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Experimental demonstration of quantum source coding
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We report an experimental demonstration of Schumacher’s quantum noiseless coding theorem.
Our experiment employs a sequence of single photons each of which represents three qubits. We
initially prepare each photon in one of a set of 8 non-orthogonal codeword states corresponding to
the value of a block of three binary letters. We use quantum coding to compress this quantum
data into a two-qubit quantum channel and then uncompress the two-qubit channel to restore the
original data with a fidelity approaching the theoretical limit.

PACS numbers: 03.67.Hk, 03.65.Ta, 42.50.–p

Keywords:

Introduction

The coding of messages is a fundamental issue in informa-
tion theory. There are two basic coding problems, namely
how to represent messages as efficiently as possible and
how to transmit messages as precisely as possible. The
former is called source coding, and is related practically
to data compression, while the latter is called channel

coding and is concerned with error correction. All infor-
mation processing techniques are connected with these
two kinds of coding problem. We focus on source coding
in this report.

Essentially, source coding entails the coding of com-
mon alphabet in a message as short sequences of code
letters, such as the binary digits {0, 1}, and uncom-
mon alphabet as longer sequences, to make the average
length of the coded message as short as possible. The
unequal frequencies of the letters imply a redundancy
that enables the compression of the message. Shannon’s
source coding theorem gives the bounds on the degree
a classical message can be compressed. For a source
of alphabet {A,B, . . . , Z} with given prior probabilities
{P (A), P (B), . . . , P (Z)}, the minimum average length of
the coded message is given by the Shannon entropy

H = −
∑

n=A,B,...

P (n) log2 P (n) . (1)

H takes its maximum value when all alphabet appear
with equal probability, that is, when we know nothing
better than a random guess for each element. Then any
compression is impossible.

In quantum domain, there is another kind of re-
dundancy when the letters are conveyed by the non-
orthogonal quantum states, |ψA〉, |ψB〉, |ψC〉, · · · with

∗Electronic address: J.A.Vaccaro@herts.ac.uk; Electronic address:

steve@phys.strath.ac.uk; Electronic address: psasaki@crl.go.jp

corresponding probabilities PA, PB, PC , · · ·. Signifi-
cantly, compression is possible here even if PA = PB =
PC = · · ·, in contrast to the classical case. Recently
Schumacher and Jozsa derived the quantum version of
the source coding theorem. The quantum noiseless cod-

ing theorem [1, 2] implies that by coding the quantum
message in blocks of K letters, KS(ρ̂) qubits are neces-
sary to encode each block in the limit K → ∞, where
S(ρ̂) is the von Neumann entropy of the density operator
ρ̂ =

∑

Pn |ψn〉 〈ψn| representing the average state of the
letter states.

In addition to its central role in quantum information
theory, the compression of non-orthogonal data sets has
significant practical advantages. For example, in long-
haul optical communication channels one must deal with
sequences of attenuated weak coherent pulses, that is,
non-orthogonal states. Expensive quantum channel re-
sources can be saved by compressing the sequences before
storing or relaying to another channel.

Given its fundamental as well as practical importance,
it is perhaps surprising that quantum source coding
has not been demonstrated experimentally to date.
We report an experimental demonstration of the reli-
able communication of 3-qubit codewords over a 2-qubit
quantum channel. The minimum resources needed for an
analogous classical channel would be 3 bits per codeword.

Quantum coding protocols

Our demonstration is based on the example given by
Jozsa and Schumacher [2]. Imagine Alice needs to send
Bob a message composed of an alphabet of 2 letters, “+”
and “−”, represented by the letter states |ψ+〉 and |ψ−〉,

|ψ±〉 = α |0〉 + β± |1〉 . (2)

Here |0〉, |1〉 are an orthonormal (computational) basis,
β± = ±β, α2 + β2 = 1, and for clarity we assume α
and β are real numbers. Let the letter states occur with
equal likelihood so that the density operator represent-
ing the average letter state is ρ̂ = α2 |0〉 〈0| + β2 |1〉 〈1|.

mailto:J.A.Vaccaro@herts.ac.uk
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The corresponding von Neumann entropy is S(ρ̂) =
−α2 log2 α

2 − β2 log2 β
2.

If the letter states are orthogonal, α2 = β2 = 1
2 , then 1

qubit (or classically 1 bit) is needed to encode each letter
faithfully. In this case a sequence of letter states cannot
be compressed to a smaller code. However, the von Neu-
mann entropy of ρ̂ is 0.4690 bits for the case α2 = 0.9 [2].
According to the quantum noiseless coding theorem, in
the limit of large block sizes Alice needs approximately
1/2 qubit per letter state to faithfully transmit the mes-
sage to Bob.

Following [2] we use blocks of 3 letter states:

|BL〉 = |ψL1
〉 ⊗ |ψL2

〉 ⊗ |ψL3
〉

= α3 |000〉 + α2 (βL1
|100〉 + βL2

|010〉 + βL3
|001〉)

+α (βL1
βL2

|110〉 + βL2
βL3

|011〉 + βL1
βL3

|101〉)
+βL1

βL2
βL3

|111〉 (3)

where L = (L1, L2, L3) and L1, L2 and L3 ∈ {+,−}.
The index L selects one of 8 possible letter state con-
figurations. In our quantum coding scheme [3], Alice

first applies the unitary transformation Û which leaves
all computational bases states unchanged except for the
following mapping Û |100〉 = |011〉 and Û |011〉 = |100〉.
The state of a block after the application of Û is

Û |BL〉 = α2
√

1 + 2β2 |0〉⊗|µL〉+β2
√

1 + 2α2 |1〉⊗|νL〉
(4)

where

|µL〉 =
1

√

1 + 2β2
(α |00〉 + βL1

|11〉 + βL2
|10〉 + βL3

|01〉)

(5)

|νL〉 =
1

β2
√

1 + 2α2
[α (βL1

βL2
|10〉 + βL1

βL3
|01〉

+βL2
βL3

|00〉) + βL1
βL2

βL3
|11〉] . (6)

Alice then makes a projection measurement of the first
(leftmost) qubit in the computational basis. The last
two qubits represent the coded block state sent to Bob.
We consider two different protocols corresponding to two
different actions Alice takes when the projective mea-
surement results in the state |1〉. Essentially, the coding
protocols amount to a perfect transmission of the most
likely parts of letter state configurations, and a less faith-
ful transmission of, or even discarding of, the remaining
less likely part.

The first protocol, which we shall label P1, is to treat
the projection measurement result |1〉 as a failure. Under
this protocol the state of the 2-qubit quantum channel is

ρ̂
(1)
L

= |µL〉 〈µL| (7)

with probability p = α4(1 + 2β2) and a state of zero
overlap with any block state with probability 1− p. Bob

decodes the state ρ̂
(1)
L

at his end of the quantum channel
by preparing an extra qubit in the state |0〉 and applying
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FIG. 1: Comparison of the fidelities of various protocols as a
function of the parameter α

2.

the inverse of Û ; this results in the decoded state Φ̂
(1)
L

=

Û †
(

|0〉 〈0| ⊗ ρ̂
(1)
L

)

Û . The fidelity of the whole quantum

coding-decoding operation for P1 is given by

F1 =
∑

L

1

8
〈BL| Φ̂(1)

L
|BL〉 = α8(1 + 2β2)2 . (8)

F1 is plotted as the solid curve in Fig. 1 and has a value
of 0.9448 at α2 = 0.9.

The second protocol, P2, yields a higher fidelity than
that of P1. In this case Alice prepares the quantum chan-
nel in the state |00〉 in the event that her projection mea-
surement results in the state |1〉. This operation results
in the average state of the quantum channel as

ρ̂
(2)
L

= α4(1+2β2) |µL〉 〈µL|+β4(1+2α2) |00〉 〈00| . (9)

Bob again adds an extra qubit in the state |0〉 and ap-

plies the inverse operation Û † to produce state Φ̂
(2)
L

=

Û †
(

|0〉 〈0| ⊗ ρ̂
(2)
L

)

Û which has a corresponding fidelity

of

F2 = α8(1 + 2β2)2 + α6β4(1 + 2α2) . (10)

The value of F2 is plotted as the dashed curve in Fig. 1.
F2 has a value of 0.9652 at α2 = 0.9.

Finally, Jozsa and Schumacher also considered the sim-
ple protocol, P3, where Alice discards the state of every
third letter and encodes the remaining letters in a block
of 2 qubits, and Bob generates the state |0〉 for the miss-
ing letter state. This protocol yields an average fidelity
of

F3 = α2 , (11)

which is plotted as the dotted curve in Fig. 1.

Optical scheme

Fig. 2 shows an ideal single-photon linear optics imple-
mentation of the block coding scheme of the previous sec-
tion using polarizing beam splitters, λ/2 wave plates and
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FIG. 2: Linear optics implementation of three-qubit block
coding and decoding.

photodetectors. One photon is used to represent the 3
qubits in terms of two location qubits (the first 2 qubits)
and a polarization qubit [4] (the third qubit). The paths
labeled A, B, C and D represent the states |00〉, |01〉,
|10〉 and |11〉 of the first two qubits, respectively, and the
polarization directions in the plane and perpendicular to
the plane of the optical circuit represent the states |0〉
and |1〉 of the last qubit, respectively. We parameter-
ize the nth letter state by the angle θn = 1

2 arcsin(βLn
).

The orientation of the fast axis of each wave plate to the
vertical direction is given beside the wave plate in the
figure.

First we discuss the preparation of the 3-qubit block
state |BL〉. A horizontally-polarized photon enters the
quantum circuit at position E. The first location qubit
is prepared by the λ/2 wave plate and the polarization
beam splitter between vertical lines labeled 0 and 1 in
terms of angle θ1. Similarly, the second location qubit
and the polarization qubit are prepared between the ver-
tical lines labeled 1 and 2, and 2 and 3, respectively.
(Note that the photodetectors D3, D4, D5 and D6 are
not used in state preparation.) The fully state-prepared
block appears as a photon in a superposition of 4 path
and two linear polarization modes along the vertical line
labeled 3. This is the 3-qubit message Alice wants to
compress and communicate to Bob.

Next we discuss the quantum coding which takes place
between vertical lines 3 and 4. The unitary transforma-
tion Û is performed by the polarization beam splitter
and the two λ/2 wave plates in this section. The projec-
tion measurement of the first qubit is performed by the
photodetectors D1 and D2 where the detection or non
detection of a photon projects the state onto |1〉 or |0〉,
respectively. The circuit in Fig. 2 implements protocol
P1 explicitly: if the photodetectors D1 and D2 detect a
photon no quanta will be present in the quantum channel
and so the coding results in failure. The projective mea-
surement is destructive in this case. Protocol P2 can be
implemented by switching a horizontally-polarized sin-
gle photon source into the optical path A to encode the
state |000〉 each time one of the photodetectors D1 or
D2 detects a photon. The encoded (compressed) 2-qubit
message appears along vertical line 4. This is transmitted
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FIG. 3: Experimental setup.

to Bob.
The decoding of the quantum channel AB at Bob’s site

requires a mirror image of the quantum circuit in Fig.
2 between lines 3 and 4 but without the photodetectors
D1 and D2. Moreover, the mirror image of the circuit to
the left of the line 3 can be used to determine the fidelity
of the decoded block message. The fidelity test results
in a ‘yes’-‘no’ answer for each coded-decoded block state
as follows. The ‘yes’ answer (i.e. perfectly reconstructed
letter block) is indicated by the horizontally-polarized
photon emerging from the mirror image of point E. A
‘no’ answer is indicated by the photon being detected
by one of the photodetectors D3, D4, D5 or D6 in the
mirror image circuit [5].

Experimental Implementation

Our actual experimental circuit is shown in Fig. 3. Again,
the orientation angle θn of each λ/2 wave plate is given
in the figure. For practical convenience, we did not con-
struct an additional mirror-image circuit for the decoding
and fidelity check. Instead we use corner reflectors (CR1
and CR2) to reflect the light in the quantum channel
back through the circuit (shown as dotted lines in the
figure) so that the coding and state-preparation circuits
operate as decoding and state-measurement circuits for
the reflected light. We use strongly attenuated light from
a He-Ne laser (wavelength 632.8 nm) as our single photon
source. The CW laser output of 1 mW power is attenu-
ated to ≈50 fW which corresponds to an average photon
flux of 105 photons/sec. The average time between pho-
tons through our experiment far exceeds the time taken
for light to pass through the circuit (≈ 10−8 s).

We use multimode optical fibers with coupling effi-
ciency of more than 80% to direct the photons exiting
the circuit to silicon avalanche photodiodes (APDs). The
quantum efficiency and dark count of the APDs are typi-
cally 70% and less than 100 counts/sec, respectively. The
labels for each APD (D1–D6) correspond to those of pho-
todetectors in Fig. 2 and the APD labeled D0 detects the
‘yes’ answer of the fidelity test. Since we do not need to
discriminate the photodetection between D4 and D5, we
use one APD for these detectors.
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FIG. 4: Histogram of photon counts for each block state L.
The number in the vertical axis labels six APDs from APD1
to APD6. The parameter of the letter states and the fidelity
are α

2 = 0.9046 and F = 0.933 ± 0.006, respectively. The
gating time of APDs is 5 sec.

In essence, the optical circuit consists of a Michael-
son and a Mach-Zehnder interferometers controlled by
Piezo transducers PZT1 and PZT2, respectively. We
use a bright reference light and adjust the voltages of
PZT1 and PZT2 to produce visibilities of more than
98% for these interferometers. The reference light is
then switched off and the signal photons are guided into
the circuit. The single photon events are counted by six
APDs for each block state |BL〉. The gating time of the
APDs is 5 sec with the combined count over 1 sec being of
the order of 105. Since the whole apparatus is shielded
by a black box, the number of background photons is
much smaller than the dark count of the APDs. Also
we estimate the number of events where two photons are
present simultaneously in the circuit to be less than half
the dark count.

Our use of a photon source with random arrival times
means that the quantum coding-decoding operations oc-
cur in the context of post-selection measurements; that
is, we know that a quantum coding-decoding operation
has taken place after it has occurred, and, due to the
limited efficiency of the photodetectors, in a subset of
possible cases.

The experimental fidelity for protocol P1 is given by

F ex
1 =

∑

L

1

8

NL

0
∑6

j=0N
L

j

(12)

where NL

j is the number of photons detected by the de-
tector Dj for the block state |BL〉. As an example, Fig. 4
shows the photon counting data for the letter state with
α2 = 0.9046 for which the fidelity F = 0.933± 0.006. By

varying the angle θ the fidelity of our quantum coding-
decoding experiment can be compared by the theoretical
predictions given of the previous section over a range of
α values. The results are shown in Fig. 1 as solid circles.

For protocol P2, rather than switching a horizontally-
polarized light source into channel A each time one of the
photodetectors D1 or D2 records a photon, we perform
a 2 step procedure as follows. The first step is the same
as for protocol P1 and, in fact, we use the same photon
counting data NL

j as described. The second step cor-
responds to the transmission of a horizontally-polarized
photon in channel A for each of the photons detected by
D1 and D2 in the first step. For this purpose, the corner
reflector CR1 is removed and horizontally-polarized and
attenuated light from a He-Ne laser is directed into the
circuit. The number of photons used (i.e. the total num-
ber of photons detected by all APDs) in this second step
is adjusted to be NL

1 +NL

2 for each corresponding block
state |BL〉. We can do this adjustment with an accuracy
of ±3% by carefully controlling the gating time of the
APDs. The total fidelity for this protocol is calculated
as follows:

F ex
2 =

∑

L

1

8

NL

0 +N
L (2)
0

∑6
j=0N

L

j

. (13)

where N
L (2)
0 is the total number of photons detected

by D0 in the second step. We obtain the fidelities
corresponding to several α values and plot them as open
circles in Fig. 1. The experimental fidelities for both
protocols exceed that of the simple protocol.

Discussion

A message of equal-likely letters is not compressible clas-
sically. In contrast, quantum source coding allows a
quantum message of equally likely (but non orthogonal)
letter states to be compressed [1, 2]. Our compression
of 3-qubit codewords gives a clear demonstration of this
fundamental principle.

The practical application of quantum source coding
faces several challenges. An immediate task is to demon-
strate quantum source coding using a single-photon-on-
demand source. Another is to replace spatial mode qubits
with frequency mode qubits as this leads to compression
of bandwidth of quantum carrier. Of direct practical im-
portance is to demonstrate the coding and decoding of a
source of weak coherent states. Quantum circuits based
on measurement induced non-linearities and non-classical
light sources have potential in this regard. Our experi-
ment is the first step towards realizing these practical
goals.
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