
Strathprints Institutional Repository

Weir, George (1988) Learning from a plan-based interface. Computers and Education, 12 (1). pp.
247-251. ISSN 0360-1315

Strathprints is designed to allow users to access the research output of the University of Strathclyde.
Copyright c© and Moral Rights for the papers on this site are retained by the individual authors
and/or other copyright owners. You may not engage in further distribution of the material for any
profitmaking activities or any commercial gain. You may freely distribute both the url (http://
strathprints.strath.ac.uk/) and the content of this paper for research or study, educational, or
not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to Strathprints administrator:
mailto:strathprints@strath.ac.uk

http://strathprints.strath.ac.uk/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/9015868?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://strathprints.strath.ac.uk/
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk
http://strathprints.strath.ac.uk/

Compur. Educ. Vol. 12, No. I, pp. 247-251,
Printed in Great Britain. All nghts reserved

LEARNING FROM A PLAN-BASED INTERFACE

1988 0360-l 315/88 $3.00 + 0.00
Copyright c 1988 Pergamon Journals Ltd

GEORGE R. S. WEIR
Scottish HCI Centre, George House. North Hanover Street, Glasgow Gl 2AD, U.K.

Abstract-The use of plan recognition in the user interface is presented as a basis for a learning
environment within which students can assimilate the range of possible actions and objectives afforded
by a target application. Support in the form of “present whereabouts” and “possible progressions” enable
students to learn by doing. When combined with a facility for exploratory learning, this helps avoid the
onerous air of a ‘*teaching situation”.

INTRODUCTION

While the role of the user interface is often stressed from the viewpoint of user-system performance,
it is less frequently considered as a basis for user learning. Thus, in his recent survey of research
in Intelligent Computer-Assisted Instruction (ICAI), Dede describes the user interface as “a service
function with the ICAI system”[l]. (One exception to this neglect is the work of Slator et al., who
consider the learning benefits of ~‘mnemonic feedback” in a natural language interface12f.j The
presumption here is that the user interface does nothing more than direct user input and present
system output. Yet, current developments in the design of intelligent interfaces suggest the
possibility of an interface which acts as a learning environment.

The premium from empIoying an interface geared to learning is that users may acquire skills “as
they work, without a large initial investment in a learning period”[2]. In keeping with this
philosophy, my paper details the use of a plan-based interface design as a device for teaching.
Although planning concepts have occasionally been applied to Computer Assisted Learning (e.g.
Gensereth [3] and Miller [4]), these concentrate on understanding and debugging the user/student’s
behaviour. While this principal use should not be underplayed, plan-recognition can also serve as
a technique for keeping the user appraised of his options and current situation. This, in turn,
provides a strong teaching environment with learning re-inforced through constant feedback. in
addition, the approach detailed below affords exploratory learning combined with an inspectable
model of expertise.

THE PRIAM ENVIRONMENT

PRIAM (Plan Recogniser for Intelligent Advice and Monito~ng)* is an interface design built
upon a plan recognition algorithm. The design uses plan recognition in order to offer intelligent
advice and monitoring in accord with plans stored in a knowledge-base. As it stands, PRIAM
allows the modelling of a target domain, in terms of action sequences and the goals that these
attain.

With such a plan-based description of the domain in its knowledge-base, PRIAM can then
provide contextually relevant advice and su~rvision for students exploring the possible actions and
available goals on the target system. Because PRIAM is usable independently of the real
application there is no risk involved when experimenting with the available actions. This means
that PRIAM can combine all the benefits of advice on appropriate user options, with no danger
that naive users will make irrecoverable errors. This fact is especially reassuring to the new user.
In this form PRIAM is an ideal teaching aid for command languages or any other goal-directed
procedures.

Plans

The significance of plans in the PRIAM interface is that they constitute a higher level view of
the goals available within the domain. Thus, possible goals are characterised in terms of the

*My development of PRIAM derives in part from work on the Alvey funded “Adaptive lntel~igent Dialogues” project.

248 GEORGE R. S. WEIR

send mail -
W
II
11

select, insert, write, send
select, delete, write, send
select, read, write, send
create, insert, close, send

tidy files -
II
,t
II

select, read, close, purge
select, insert, write, purge
select, delete, write, purge
select, read, remove, purge

run program -
tt
8,
II

execute select, write, compile,
select, insert, compile, execute
select, delete, compile, execute
create, insert, compile, execute

Fig. I. Example command language plans.

component actions required for attaining these goals. A plan’s components may be actions,
commands, or anything which can be thought of as a constituent of the plan, such that the related
goal is “accomplished” by completing an appropriate sequence of these components. From the
student’s perspective, such action sequences constitute the plans that may be employed toward the
possible application objective. The student’s initial learning aim is to establish what he can achieve
on the target system. When he knows this, he must assimilate the necessary action sequences to
attain his selected goals. In this respect, PRIAM assists by providing advice to students on their
present position in the plan structure, and also in relating the goals that may be attained from the
present action sequence. An account of this approach to interface design and a comparative
example of using a PRIAM-based system against a more conventional style of interface are given
in Davenport and Weir[S].

PRIAM’s domain model

A description for the target domain is held in a PRIAM knowledge-base. This contains a
specification of the possible plans with which the “student” should become familiar, in terms of
the sequences of actions which they involve and the goals that they can accomplish. An example
of a small command language plan set is given in Fig. 1.

This example has three possible goals: send mail, tidy files and run program. Each of these can
be accomplished in four different ways, i.e. there are four unique sequences of actions which would
result in the respective goal being achieved.

In using the PRIAM environment, the student can imagine that he is attempting to achieve any
particular goal by entering the required actions in an appropriate sequence. For the command
language example shown above this would be similar to entering commands on the target system
save that PRIAM does not emulate the behaviour of that system. Rather, it provides guidance on
the propriety and viability of the student’s chosen input in accord with the domain specification
in its knowledge-base.

Since it operates on plans and component actions, PRIAM is well suited to command language
applications, but its scope is not limited to this field. Any domain which lends itself to description
in terms of goals, plans and action sequences can be used with PRIAM. as is shown from the
example in Fig. 2.

Unlike our command language example, each possible goal in this domain is attainable by only
one unique plan, i.e. a single sequence of actions. Although this simplifies the learning task, the
main difficulty for the potential student is that the same component actions may appear in several
different plans. With so much similarity in the composition of viable plans, the student needs
assistance in assimilating the connections between the possible goals and the requisite action
sequences. This is the central issue which PRIAM addresses.

Monitoring and advice

In operation, PRIAM presents an environment to the student which “knows about” the domain
of the application modelled in the PRIAM knowledge-base, whether it be a computer command
language or a domain such as cookery. Using PRIAM’s knowledge-rich environment the student

A plan-based interface 249

pancake batter - sift flour, sift salt, add egg, add half milk,
add melted butter, beat mixture till creamy,
stir in other milk.

sweet fritter batter - sift flour, sift salt, add water, add butter,
mix to thick smooth batter, whisk egg white,
fold egg white into mixture.

sponge pudding - sift flour, sift salt, add butter, add sugar,
beat untd light and fluffy, add egg, add
third of flour, beat mixture, add egg, add
third of flour, beat mixture, add third of
flour, add milk, fold in flour.

crumble topping - sift flour, rub in butter, add sugar, mix
ingredients.

Fig. 2. Example cooking domain plans.

can become familiar with the target application via the PRIAM model. In effect, the student can
rehearse his actions on the PRIAM system, reflecting the way that he would attempt to accomplish
the target objectives in reality. As he rehearses his plans to perfection, PRIAM not only adjudicates
on his choice of action but provides support and advice to facilitate learning.

Each student entry is monitored by PRIAM which considers whether this action initiates any
of the plans in the knowledge-base. If so, the student is given details of the related goals and
relevant next action for each initiated plan.

For subsequent actions, PRIAM checks first against plans which have already been initiated to
determine whether any of these is continued by the student’s action. If so, details of the relevant
goal and next command are reported to the student, otherwise the input is checked against plans
which have been started but suspended (with a view to re-activation). Should there be no match
in either case, PRIAM indicates that the entered action neither starts any plan nor furthers any
that are presently active. It follows this by indicating the possible next actions for presently active
plans and makes an offer of help on the basis of a mismatch between what is appropriate in the
domain context and what the student has tried to do. The user can of course choose to ignore
PRIAM’s help. In either case the ‘stray’ command may be recorded (with the context of its
occurrence) as an aspect of the student’s history.

When completion of an action sequence achieves its corresponding goal, PRIAM reports the goal
achieved and the plan employed. Completed plans are filed by the plan recogniser for later
reference, and are retained beyond the end of the session. Clearly, such profiles might support
heuristics to supplement PRIAM’s present technique for identifying user’s objectives. They may
also provide a basis for adapting PRIAM’s response to individuals, depending upon their past
history and current position in the domain model.

By monitoring students as they execute action sequences, PRIAM is able to provide relevant
advice and information at crucial points where they might stray from the predefined target goals.
Advice and orientation may also be offered when users change direction in mid-task. Using its
knowledge-base PRIAM is able to meet the following queries:

-What goals are possible?
-How do I achieve that goal?
-Where am I at present?
-What is the appropriate next action?
-What plans are suspended?
-What have I accomplished already?

Students can seek answers to such queries-in most cases, by explicitly requesting the
information-relative to their current context in the domain model. PRIAM’s response also
accounts for the plans accomplished thus far. With such information available at all times students
need never lose track of their present whereabouts, what they were doing, or what progressions

250 GEORGE R. S. WEIR

are possible in the current domain. A user may ask about the possible objectives that PRIAM
recognises in relation to the application; he can specify a particular goal and have PRIAM detail
the required actions it recognises as suitable for achieving that objective. He can also get
information at any time on his current context as understood by PRIAM. This is provided as a
list of the actions he has performed in the currently active plan(s). Also on request, the student
can invoke a list of the possible next actions from his current context. Finally, details of any
suspended plans and all plans accomplished to date can be viewed when desired.

Exploration

PRIAM provides two features whereby users may change their plans (context), thereby
permitting them maximum flexibility in exploring the full range of available options. There is
effectively no restriction on excursions. Active plans may either be abandoned or “held”. In either
case the option is invoked by the student starting an alternative plan. So, the signal to abandon
or hold a plan is starting something new. This is more efficient than a hold command followed
by a new initiation. Any number of plans may be held in this fashion, and can be re-activated by
restarting the desired plan.

By means of a backstep command the user can also retreat to any previous choice point and
take a different route. Thus the student may progressively undo his actions all the way to the
initiating entry. This combination of backstepping and plan suspension offers the user greater
flexibility than would a simple “abort plan” option.

LEARNING WITH PRIAM

From the above description of the facilities afforded by the PRIAM interface design it is apparent
that it holds considerable potential for learning-support. In effect, the free exploration of the
available plan structures, with the constantly available orientation advice and on-request goal
information, combine to produce an environment which enables new users to familiarise themselves
with a domain specification in planning terms, by simulating the tasks available on the target
domain. importantly, this format allows access to the expertise modelled in the PRIAM
knowledge-base.

In the role already described, PRIAM acts as a stand-alone advisor able to guide students
through the actions and objectives available on the modelled system. This allows users to gain
experience of the application with no risk involved in experimenting with the available actions, and
with all the benefit of PRIAM’s context sensitive advice. Furthermore, the PRIAM engine can be
used in the same form with any number of domain descriptions allowing a uniform mode of
interaction and support for a variety of knowledge-bases.

PRIAM experiments

Using the simple command language structure shown in Fig. 1, a small experiment was devised
to compare the performance of a plan-based interface against a more conventional command
language interface. Subjects were asked to complete a set of six tasks, chosen at random, on each
of the two interfaces. Notes were kept of the time taken for each task and of any incorrect goals.

Based on the data from 16 subjects-8 subjects for each interface-a comparison was made of
the accumulated time for each condition. Results indicated a significant improvement in per-
formance between the first and second interface, suggesting a considerable learning of the command
language between the two sets of tasks, regardless of which interface was first encountered.
Additionally, there was a marked interaction effect between order of presentation and the type of
interface. When presented first, the conventional interface resulted in a significantly slower task set
completion (see[5] for greater detail). Although these experiments are taken only to indicate a
greater ease of use in favour of the PRIAM interface style, further experimental work is underway
to measure the learning benefits which accrue from this approach. For the present, informal use
of the system encourages the belief that users find the PRIAM interface style to be a supportive
learning environment.

A plan-based interface 251

Designer support

In order to facilitate use of the PRIAM system, a support program (DBE) has been written which
allows easy specification of domain goals. This also allows checks for name clashes between
command and goal names as well as conflict checks on PRIAM commands. The actual commands
employed by the PRIAM interface, i.e. to access additional information on the knowledge domain,
can also be specified by the designer using DBE. (A full account of DBE and its use with PRIAM
is given in Weir[6].)

CONCLUDING REMARKS

Although to date PRIAM has only been employed on command language domains, this should
not be taken as a limitation on its range of possible application. In principle, its strategy may be
employed to provide a learning-rich environment for any domain which lends itself to appropriate
structuring. In this vein, a proposal has recently been made for PRIAM’s use in a courseware
authoring system for Computer Assisted Learning. (cf. Van Schaik and De Diana[7]). In such a
context, PRIAM may fill a dual role. Firstly, it may allow structuring of the requirements on the
courseware author by allowing authoring strategies to be pre-defined. In this case, PRIAM’s
context-sensitive environment provides a learning/support facility for the author. In the second
case, PRIAM acts simply as a learning and support environment for students, in the manner
outlined in the present paper.

1.

2.
3.

4.

5.

6.
7.

REFERENCES

Dede C., A review and synthesis of recent research in intelligent computer-assisted instruction. Inr. J. Man-Machine
Stud. 24, 329-353 (1986).
Slator B. M., Anderson M. P. and Conley W., Pygmalion at the interface. Commun. ACM 7(29). 599-604 (1986).
Genesereth M. R., The role of plans in intelligent teaching systems. In Intelligent Turoring S.wems (Edited by Sleeman
D. and Brown J. S.), pp. 137-155. Academic Press, London.
Miller M. L., A structured planning and debugging environment for elementary programming. In Inteliinent Tuforina
Systems (Edited by Sleeman D. and Brown Jr%); pp. 119-135. Academic Press, London. - ..

._

Davenport C. and Weir G., PRIAM: Plan Recoanition for Intellieent Advice and Monitorine. In Peon/e and Comourers:
Designing for Usobiliry (Edited by Harrison M D. and Monk-A F.), pp. 296-315. CUP”(l986). ’

r

Weir G., PRIAM: A User’s Guide. Scottish HCI Centre, Report No. AMU8604/01S (1986).
Van Schaik P. and De Diana I., A methodology for object oriented courseware development. Presented at CAL ‘87
(1987).

