, at
which raw data is available, to the abstract level at which a
behaviour can be understood symbolically, reasoned about
and monitored.

In this paper we show that it is possible to detect when
the execution of a behaviour is deviating from its expected
course and infer failure in the execution process. As well
as recognising that an anomaly has occurred we can pin-
point when the failure occurred and attempt a diagnosis of

the failure. This diagnostic capability can be installed on
the robotic system, allowing it to track and diagnose its own
behaviour. This capability is a prerequisite to automatically
recognising plan failure and initiating a replanning effort.

To illustrate this idea with a simple example, consider a
robot executing an action of navigating between two points.
Suppose the robot has available to it sensors detecting the
passage of time and its wheel rotations and a laser sensor al-
lowing it to detect distances to objects in line-of-sight. Dur-
ing execution of the navigation task the robot can directly
observe the values reported by these sensors, but they do not
reveal whether the robot is successfully executing the task
itself. In order to detect that, the robot must have a model of
the process of execution and compare the trajectory of sen-
sor readings it perceives with the expectations determined
by the model. The key point is that the sensors themselves
can never sense failure in the execution — the failure can
only be determined by comparing the trajectory seen by the
sensors with a model of the behaviour.

The approach we describe is not restricted to monitoring
robot behaviour. We are applying the same techniques to
learning stochastic models of electrical power transformers
based on UHF sensor data. The monitoring approach we
describe in this paper is being used to identify, and help di-
agnose, changes in the UHF-detectable health states of the
transformers.

We begin by summarising the process by which the be-
havioural models are learned. We then describe the activity
on which we focus in this paper and the data collection strat-
egy. We go on to explain the techniques by which we mon-
itor execution and, finally, we explore the extent to which
these techniques have proven successful.

2 Learning Models of Hidden States
In any physical system there is a gap between its actual oper-
ation in the physical world and its state as perceived through
its sensors. Sensors provide only a very limited view of re-
ality and, even when the readings of different sensors are
combined, the resulting window on the real world is still lim-
ited by missing information and noisy sensor readings. The
consequence is that, in reality, the system moves through
states that arehiddenfrom direct perception. Furthermore,
because of the inability of the system to accurately perceive
its state, and the uncertainty in the physical world, the transi-



tions between these hidden states are probabilistic and there
is a probabilistic association between states and observa-
tions. Such a representation of the behaviour of the system is
abstracted from the physical organisation of the device and
cannot be reverse-engineered from the control software.

Several authors, including (Raviet al. 2005; Koenig &
Simmons 1996; Foxet al. 2006), have described methods
for learning abstract behaviour classifications from sensed
data. These classifications have been carried out using deci-
sion trees, data mining techniques and clustering. In some
cases this process was followed by application of the Baum-
Welch algorithm to infer a stochastic state transition sys-
tem, on a predetermined set of states, to support interpre-
tation of the behaviour of the system based on its observa-
tions (Koenig & Simmons 1996; Oates, Schmill, & Cohen
2000). Work has also been done to manage theperceptual
aliasing problem by refining the initial state set (Chrisman
1992). In our work (Foxet al. 2006) we apply a clus-
tering technique to perform the classification of the sensed
data into observations. Our approach uses a second cluster-
ing step to infer the states of the stochastic model from the
observation set, before estimating the underlying stochastic
process, so that the whole process of acquiring a behavioural
model from raw data is automated.

We make the assumption that the stochastic model can be
represented as a finite state probabilistic transition system,
so we use Expectation Maximisation (Dempster, Laird, &
Rubin 1977; Baumet al. 1970) to estimate a Hidden Markov
Model. Definition 1 describes the structure of the HMM.

Definition 1 A stochastic state transition model is a 5-tuple,
λ = (Ψ, ξ, π, δ, θ), with:

• Ψ = {s1, s2, . . . , sn}, a finite set ofstates;
• ξ = {e1, e2, . . . , em}, a finite set ofevidence items;
• π : Ψ → [0, 1], the prior probability distributions overΨ;
• δ : Ψ2 → [0, 1], the transition model ofλ such that

δi,j = Prob[qt+1 = sj |qt = si] is the probability of
transitioning from statesi to statesj at time t (qt is the
actual state at timet);

• θ : Ψ × ξ → [0, 1], the sensor model ofλ such that
θi,k = Prob[ek|si] is the probability of seeing evidence
ek in statesi.

Our objective is to learn HMMs of abstract robot be-
haviours, such asgrasping, moving, recognisingand so on.
Different models must be learned for significantly differ-
ent versions of these behaviours (for example, navigating 10
metres in an indoor environment is a very different version
of the navigation behaviour from navigating outside). How-
ever, a database of models of the key behaviours of the robot
can be compiled and used to track its success or failure in
the execution of plans.

We claim that, given a model of the successful execution
of a given task, subsequent executions can be tracked against
the model and identified as beingexplained by the model, in
which case they are normal, ordivergent from the model, in
which case they can be classed as failing executions. The
approach used to explain a sequence of observations with
respect to a model is the Viterbi algorithm (Forney 1973).

Our method is to learn how to recognise the normal variabil-
ity that exists amongst successful examples of a behaviour,
and then to identify significantly divergent examples as ab-
normal executions of the behaviour. As we demonstrate be-
low, we can also estimate the time at which the divergence
occurred, which can help in interpreting the cause of the ab-
normality.

An important consequence of having acquired the HMM
by a completely automated process is that the states of the
transition model have no natural interpretation. We there-
fore compare different executions of a behaviour by measur-
ing statistical differences between the trajectories that best
explain the observation sequences that they produce. This
approach relies on the Viterbi algorithm to generate the most
probable trajectories but it does not require any understand-
ing of the meanings of the states.

3 Experiment
We begin by describing the context in which sensor data was
collected, in order to make more concrete the concept of a
trajectory that we use throughout. We describe the set up
here because the first batch of empirical data collection pre-
cedes the process of model construction and allows us to
better explain the way in which the model can then be used
to identify anomalous behaviour.

When a series of observations is generated from sensor
readings during an execution of a behaviour, the observa-
tions can be fed into the model, using an online implemen-
tation of the Viterbi algorithm to find the most likely tra-
jectory of states to explain the observation sequence. The
sequence can then be assigned a likelihood, which is the
probability that the model assigns to the particular trajec-
tory it proposes to explain the observation sequence. The se-
quence of probabilities generated as more observations are
considered will be monotonically decreasing, since longer
sequences reside in progressively larger spaces of possible
trajectories. For long sequences, these values are very small
and will typically underflow the accuracy of floating point
representations. As a consequence, we work (as is usual)
with log-likelihood measures. We have observed that the
pattern of developing log-likelihood across a trajectory falls
within an envelope for successful traces, while traces gener-
ated by failing executions diverge from the envelope. This
occurs because the unusual observations or atypical state
transitions made in following the divergent traces have dif-
ferent probabilities to those normally followed. As we will
see, these probabilities can sometimes be higher than normal
and sometimes lower. We discuss this further in the context
of some of our results.

In this paper we concentrate on a model of a single
robot activity. The activity we consider is that of captur-
ing a panoramic image by taking a series of individual pho-
tographs at fixed angles during a rotation through a full 360
degree turn. The robot is expected to stay located on the
same spot, simply rotating in place. The robot we used for
this experiment is an Amigobot and it is equipped with a
ring of sonar sensors and wheel rotation sensors. Data from
sonar sensors are notoriously difficult to interpret because of
their susceptibility to noise and environmental interference,



Figure 1: The Viterbi sequence probabilities for the training
data

Figure 2: The Viterbi sequence probabilities for the verifica-
tion data

while the wheel rotation sensors are reasonably reliable dur-
ing straight traverses but tend to be inaccurate during turns,
when slip and granularity are both problematic. The robot is
equipped with a map of its immediate environment which,
in the experiment reported here, consisted of a collection of
boxes arranged around it.

Our data was collected in a series of batches: 50 training
executions, 20 verification executions and 40 error execu-
tions, split into four groups of 10 executions for different
errors. The training data was used to learn the HMM, and
the verification data was kept separate so that the learnt mod-
els could be tested. The error data consisted of executions
in which a specific type of error was induced. Figures 1
and 2 show the envelope for the log-likelihood values on
the training data and the log-likelihood values for the sub-
sequent verification data set. There is one execution in the
training data that took about twenty seconds longer to com-
plete than the rest, and this protrudes past the end of the rest
of the data. The most likely reason for this single execution
taking longer is a build up of errors that led to a series of
localisation steps that did not correct the error entirely.

The verification data was collected in an entirely recon-
structed environment, rather than simply being a subset of
the data collected during training. This helps to explain
why the traces in the verification data are not evenly placed
within the training envelope and also serves to emphasise
the robustness of the learned model. The difference in the
verification environment was significant (it was constructed

Figure 3: The Viterbi sequence probabilities for the ‘Lost
Connection’ error data

in a different laboratory, with quite different physical dimen-
sions and different floor covering), so the fact that the model
continues to provide a good characterisation of the under-
lying behaviour in this task is a significant validation of its
performance.

For all of the error executions, data was collected up to
the point that the task finished or long enough to allow a
reasonable algorithm to detect an error. The errors induced
were as follows:

Lost Connection The radio connection between the con-
trolling computer and the robot was disconnected, mean-
ing that the robot stopped receiving commands and could
not transmit new sensor data.

Blocked The robot was trapped so that it was unable to
turn to the next angle to take a photograph. This is to sim-
ulate the robot becoming blocked by some environmental
factor.

Slowed In this data, the robot was deliberately slowed
down by exerting friction on the top of the robot. This
caused the robot to turn much more slowly than normal.

Propped Up This set of data was collected to simulate the
robot “bottoming-out” by the wheels losing contact on the
ground on an uneven surface. The front of the robot was
propped-up on a block so that the wheels could not make
the robot rotate. The execution continues as normal as
the robot wheel sensors indicate that it is still rotating,
however there may be an extreme number of localisation
steps as it tries to correct the errors of inconsistency in its
sonar readings. Eventually the robot’s localisation cannot
keep up with the errors and it becomes highly inaccurate.

We now consider the data collected from these failing tra-
jectories.

Lost Connection Errors (Figure 3) The consequence of
terminating the connection is that the robot cannot report
new sensor data, and the last known values are used instead.
These values are repeated until the action is manually ter-
minated. In the Figure, the times at which the failures were
induced are indicated at the end of each line. When the fail-
ure was induced at 0 seconds, the probability decreases at a
very slow rate from the start. This is a behaviour that was
not seen in any of the training data. In five of the remaining
nine cases the probability decreases at roughly the same rate



Figure 4: The Viterbi sequence probabilities for the
‘Blocked’ error data

as the training data up to a point, and then breaks off before
decreasing at the slower rate. The other four cases (fail-
ures induced at 6, 12, 24 and 20 seconds) show no obvious
changes in the rate of probability decrease, and all appear
with probabilities similar to the training data.

It may seem strange at first that in the majority of the fail-
ure cases the probabilities are higher than the training data,
but this is to be expected. The probability reported by the
Viterbi algorithm is the chance that a particular sequence of
observations produced a particular output sequence of states.
The higher probability that the Viterbi sequence explains the
observation sequence is not to be interpreted to mean that
the sequence itself is more likely, but rather thatgiven the
observation sequencethe generated state trajectory is more
likely. The panoramic image behaviour (in common with
many others) exhibits a regularity of structure that is mod-
elled by loops on individual, or sets of, states. With thought
it is easy to see that a repeated observation is best explained
by a repeated visit to a single state. The HMM seeks out
the best state (or states) to repeat in order to maximise the
probability of the sequence.

Blocked Errors (Figure 4) As with the error cases in
which the connection was terminated, these executions have
probabilities that deviate upwards from the training data.
The difference here is thatall of the sequences exhibit this
behaviour, rather than simply the majority. One explanation
for this could be that the data reported from the sensors in
this case will always indicate that the robot is barely moving,
while the lost connection will lead to repetition of whatever
sensed data was last detected.

Slowed Errors (Figure 5)Since the robot is being slowed
down during turning, the action takes much longer to com-
plete than the normal executions. In these error cases, the
probabilities decrease at a greater rate than normal, proceed-
ing to a minimum probability of around10−300, compared
to a minimum of10−120 for the training data. The very low
probabilities of sequences are due to the fact that the most
appropriate HMM sequences in these cases loop on states
that have low self-transition probabilities. Such trajectories
are highly unlikely to occur.

Propped Errors (Figure 6) The data collected from these
error executions do not show any apparent difference to the
training or verification data. The probabilities reported are

Figure 5: The Viterbi sequence probabilities for the
‘Slowed’ error data

Figure 6: The Viterbi sequence probabilities for the
‘Propped Up’ error data

within acceptable limits and it is impossible to distinguish
these executions as possessing any anomalies.

4 Automatic Error Detection
We propose two methods for automatic detection of anoma-
lous execution traces.

4.1 Cumulative difference

The first method is based on an an approach we callCu-
mulative Log Probability Difference, or CLPD. The CLPD
measures how far the sequence has wandered outside the
range defined by the maximum and minimum probabilities
seen for the training data. If the sequence wanders outside
the boundaries seen for a particular timepoint, the difference
between the log probabilities is summed. By definition, the
training data always remains in this range and will always
have a CLPD of 0.

More formally, with the following:
px = log

(
prob. seq. atx

)
mx = max

(
log(prob. train data atx)

)
nx = min

(
log(prob. train data atx)

)
CLPD is defined:

LPDx = 0 [nx < px < mx]
(px − nx) [px < nx]
(mx − px) [px > mx]

CLPDx =
x∑

i=0

LPDi



Figure 7: The CLPD values for the verification data

Figure 7 shows the CLPD of the verification data, plotted
on a log scale vertically for clarity. Note that all but two
of the executions have CLPDs of below 5001, suggesting
that in this task a CLPD of 500 or lower is a good indicator
of successful execution. Once a sequence has a CLPD of
over 500 it can be identified as having failed.

Figure 8 shows the times at which the CLPD value ex-
ceeds 500 in each of the anomalous traces. Note that most of
the errors in the ‘Lost Connection’, ‘Blocked’ and ‘Slowed’
data were detected before the action terminated, but only
one of the ‘Propped Up’ errors was detected. The latter er-
ror type is much more difficult to characterise for this robot
in terms of a physical behaviour that is different to a normal
execution, because of its limited sensory capacity. Indeed,
a human presented with the raw data of one of these exe-
cutions and a normal execution would be unlikely to distin-
guish between the two. It had been hoped that there would
be a difference in the amount of localisation required for
this error type, but it seems that the sonar data and sub-
routines for localisation are not accurate enough to provide
meaningful data when such errors occur. Had the robot been
equipped with a more accurate localisation device (such as
a laser range-finder) as well as a more sophisticated locali-
sation algorithm then these errors might have been detected.
We intend to explore this hypothesis with a more sophisti-
cated robot in the future.

4.2 Temporal state counting
We now consider an alternative approach to anomaly detec-
tion. Temporal state counting attempts to identify Viterbi se-
quences with an anomalous number of occurrences of states
(either too few or too many) in comparison with the numbers
of occurrences of states in successful trajectories. To mea-
sure the amount of error, a similar technique to the proba-
bilistic anomaly detection above is used. The difference be-
tween the observed number of occurrences of each state and
the expected number of states at each timepoint is summed.
This may be formally defined as follows:

c(τ, s, x) = # occs.s to timex for traceτ
m(s, x) = maxT

(
#s to timex

)
n(s, x) = minT

(
#s to timex

)
1One execution exceeds a CLPD of 500 just before the end of

the task, when there was only one training execution of this length.
There was little evidence for the possible spread of values at this
timepoint causing CLPD to rise sharply after this point. A larger
training sample would probably have removed this problem.

Figure 9: The TSCEM values for the verification data.

where “#s” is the number of occurrences of states in the
states for the corresponding trajectory and the maximum and
minimum values (form(s, x) andn(s, x)) are defined of the
range of traces inT , the set of all training data.

The error magnitude for states at timepointx is defined
to be a measure of how far the current execution deviates
from the training data:

e(s, x) =
0 [n(s, x) < c(s, x) < m(s, x)]
n(s, x)− c(s, x) [c(s, x) < n(s, x)]
c(s, x)−m(s, x) [c(s, x) > m(s, x)]

Temporal State Count Error Magnitude (TSCEM) for a
sequence at timepointx is defined to be the sum of all error
magnitudes across all states up to that timepoint:

TSCEMx =
x∑

i=0

(
t∑

s=0

e(s, i)

)
wheret is the number of states in the HMM.
Figure 9 shows the TSCEM values for the verification

data. Note that the magnitude of the errors is usually be-
low 100, and only one has a TSCEM value of over 125. Be-
cause of this, we consider a TSCEM value over 125 as an
indication of failure for this task. Figure 8 also shows the
performance of our algorithm based on Temporal Anomaly
Detection in our examination of the test data. As with Proba-
bilistic Anomaly Detection, identification of the ‘Lost Con-
nection’, ‘Blocked’ and ‘Slowed’ errors was very success-
ful. However, this technique detected the errors more re-
liably than the CLPD technique. The technique was less
successful with the ‘Propped Up’ errors.

A possible refinement would be to find the distri-
bution of occurrences of each state at each timepoint,
rather than simply the maximum and minimum. The
sum of the number of standard deviations by which
each statecount varies (Z-score) could be taken instead
of the TSCEM value. This is defined as follows:
µ(s, x) = meanT

(
#s to timex

)
σ(s, x) = stddevT

(
#s to timex

)
The normalised error magnitude for states at timex is then:

NSCEMx =

xX
i=0

 
tX

s=0

c(s, i)− µ(s, i)

σ(s, i)

!
Using this value could provide better error detection, but at
the cost of more training data required to find accurate dis-



Time of ‘Lost Connection’ ‘Blocked’ error ‘Slowed’ error ‘Propped Up’
induced error (s) error detected (s) detected (s) detected (s) error detected (s)

CLPD TSCEM CLPD TSCEM CLPD TSCEM CLPD TSCEM
0 30.4 23.2 30.4 23.2 75.2 37.6 — 64.0
3 53.6 28.0 64.8 27.2 82.4 50.4 — —
6 — 36.0 — 36.8 70.4 47.2 — 96.8
10 64.0 40.0 71.2 43.2 111.2 66.4 — —
12 — 48.0 68.0 48.8 94.4 75.2 — —
17 78.4 57.6 80.0 59.2 106.4 78.4 — —
20 — 62.4 80.0 63.2 112.0 84.0 — —
24 106.4 74.4 99.2 78.4 — 96.0 — —
32 104.0 51.2 102.4 92.0 — 100.0 — —
40 105.6 — 106.4 — — 93.6 96.8 —

Figure 8: Probabilistic and Temporal Anomaly Detection performance across the error data. Time for a successful run was
around 100 seconds in the training data and 110 seconds in the verification data.

tributions for each state at each timepoint. This method re-
mains a subject for further research.

Using TSCEM we can detect errors earlier, and detect
more of them. TSCEM successfully identified 30/40 errors,
while CLPD identified only 24/40. The combination of tech-
niques, however, is a more reliable test than either test indi-
vidually, allowing us to correctly identify 33/40 cases, in-
cluding all of the first three types. As commented earlier,
we believe that the ‘Propped Up’ error type is hard to find
given the nature of the sensors available to this robot.

5 Conclusion
When an executive system is required to turn a plan, con-
structed from abstract action models, into execution, while
sensing its environments through imperfect sensors, there is
no direct way to detect when the execution of an individual
action has failed. We have described a controlled experiment
in which we confirmed that a model learned from success-
ful executions of a particular behaviour could reliably ex-
plain subsequent, unseen, successful trajectories, and could
also recognise failing trajectories as divergent with high re-
liability. We have presented two statistical measures for de-
termining that trajectories are divergent. The first, CLPD,
measures the extent to which a trajectory has diverged from
the envelope of accepted trajectories by considering the ac-
cumulation of divergence in the log probability of the given
trajectory from the extremes of the envelope. The second,
TSCEM, measures the extent to which revisiting the same
state causes a trajectory to become divergent (even when the
well-explained trajectories also contain state loops).

We have demonstrated that it is possible to use mod-
els that bridge the gap between the low-level sensory data
streams and the higher level abstract action models to mon-
itor execution. In doing so, we are able to detect failures in
execution, often anticipating the point at which the action
might otherwise have completed execution. The approach
we have described is complementary to the use of direct sen-
sor interpretation methods and represents a form of model-
based reasoning (Williams & Nayak 1996).

The next step in this work is to react to having detected
failure by controlling what the robot does next. At this time

we can only detect that failure has probably occurred (even
if it is not yet externally visible) and cause the robot to ter-
minate its activity. This is a conservative reaction to pre-
vent the robot from entering an unsafe state. It would be
interesting to react by switching the robot into an alternative
behaviour and then continuing to monitor its execution by
tracking against the appropriate model. We are considering
this possibility in our current work.

Finally, we believe that our approach can be used not only
in monitoring the execution of actions for robotic systems,
but also to monitor the behaviour of systems, both engi-
neered and natural, using models learned from data gath-
ered from monitored traces of their behaviours over time.
This work is already progressing in application to condition
monitoring of electrical plant items and will be reported in
future work.

References
Baum, L.; Petrie, T.; Soules, G.; and Weiss, N. 1970. A maximization technique occurring in the
statistical analysis of probabilistic functions of Markov chains.Ann. Math. Statist.41(1):164–171.

Chrisman, L. 1992. Reinforcement Learning with Perceptual Aliasing. InProceedings of the 10th
National Conference on AI (AAAI), 183–188.

Dempster, A. P.; Laird, N. M.; and Rubin, D. B. 1977. Maximum Likelihood from Incomplete
Data via the EM algorithm.Journal of the Royal Statistics Society39(1):1–38.

Forney, G. D. 1973. The Viterbi Algorithm.Proceedings of the IEEE61:268–278.

Fox, M.; Ghallab, M.; Infantes, G.; and Long, D. 2006. Robot Introspection through Learned
Hidden Markov Models.Artificial Intelligence170(2):59–113.

Koenig, S., and Simmons, R. G. 1996. Unsupervised Learning of Probabilistic Models for Robot
Navigation. InProceedings of the International Conference on Robotics and Automation, 2301–
2308.

Liao, L.; Fox, D.; and Kautz, H. 2004. Learning and Inferring Transportation Routines. In
Proceedings of the 19th National Conference on AI (AAAI), 348–354.

Nam, Y., and Wohn, K. 1996. Recognition of Space-Time Hand Gestures using Hidden Markov
Models. InACM Symposium on Virtual Reality Software and Technology, 51–58.

Oates, T.; Schmill, M.; and Cohen, P. 2000. A Method for Clustering the Experiences of a Mobile
Robot that Accords with Human Judgements. InProceedings of the 17th National Conference on
AI (AAAI), 846–851.

Ravi, N.; Dandekar, N.; Mysore, P.; and Littman, M. 2005. Activity recognition from accelerom-
eter data. InProc. of 17th Conf. on Innovative Applications of AI (IAAI).

Schr̈oter, D.; Weber, T.; Beetz, M.; and Radig, B. 2004. Detection and classification of gateways
for the acquisition of structured robot maps. InProc. 26th Pattern Recognition Symposium.

Williams, B. C., and Nayak, P. P. 1996. A Model-based Approach to Adaptive Self-configuring
Systems. InProceedings of the 13th National Conference on AI (AAAI), 971–978.

Wilson, A., and Bobick, A. 1999. Parametric Hidden Markov Models for Gesture Recognition.
IEEE Transaction on Pattern Analysis and Machine Intelligence21(9):884–900.


