-

View metadata, citation and similar papers at core.ac.uk brought to you by .{ CORE

provided by University of Strathclyde Institutional Repository

I._‘.
Unlversltyﬂ@

Strathclyde
Glasgow

Strathprints Institutional Repository

Fox, M. and Gough, J. and Long, D. (2007) Detecting execution failures using learned action models.
In: Proceedings of AAAI 2007. Association for the Advancement of Artificial Intelligence. ISBN 978-
1-57735-323-2

Strathprints is designed to allow users to access the research output of the University of Strathclyde.
Copyright © and Moral Rights for the papers on this site are retained by the individual authors
and/or other copyright owners. You may not engage in further distribution of the material for any
profitmaking activities or any commercial gain. You may freely distribute both the url (http://
strathprints.strath.ac.uk/) and the content of this paper for research or study, educational, or
not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to Strathprints administrator:
mailto:strathprints@strath.ac.uk

http://strathprints.strath.ac.uk/

https://core.ac.uk/display/9016412?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://strathprints.strath.ac.uk/
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk
http://strathprints.strath.ac.uk/

. IH
I"-. MNIVERSITY OF
'\ 3 TRATHCLYDE

N GEASGORY

Fox, M. and Gough, J. and Long, D. (2007) Detecting execution failures
using learned action models. In: Proceedings of AAAI 2007. Association
for the Advancement of Atrtificial Intelligence. ISBN 978-1-57735-323-2

http://eprints.cdlr.strath.ac.uk/3424/

This is an author-produced version of a paper published in Proceedings
of AAAI 2007. Association for the Advancement of Artificial Intelligence.
ISBN 978-1-57735-323-2 . This version has been peer-reviewed, but
does not include the final publisher proof corrections, published layout,
or pagination.

Strathprints is designed to allow users to access the research
output of the University of Strathclyde. Copyright © and Moral
Rights for the papers on this site are retained by the individual
authors and/or other copyright owners. Users may download
and/or print one copy of any article(s) in Strathprints to facilitate
their private study or for non-commercial research. You may not
engage in further distribution of the material or use it for any
profitmaking activities or any commercial gain. You may freely
distribute the url (http://eprints.cdlr.strath.ac.uk) of the Strathprints
website.

Any correspondence concerning this service should be sent to The
Strathprints Administrator: eprints@cis.strath.ac.uk

http://eprints.cdlr.strath.ac.uk/3424/

Detecting Execution Failures Using Learned Action Models

Maria Fox and Jonathan Gough and Derek Long
Department of Computer and Information Sciences
University of Strathclyde, Glasgow, UK
{firstname.lastnam&@cis.strath.ac.uk

Abstract

Planners reason with abstracted models of the behaviours
they use to construct plans. When plans are turned into the
instructions that drive an executive, the real behaviours in-
teracting with the unpredictable uncertainties of the environ-
ment can lead to failure. One of the challenges for intelligent
autonomy is to recognise when the actual execution of a be-
haviour has diverged so far from the expected behaviour that
it can be considered to be a failure. In this paper we present
an approach by which a trace of the execution of a behaviour
is monitored by tracking its most likely explanation through
a learned model of how the behaviour is normally executed.
In this way, possible failures are identified as deviations from
common patterns of the execution of the behaviour. We per-
form an experiment in which we inject errors into the be-
haviour of a robot performing a particular task, and explore
how well a learned model of the task can detect where these
errors occur.

1 Introduction

In the machine learning literature, methods are described
for learning classifications of behaviours based on analy-
sis of raw data. These techniques have been applied to in-
terpret both human behaviour (Liao, Fox, & Kautz 2004;
Ravi et al. 2005; Wilson & Bobick 1999; Nam & Wohn
1996) and robot behaviour (Koenig & Simmons 1996; Fox
et al. 2006; Schoteret al. 2004). In our earlier work [to be
cited] we show that behavioural models can be learned us-
ing a fully automated process of abstraction from unlabelled

sensor data. These models capture the underlying patterns

in the execution of fundamental operations of some execu-
tive system. We now show that it is possible to use such a
learned model to track a robot while it executes the corre-
sponding behaviour in order to follow the evolution of the

the failure. This diagnostic capability can be installed on
the robotic system, allowing it to track and diagnose its own
behaviour. This capability is a prerequisite to automatically
recognising plan failure and initiating a replanning effort.

To illustrate this idea with a simple example, consider a
robot executing an action of navigating between two points.
Suppose the robot has available to it sensors detecting the
passage of time and its wheel rotations and a laser sensor al-
lowing it to detect distances to objects in line-of-sight. Dur-
ing execution of the navigation task the robot can directly
observe the values reported by these sensors, but they do not
reveal whether the robot is successfully executing the task
itself. In order to detect that, the robot must have a model of
the process of execution and compare the trajectory of sen-
sor readings it perceives with the expectations determined
by the model. The key point is that the sensors themselves
can never sense failure in the execution — the failure can
only be determined by comparing the trajectory seen by the
sensors with a model of the behaviour.

The approach we describe is not restricted to monitoring
robot behaviour. We are applying the same techniques to
learning stochastic models of electrical power transformers
based on UHF sensor data. The monitoring approach we
describe in this paper is being used to identify, and help di-
agnose, changes in the UHF-detectable health states of the
transformers.

We begin by summarising the process by which the be-
havioural models are learned. We then describe the activity
on which we focus in this paper and the data collection strat-
egy. We go on to explain the techniques by which we mon-
itor execution and, finally, we explore the extent to which
these techniques have proven successful.

2 Learning Models of Hidden States

behaviour at a more abstracted level. This is significant, be- In any physical system there is a gap between its actual oper-
cause it forms a bridge from the primitive sensor level, at ation in the physical world and its state as perceived through
which raw data is available, to the abstract level at which a its sensors. Sensors provide only a very limited view of re-
behaviour can be understood symbolically, reasoned about ality and, even when the readings of different sensors are
and monitored. combined, the resulting window on the real world is still lim-

In this paper we show that it is possible to detect when
the execution of a behaviour is deviating from its expected
course and infer failure in the execution process. As well
as recognising that an anomaly has occurred we can pin-
point when the failure occurred and attempt a diagnosis of

ited by missing information and noisy sensor readings. The
consequence is that, in reality, the system moves through
states that arbiddenfrom direct perception. Furthermore,

because of the inability of the system to accurately perceive
its state, and the uncertainty in the physical world, the transi-

tions between these hidden states are probabilistic and thereOur method is to learn how to recognise the normal variabil-
is a probabilistic association between states and observa- ity that exists amongst successful examples of a behaviour,
tions. Such a representation of the behaviour of the system is and then to identify significantly divergent examples as ab-
abstracted from the physical organisation of the device and normal executions of the behaviour. As we demonstrate be-
cannot be reverse-engineered from the control software. low, we can also estimate the time at which the divergence
Several authors, including (Raet al. 2005; Koenig & occurred, which can help in interpreting the cause of the ab-
Simmons 1996; Foxt al. 2006), have described methods normality.
for learning abstract behaviour classifications from sensed An important consequence of having acquired the HMM
data. These classifications have been carried out using deci-by a completely automated process is that the states of the
sion trees, data mining techniques and clustering. In some transition model have no natural interpretation. We there-
cases this process was followed by application of the Baum- fore compare different executions of a behaviour by measur-
Welch algorithm to infer a stochastic state transition sys- ing statistical differences between the trajectories that best
tem, on a predetermined set of states, to support interpre- explain the observation sequences that they produce. This
tation of the behaviour of the system based on its observa- approach relies on the Viterbi algorithm to generate the most
tions (Koenig & Simmons 1996; Oates, Schmill, & Cohen probable trajectories but it does not require any understand-

2000). Work has also been done to managepireeptual ing of the meanings of the states.
aliasing problem by refining the initial state set (Chrisman _
1992). In our work (Foxet al. 2006) we apply a clus- 3 Experiment

tering_ technique to perform the classification of the sensed e begin by describing the context in which sensor data was
data into observations. Our approach uses a second clusterg|lected, in order to make more concrete the concept of a
ing step to infer the states of the stochastic model from the trajectory that we use throughout. We describe the set up

observation set, before estimating the underlying stochastic here because the first batch of empirical data collection pre-
process, so that the whole process of acquiring a behavioural cedes the process of model construction and allows us to
model from raw data is automated. better explain the way in which the model can then be used

We make the assumption that the stochastic model can be tg identify anomalous behaviour.
represented as a finite state probabilistic transition system, When a series of observations is generated from sensor

so we use Expectation Maximisation (Dempster, Laird, & readings during an execution of a behaviour, the observa-
Rubin 1977; Baunet al. 1970) to estimate a Hidden Markov tions can be fed into the mode|, using an online imp|emen_

Model. Definition 1 describes the structure of the HMM. tation of the Viterbi a|gorithm to find the most ||ke|y tra-
Definition 1 A stochastic state transition model is a 5-tuple, J€ctory of states to explain the observation sequence. The
A= (U, & m,6,0), with: sequence can then be assigned a likelihood, which is the
- probability that the model assigns to the particular trajec-
o U= {s1,52,...,5n}, afinite set obtates tory it proposes to explain the observation sequence. The se-
o { ={ei,e2,..., e}, afinite set obvidence items quence of probabilities generated as more observations are
e m: ¥ — [0, 1], the prior probability distributions ovew; considered will be monotonically decreasing, since longer
e 5 : U2 — [0,1], the transition model of\ such that sequences reside in progressively larger spaces of possible
5;; = Problgis1 = s;l¢r = si] is the probability of trajectories. For long sequences, these values are very small
transitioning from states; to states; at time t g is the and will typically underflow the accuracy of floating point
actual state at time); representations. As a consequence, we work (as is usual)

with log-likelihood measures. We have observed that the
pattern of developing log-likelihood across a trajectory falls
within an envelope for successful traces, while traces gener-
ated by failing executions diverge from the envelope. This
Our objective is to learn HMMs of abstract robot be- occurs because the unusual observations or atypical state
haviours, such agrasping moving recognisingand so on. transitions made in following the divergent traces have dif-
Different models must be learned for significantly differ- ferent probabilities to those normally followed. As we will
ent versions of these behaviours (for example, navigating 10 see, these probabilities can sometimes be higher than normal
metres in an indoor environment is a very different version and sometimes lower. We discuss this further in the context
of the navigation behaviour from navigating outside). How- of some of our results.
ever, a database of models of the key behaviours of the robot In this paper we concentrate on a model of a single
can be compiled and used to track its success or failure in robot activity. The activity we consider is that of captur-
the execution of plans. ing a panoramic image by taking a series of individual pho-
We claim that, given a model of the successful execution tographs at fixed angles during a rotation through a full 360
of a given task, subsequent executions can be tracked againstdegree turn. The robot is expected to stay located on the
the model and identified as beirgplained by the modégh same spot, simply rotating in place. The robot we used for
which case they are normal, divergent from the modgin this experiment is an Amigobot and it is equipped with a
which case they can be classed as failing executions. The ring of sonar sensors and wheel rotation sensors. Data from
approach used to explain a sequence of observations with sonar sensors are notoriously difficult to interpret because of
respect to a model is the Viterbi algorithm (Forney 1973). their susceptibility to noise and environmental interference,

e 0 : ¥ x¢& — [0,1], the sensor model of such that
0;.x = Probleg|s;] is the probability of seeing evidence
ey In states;.

Viterbi Sequence Probability Change Across Time: Viterbi Sequence Probability Change Across Time
(fraining Data) (Lost Connection Errors)

Time (seconds)
0 8 16 24 32 40 48 56 64 72 80 88 96 104112120128 136

Time

0 8 16 24 32 40 48 56 64 72 80 88 96 104112120128 136

Iog (probabilty)
= 5 8
8

log (probability)

Figure 1: The Viterbi sequence probabilities for the training Figure 3: The Viterbi sequence probabilities for the ‘Lost
data Connection’ error data

Viterbi Sequence Probability Change Across Time:

Wertiation Dotc) in a different laboratory, with quite different physical dimen-
0 6 6 2 52 @0 48 56 73 50 88 56 104112120128 136 sions and different floor Covering), so the fact that the model
continues to provide a good characterisation of the under-
lying behaviour in this task is a significant validation of its
performance.
For all of the error executions, data was collected up to
the point that the task finished or long enough to allow a
reasonable algorithm to detect an error. The errors induced

were as follows:

Lost Connection The radio connection between the con-
trolling computer and the robot was disconnected, mean-

Figure 2: The Viterbi sequence probabilities for the verifica- ing that the robot stopped receiving commands and could
tion data not transmit new sensor data.

Blocked The robot was trapped so that it was unable to

i)] turn to the next angle to take a photograph. This is to sim-

while the wheel rotation sensors are reasonably reliable dur- jate the robot becoming blocked by some environmental
ing straight traverses but tend to be inaccurate during turns, factor.

when slip and granularity are both problematic. The robot is
equipped with a map of its immediate environment which, . o ;
inqthgrzaxperiment regorted here, consisted of a collection of ~9OWN Dy exerting friction on the top of the robot. This
boxes arranged around it. caused the robot to turn much more slowly than normal.
Our data was collected in a series of batches: 50 training Propped Up This set of data was collected to simulate the
executions, 20 verification executions and 40 error execu- robot “bottoming-out” by the wheels losing contact on the
tions, split into four groups of 10 executions for different ~ ground on an uneven surface. The front of the robot was
errors. The training data was used to learn the HMM, and ~ Propped-up on a block so that the wheels could not make
the verification data was kept separate so that the learnt mod- the robot rotate. The execution continues as normal as
els could be tested. The error data consisted of executions the robot wheel sensors indicate that it is still rotating,
in which a specific type of error was induced. Figures 1~ however there may be an extreme number of localisation
and 2 show the envelope for the log-likelihood values on steps as it t.rles to correct the errors of |ncor_IS|SFency In its
the training data and the log-likelihood values for the sub- ~ sonar readings. Eventually the robot’s localisation cannot
sequent verification data set. There is one execution in the keep up with the errors and it becomes highly inaccurate.
training data that took about twenty seconds longer to com- We now consider the data collected from these failing tra-
plete than the rest, and this protrudes past the end of the restjectories.
of the data. The most likely reason for this single execution Lost Connection Errors (Figure 3) The consequence of
taking longer is a build up of errors that led to a series of terminating the connection is that the robot cannot report
localisation steps that did not correct the error entirely. new sensor data, and the last known values are used instead.
The verification data was collected in an entirely recon- These values are repeated until the action is manually ter-
structed environment, rather than simply being a subset of minated. In the Figure, the times at which the failures were
the data collected during training. This helps to explain induced are indicated at the end of each line. When the fail-
why the traces in the verification data are not evenly placed ure was induced at 0 seconds, the probability decreases at a
within the training envelope and also serves to emphasise very slow rate from the start. This is a behaviour that was
the robustness of the learned model. The difference in the not seen in any of the training data. In five of the remaining
verification environment was significant (it was constructed nine cases the probability decreases at roughly the same rate

log (probability)
: s
8

Slowed In this data, the robot was deliberately slowed

Viterbi Sequence Probability Change Across Time Viterbi Sequence Probability Change Across Time
(Blocked Errors) (Slowed Errors)

log (probabilty)
3
3
5 8
EE
3
log (probabilty)
& L~
8 3 3
g8 38 8

&
b
g

&
8
8

8
&
8

Figure 4: The Viterbi sequence probabilities for the Figure 5: The Viterbi sequence probabilities for the
‘Blocked’ error data ‘Slowed’ error data

Viterbi Sequence Probability Change Across Time:
(Propped Up Errors)

as the training data up to a point, and then breaks off before

decreasing at the slower rate. The other four cases (fail- oo cisessInessdfENEID
ures induced at 6, 12, 24 and 20 seconds) show no obvious
changes in the rate of probability decrease, and all appear
with probabilities similar to the training data.

It may seem strange at first that in the majority of the fail-
ure cases the probabilities are higher than the training data,
but this is to be expected. The probability reported by the
Viterbi algorithm is the chance that a particular sequence of
observations produced a particular output sequence of states.
The higher probability that the Viterbi sequence explains the
observation sequence is not to be interpreted to mean thatFigure 6: The Viterbi sequence probabilities for the
the sequence itself is more likely, but rather thaten the ‘Propped Up’ error data
observation sequendbe generated state trajectory is more o o o] o
likely. The panoramic image behaviour (in common with Within acceptable limits and it is impossible to distinguish
many others) exhibits a regularity of structure that is mod- these executions as possessing any anomalies.
elled by loops on individual, or sets of, states. With thought
it is easy to see that a repeated observation is best explained 4 Automatic Error Detection
by a repeated visit to a single state. The HMM seeks out
the best state (or states) to repeat in order to maximise the
probability of the sequence.

Blocked Errors (Figure 4) As with the error cases in . .
which the connection was terminated, these executions have4-1 Cumulative difference

probabilities that deviate upwards from the training data. The first method is based on an an approach we Cail

The difference here is thatl of the sequences exhibit this mylative Log Probability Differengeor CLPD. The CLPD

behaviour, rather than simply the majority. One explanation measures how far the sequence has wandered outside the

for this could be that the data reported from the sensors in range defined by the maximum and minimum probabilities

this case will always indicate that the robot is barely moving, seen for the training data. If the sequence wanders outside

while the lost connection will lead to repetition of whatever the boundaries seen for a particular timepoint, the difference

sensed data was last detected. between the log probabilities is summed. By definition, the
Slowed Errors (Figure 5) Since the robot is being slowed training data always remains in this range and will always

down during turning, the action takes much longer to com- have a CLPD of 0.

plete than the normal executions. In these error cases, the More formally, with the following:

probabilities decrease at a greater rate than normal, proceed- p. = log(prob. seq. at)

Iog (probability)
o,
8

We propose two methods for automatic detection of anoma-
lous execution traces.

ing to a minimum probability of arountio —3°°, compared _ :
to a minimum of10~12° for the training data. The very low e _ mx(ﬁfg((prfg ttrraailr?(;j:tf;))))
probabilities of sequences are due to the fact that the most CLP%xis d;fined' 9(prob.

appropriate HMM sequences in these cases loop on states LPD. — 0
that have low self-transition probabilities. Such trajectories v
are highly unlikely to occur.

Propped Errors (Figure 6) The data collected from these ©
error executions do not show any apparent difference tothe 7 pp — Z LPD;
training or verification data. The probabilities reported are =

Nz < pe < My
(pm - nz) [pz < nr}
(maz — pa) [px > mr]

‘Cumulative Log Probability Difference

Temporal State Count Error Magnitude
(Verification Errors)

(Verification data)
100000
180

100001 £ 160

Failure

1000 140
500

120

cipp

100

=)
Errors

80

Success

60
40 /

Time () 20

3
12
128
144

4

0

O ® v ¥ 9 9 ® ° ¥ o g @ 9
= & » ¥ ¥ 8 I3 R 8 & 7

Figure 7: The CLPD values for the verification data ime (9

=
=)

Figure 7 shows the CLPD of the verification data, plotted
on a log scale vertically for clarity. Note that all but two

of the executions have CLPDs of below 508uggesting where “#s” is the number of occurrences of statén the

that in this task a CLPD of 500 or lower is a good indicator states for the corresponding trajectory and the maximum and
of successful execution. Once a sequence has a CLPD of minimum values (forn(s, z) andn(s, z)) are defined of the
over 500 it can be identified as having failed. range of traces iff’, the set of all training data.

Figure 8 shows the times at which the CLPD value ex- The error magnitude for stateat timepointz is defined
ceeds 500 in each of the anomalous traces. Note that most Ofto be a measure of how far the current execution deviates
the errors in the ‘Lost Connection’, ‘Blocked’ and ‘Slowed’ from the training data:
data were detected before the action terminated, but only e(s,z) =

Figure 9: The TSCEM values for the verification data.

one of the ‘Propped Up’ errors was detected. The latter er- 0 n(s,x) < c(s,z) < m(s,)]
ror type is much more difficult to characterise for this robot n(s,x) —c(s,x) [e(s,x) < n(s,z)]
in terms of a physical behaviour that is different to a normal c(s,x) —m(s,x) [e(s,x) > m(s,z)]

execution, because of its limited sensory capacity. Indeed, Temporal State Count Error Magnitude (TSCEM) for a
a human presented with the raw data of one of these exe- sequence at timepointis defined to be the sum of all error
cutions and a normal execution would be unlikely to distin- - magnitudes across all states up to that timepoint:

guish between the two. It had been hoped that there would

be a difference in the amount of localisation required for z ¢ .
this error type, but it seems that the sonar data and sub- TSCEM, = | > els,i)
routines for localisation are not accurate enough to provide i=0 \s=0

meaningful data when such errors occur. Had the robot been
equipped with a more accurate localisation device (such as
a laser range-finder) as well as a more sophisticated locali-
sation algorithm then these errors might have been detected.
We intend to explore this hypothesis with a more sophisti-
cated robot in the future.

wheret is the number of states in the HMM.

Figure 9 shows the TSCEM values for the verification
data. Note that the magnitude of the errors is usually be-
low 100, and only one has a TSCEM value of over 125. Be-
cause of this, we consider a TSCEM value over 125 as an
indication of failure for this task. Figure 8 also shows the

; erformance of our algorithm based on Temporal Anomal
4.2 Tempo'ral state coun'Flng FISetection in our exami%ation of the test data. g\s with Proba>i
We now consider an alternative approach to anomaly detec- pjjistic Anomaly Detection, identification of the ‘Lost Con-
tion. Temporal state COUnting attempts to |dent|fy Viterbi se- nection’, ‘Blocked’ and ‘Slowed’ errors was very success-
quences with an anomalous number of occurrences of statesfy|. However, this technique detected the errors more re-
(either too few or too many) in comparison with the numbers |iaply than the CLPD technique. The technique was less
of occurrences of states in successful trajectories. To mea- successful with the ‘Propped Up’ errors.
sure the amount of error, a similar technique to the proba- A possible refinement would be to find the distri-
bilistic anomaly detection above is used. The difference be- bution of occurrences of each state at each timepoint,
tween the observed number of occurrences of each state andrather than simply the maximum and minimum. The
the expected number of states at each timepointis summed.sym of the number of standard deviations by which

This may be formally defined as follows: each statecount varies (Z-score) could be taken instead
(7, 8,7) # occs.s to timex for tracer of the TSCEM value. This is defined as follows:
m(s,z) = maxp(#stotimez) u(s,z) = mean(#stotimex)
n(s,z) = minp(#stotimexz) o(s,x) = stddey (#s totimex)
[The normalised error magnitude for statat timez is then:
10One execution exceeds a CLPD of 500 just before the end of x

t . .
the task, when there was only one training execution of this length. NSCEM, = Z (Z w
There was little evidence for the possible spread of values at this)) i=0 \s=0 ‘7(19’ 0) }

timepoint causing CLPD to rise sharply after this point. A larger Using this value could provide better error detection, but at
training sample would probably have removed this problem. the cost of more training data required to find accurate dis-

Time of ‘Lost Connection’ | ‘Blocked’ error ‘Slowed’ error ‘Propped Up’
induced error (s)| error detected (s) detected (s) detected (s) error detected (s)
CLPD | TSCEM | CLPD | TSCEM | CLPD | TSCEM | CLPD | TSCEM

0 30.4 23.2 30.4 23.2 75.2 37.6 — 64.0
3 53.6 28.0 64.8 27.2 82.4 50.4 — —
6 — 36.0 — 36.8 70.4 47.2 — 96.8
10 64.0 40.0 71.2 43.2 111.2 66.4 — —
12 — 48.0 68.0 48.8 94.4 75.2 — —
17 78.4 57.6 80.0 59.2 106.4 78.4 — —
20 — 62.4 80.0 63.2 112.0 84.0 — —
24 106.4 74.4 99.2 78.4 — 96.0 — —
32 104.0 51.2 102.4 92.0 — 100.0 — —
40 105.6 — 106.4 — — 93.6 96.8 —

Figure 8: Probabilistic and Temporal Anomaly Detection performance across the error data.

around 100 seconds in the training data and 110 seconds in the verification data.

tributions for each state at each timepoint. This method re-
mains a subject for further research.

Using TSCEM we can detect errors earlier, and detect
more of them. TSCEM successfully identified 30/40 errors,
while CLPD identified only 24/40. The combination of tech-
nigues, however, is a more reliable test than either test indi-
vidually, allowing us to correctly identify 33/40 cases, in-
cluding all of the first three types. As commented earlier,
we believe that the ‘Propped Up’ error type is hard to find
given the nature of the sensors available to this robot.

5 Conclusion

When an executive system is required to turn a plan, con-
structed from abstract action models, into execution, while
sensing its environments through imperfect sensors, there is
no direct way to detect when the execution of an individual
action has failed. We have described a controlled experiment
in which we confirmed that a model learned from success-
ful executions of a particular behaviour could reliably ex-

plain subsequent, unseen, successful trajectories, and could

also recognise failing trajectories as divergent with high re-
liability. We have presented two statistical measures for de-
termining that trajectories are divergent. The first, CLPD,
measures the extent to which a trajectory has diverged from
the envelope of accepted trajectories by considering the ac-
cumulation of divergence in the log probability of the given
trajectory from the extremes of the envelope. The second,
TSCEM, measures the extent to which revisiting the same

state causes a trajectory to become divergent (even when the

well-explained trajectories also contain state loops).

We have demonstrated that it is possible to use mod-
els that bridge the gap between the low-level sensory data
streams and the higher level abstract action models to mon-
itor execution. In doing so, we are able to detect failures in
execution, often anticipating the point at which the action
might otherwise have completed execution. The approach
we have described is complementary to the use of direct sen-
sor interpretation methods and represents a form of model-
based reasoning (Williams & Nayak 1996).

The next step in this work is to react to having detected
failure by controlling what the robot does next. At this time

we can only detect that failure has probably occurred (even
if it is not yet externally visible) and cause the robot to ter-
minate its activity. This is a conservative reaction to pre-
vent the robot from entering an unsafe state. It would be
interesting to react by switching the robot into an alternative
behaviour and then continuing to monitor its execution by
tracking against the appropriate model. We are considering
this possibility in our current work.

Finally, we believe that our approach can be used not only
in monitoring the execution of actions for robotic systems,
but also to monitor the behaviour of systems, both engi-
neered and natural, using models learned from data gath-
ered from monitored traces of their behaviours over time.
This work is already progressing in application to condition
monitoring of electrical plant items and will be reported in
future work.

References

Baum, L.; Petrie, T.; Soules, G.; and Weiss, N. 1970. A maximization technique occurring in the
statistical analysis of probabilistic functions of Markov chaifan. Math. Statis#¥1(1):164-171.
Chrisman, L. 1992. Reinforcement Learning with Perceptual Aliasingrdeeedings of the 10th
National Conference on Al (AAAI}.83-188.

Dempster, A. P.; Laird, N. M.; and Rubin, D. B. 1977. Maximum Likelihood from Incomplete
Data via the EM algorithmJournal of the Royal Statistics Soci&9(1):1-38.

Forney, G. D. 1973. The Viterbi AlgorithnProceedings of the IEEE1:268-278.

Fox, M.; Ghallab, M.; Infantes, G.; and Long, D. 2006. Robot Introspection through Learned
Hidden Markov ModelsAtrtificial Intelligence170(2):59-113.

Koenig, S., and Simmons, R. G. 1996. Unsupervised Learning of Probabilistic Models for Robot
Navigation. InProceedings of the International Conference on Robotics and AutomaBéi—
2308.

Liao, L.; Fox, D.; and Kautz, H. 2004. Learning and Inferring Transportation Routines. In
Proceedings of the 19th National Conference on Al (AA248-354.

Nam, Y., and Wohn, K. 1996. Recognition of Space-Time Hand Gestures using Hidden Markov
Models. INACM Symposium on Virtual Reality Software and Technol6ipy58.

Oates, T.; Schmill, M.; and Cohen, P. 2000. A Method for Clustering the Experiences of a Mobile
Robot that Accords with Human JudgementsPhoceedings of the 17th National Conference on

Al (AAAI), 846-851.

Ravi, N.; Dandekar, N.; Mysore, P.; and Littman, M. 2005. Activity recognition from accelerom-
eter data. IrfProc. of 17th Conf. on Innovative Applications of Al (IAAI)

Schiter, D.; Weber, T.; Beetz, M.; and Radig, B. 2004. Detection and classification of gateways
for the acquisition of structured robot maps.Rroc. 26th Pattern Recognition Symposium

Williams, B. C., and Nayak, P. P. 1996. A Model-based Approach to Adaptive Self-configuring
Systems. IrProceedings of the 13th National Conference on Al (AAIL-978.

Wilson, A., and Bobick, A. 1999. Parametric Hidden Markov Models for Gesture Recognition.
|EEE Transaction on Pattern Analysis and Machine Intellige®t€9):884—900.

Time for a successful run was

