
Strathprints Institutional Repository

Fox, M. and Gerevini, A. and Long, D. and Serina, I. (2006) Plan stability: replanning versus plan
repair. In: Proceedings of International Conference on AI Planning and Scheduling (ICAPS). AAAI
Press. ISBN 978-1-57735-270-9

Strathprints is designed to allow users to access the research output of the University of Strathclyde.
Copyright c© and Moral Rights for the papers on this site are retained by the individual authors
and/or other copyright owners. You may not engage in further distribution of the material for any
profitmaking activities or any commercial gain. You may freely distribute both the url (http://
strathprints.strath.ac.uk/) and the content of this paper for research or study, educational, or
not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to Strathprints administrator:
mailto:strathprints@strath.ac.uk

http://strathprints.strath.ac.uk/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/9015854?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://strathprints.strath.ac.uk/
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk
http://strathprints.strath.ac.uk/

Fox, M. and Gerevini, A. and Long, D. and Serina, I. (2006) Plan stability:
replanning versus plan repair. In: Proceedings of International Conference
on AI Planning and Scheduling (ICAPS). AAAI Press. ISBN 978-1-57735-270-9

http://eprints.cdlr.strath.ac.uk/2776/

This is an author-produced version of a paper published in Proceedings of
International Conference on AI Planning and Scheduling
ISBN 978-1-57735-270-9.

Strathprints is designed to allow users to access the research
output of the University of Strathclyde. Copyright © and Moral
Rights for the papers on this site are retained by the individual
authors and/or other copyright owners. Users may download
and/or print one copy of any article(s) in Strathprints to facilitate
their private study or for non-commercial research. You may not
engage in further distribution of the material or use it for any
profitmaking activities or any commercial gain. You may freely
distribute the url (http://eprints.cdlr.strath.ac.uk) of the Strathprints
website.

Any correspondence concerning this service should be sent to The
Strathprints Administrator: eprints@cis.strath.ac.uk

http://eprints.cdlr.strath.ac.uk/2815/

Plan Stability: Replanning versus Plan Repair

Maria Fox1 and Alfonso Gerevini2 and Derek Long1 and Ivan Serina2

1: Department of Computer and Information Sciences, University of Strathclyde, Glasgow, UK
firstname.lastname@cis.strath.ac.uk

2: Department of Electronics for Automation, University of Brescia, Brescia, Italy
lastname@ing.unibs.it

Abstract

The ultimate objective in planning is to construct plans for
execution. However, when a plan is executed in a real en-
vironment it can encounter differences between the expected
and actual context of execution. These differences can mani-
fest as divergences between the expected and observed states
of the world, or as a change in the goals to be achieved by
the plan. In both cases, the old plan must be replaced with
a new one. In replacing the plan an important consideration
is plan stability. We compare two alternative strategies for
achieving the stable repair of a plan: one is simply to replan
from scratch and the other is to adapt the existing plan to the
new context.
We present arguments to support the claim that plan stability
is a valuable property. We then propose an implementation,
based on LPG, of a plan repair strategy that adapts a plan to
its new context. We demonstrate empirically that our plan
repair strategy achieves more stability than replanning and
can produce repaired plans more efficiently than replanning.

1 Introduction
Plans are constructed using abstract models of the worlds in
which they are to be executed. Inadequacy of the predic-
tive model can mean that execution of the plan leaves the
executive in a state that diverges from the expectations of
the planner. The behaviour of other agents in the world can
change the state in ways that the planner could not predict
and the context in which the original plan was formed can
change so that new goals must be satisfied.

Markov decision processes (Boutilier, Dean, & Hanks
1999), contingency plans (Pryor & Collins 1996) and Just-
In-Case (Drummond, Bresina, & Swanson 1994) schedules
are constructed to be inherently robust to uncertainty dur-
ing execution of plans and schedules. However, none of
these approaches have been applied in situations in which
the goals themselves change. In principle, these approaches
could be adapted to treat the goals as part of the environment
to which they respond, but the size of the space of possible
goals makes scaling problematic. We do not consider these
approaches further in this paper.

A situation in which planning problems change during ex-
ecution is in satellite observation scheduling (Frank, Gross,

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

& Kürklü 2004), where new observation requests can arise
during the execution of a plan. In such situations, the orig-
inal plan cannot or should not be executed but should be
adapted to respond to the new situation.

Many authors have considered the relative benefits of re-
planning and plan repair from the point of view of both
theoretical (Nebel & Koehler 1995) and empirical effi-
ciency (Gerevini & Serina 2000). We identify a new met-
ric, plan stability, which we claim is important in situations
where the safety of the executive, or of equipment deployed
by the executive, is a major consideration in evaluating a
plan. In such situations a repaired plan should be as close
as possible to the original plan whilst achieving the speci-
fied goals (including new goals) from the current state. The
extent to which this is achieved is a measure of the stabil-
ity of the new plan. The concept of minimal perturbation
planning is closely related to this idea (Kambhampati 1990;
Simmons 1988).

In this paper, we contrast plan repair and replanning in
terms of plan stability. By plan repair we mean the work of
adapting an existing plan to a new context whilst perturbing
the original plan as little as possible. By contrast, replan-
ning is the work of generating a new plan from scratch with-
out considering stability. We show that, when the execution
context is not highly dynamic, the original plan can be a very
good guide to the construction of a new plan. Of course, in
highly dynamic situations stability might be impossible to
achieve. However, we argue that where it can be achieved
stability is an important property that allows confidence to
be maintained in the safe operation of an executive within
its environment.

The approach we consider builds on that presented
in (Gerevini & Serina 2000) for repairing “quasi-solutions”.
As in that earlier work, the approach exploits the local search
strategy of LPG (Gerevini, Saetti, & Serina 2003), by seed-
ing the search with the existing plan and by using a modified
evaluation function to guide the search for a new plan. Our
current work makes three new contributions as follows:

· we explicitly model plan stability and use it as a metric in
determining the benefits of the adaptive approach;

· we use much improved search techniques and a more
powerful graph-based plan representation and

· we handle PDDL2.1 problems rather than STRIPS prob-
lems as in (Gerevini & Serina 2000).

We show, empirically, that this repair approach can lead
to high quality plans in a shorter time, while preserving a
higher degree of stability, than can be achieved by replan-
ning. The speed of plan repair can be extremely important.
If goals change at a time δ before the existing plan requires
an action to be executed, then the construction of a new plan
must complete within δ if it is to continue to make use of this
action at this time. If the original plan was the product of
a complex piece of planning reasoning then the replanning
strategy could be faced with an expensive task that cannot
complete in the δ time limit and will lose the opportunity to
find a good solution. A significant feature offered by plan
repair is that it can benefit from higher quality initial plans
to arrive at higher quality repaired plans. The basic adapta-
tion strategy is as presented in (Gerevini & Serina 2000), but
improved in the ways described above.

We first define the problem we are interested in solving.
We then define plan stability and explain why we consider
it an important property. We proceed to describe the tech-
nical details of our approach to replanning, which builds on
the core of LPG and to present a detailed evaluation with re-
spect to the planning time, plan quality and plan stability in
comparison with replanning. We show that, in the context of
plan execution in dynamic situations, our approach to plan
repair can offer significant advantages over replanning.

2 Dynamic Planning Problems
We are interested in the situation in which an initial plan has
been constructed and the context in which it is being exe-
cuted has deviated from the expected context. The deviation
might be a discrepancy between the expected value of the
state and its observed value due to uncontrollable features
of the domain, or else it might be that the goals of our orig-
inal plan have changed and we must meet additional new
goals and, possibly, abandon other goals. Although an un-
expected change in the context can arise at any point during
the execution of a plan, the plan that has already been ex-
ecuted cannot be retracted, so we can always consider the
problem as though the current state were the initial state and
the remainder of the unexecuted plan were the whole of the
original plan.

Thus, we consider the following situations: we begin with
an initial state, a goal and a plan that achieves this goal from
this state and then we are presented with a changed initial
state, or a changed goal, or both. More formally:

Definition 1 A dynamic planning problem is a tuple
(I,G, π0, I

′, G′) where π0 is a plan that achieves the goal
G from the initial state I and I ′ is a new initial state from
which the new goal state, G′, must be achieved.

We are assuming that the domains we are working with are
dynamic, but not volatile: changes may occur in the initial
state or in the goals, but are relatively small in each incre-
ment of change. We do not expect that the initial state should
change by more than a few literals or the goals change by
more than a few conditions. Thus, we intend I and I ′ to

be very similar and G and G′ to be very similar. The same
assumptions were made in (Gerevini & Serina 2000).

This problem is motivated by similar observations to
those made by other authors, such as (Traum & Allen 1994;
Horty & Pollack 2001; van der Krogt & de Weerdt 2005),
who have proposed various strategies for managing it. It
should be noted, however, that it is observed in (Cushing &
Kambhampati 2005) that there are problems in which a plan
failure cannot be adequately modelled by changes in initial
and goal states, but actually by modified versions of opera-
tors in the planning domain.

3 Plan Stability
We use the term “plan stability” to refer to a measure of the
difference a process induces between an original (source)
plan and a new (target) plan. In general, we will be consid-
ering cases where the new plan is intended to solve a dif-
ferent, although related, problem to the one solved by the
original plan. This means that there will inevitably be a dif-
ference between the plans. Measure the difference between
two plans is hard: if one plan shares the same actions as an-
other, but they are organised into a different ordering then it
is not entirely obvious whether the plans should be consid-
ered similar or not. The ordering might be irrelevant, if it
does not change the outcome of the plan, or else it might be
very significant, if the change completely alters the effects
of the plan.

We are interested in achieving plan stability in order to
preserve the content of the information a plan contains. For
this purpose, a plan should be considered more stable if it is
close to another not only in terms of the steps it contains, but
also in terms of the order of those steps. However, we wish
to compare our technique to replanning. In order to avoid
stacking the odds against replanning, we adopt a more re-
laxed measure of stability, which is intended to deemphasise
the internal structure of the original plan and focus on the
actions it contains.

We define a measure of the difference between two plans.

Definition 2 Given an original plan, π0, and a new plan,
π1, the difference between π0 and π1,D(π0, π1), is the num-
ber of actions that appear in π1 and not in π0 plus the num-
ber of actions that appear in π0 and not in π1.

The symmetry of this definition is important, as the fol-
lowing example shows. Suppose that an asymmetric defini-
tion is used, in which only the number of actions that appear
in the new plan and not in the original plan are counted.
Now, suppose a plan π0 contains a sequence of 12 drive
actions moving some package, p, from Rome to Glasgow.
The actions are (drive p rome florence), (drive p
florence bologna), (drive p bologna brescia),
...(drive p london glasgow). Suppose that we change
the goal so that the package should be delivered to Ed-
inburgh instead of to Glasgow. In the plan, π1, that re-
sults from our adaptation strategy, the final drive action is
replaced by (drive p london edinburgh), whilst the
rest of the plan remains unchanged. The value D(π0, π1) is
1. In the plan, π2, that results from replanning, the whole
sequence of drive actions is replaced by (fly p rome

edinburgh). The value D(π0, π2) is 1. It can be seen that
under the asymmetric definitionD(π0, π1) = D(π0, π2) but
plan π2 is clearly substantially different from plan π1. Al-
though they have the same D value, π2 cannot be said to be
as stable with respect to π0 as is π1, since π2 contains no ac-
tions in common with π0 whilst π1 contains 11 common ac-
tions. Under the symmetric definition D(π0, π1) = 1 whilst
D(π0, π2) = 12, which is a much more realistic reflection
of their relative stability.

It can be noted that traditional notions of plan quality
must sometimes be traded off for plan stability. As observed
in (Cushing & Kambhampati 2005), the quality of a plan that
revises one communicated to other agents cannot be evalu-
ated independently of prior commitments. If other agents
have altered their plans to coincide with a communicated
plan, revised plans that stable with respect to the communi-
cated plan might be considered to be of higher quality than
plans that are completely new even if, considered indepen-
dently, the new plans are better.

We are now in a position to define plan stability:

Definition 3 Given a dynamic planning problem
(I,G, π0, I

′, G′), a planning strategy, P1, achieves
greater plan stability than a planning strategy, P2, if the
plans produced by P1 and P2, π1 and π2 respectively,
satisfy D(π0, π1) < D(π0, π2).

We will show that our plan repair strategy achieves greater
plan stability than replanning, across a wide range of dy-
namic planning problems.

Our definition of stability is still rather simple, and whilst
reasonable for some domains might not be for others. In fu-
ture work we consider that it would be useful to study more
than one plan stability measure, perhaps forming a hierarchy
of measures of which the one in this paper forms a base case.

3.1 The Value of Plan Stability

We have two informal arguments:

1. Preserving plan stability reduces the cognitive load on hu-
man observers of planned activity, by ensuring coherence
and consistency of behaviours, even in the face of dy-
namic environments. One aspect of this argument is that,
where plans are used to convey intended actions from one
agent to another, higher plan stability makes the agents
more predictable and interaction with them potentially
easier.

2. More stable plans offer greater opportunity for graceful
elision of activities and less stress on execution compo-
nents. The translation of successive plan steps into actual
execution can be simplified by their executive smoothing
the transitions between actions. An example of this pro-
cess for movement planning can be seen in (Stulp & Beetz
2005). Greater stability makes it possible to anticipate
these elisions more reliably. If changes in the environ-
ment might lead to sudden and significant changes in the
structure of the plan being executed then such smoothing
becomes much harder.

We also have arguments that we test empirically:

1. It is possible to generate plans more quickly by seeking to
preserve plan stability than by replanning.

2. Preserving stability by exploiting plan repair allows a
planner to generate high quality plans by exploiting the
reasoning that has already been performed in generating
the original plan and by continuing to meet commitments
made by the original plan.

Our experiments and results are described in section 5.

4 Plan Adaptation for Plan Repair: Solving
Dynamic Planning Problems

Various approaches are possible for tackling dynamic plan-
ning problems including, at one extreme, ignoring the ex-
isting solution and treating the problem as a new plan-
ning problem, with its own initial state and goal. Indeed,
it has been demonstrated that attempting to reuse an ex-
isting plan as the starting point for construction of a new
plan can be as expensive as starting with nothing (Nebel &
Koehler 1995). Nevertheless, many authors have observed
that plan repair can offer advantages in practice (Gerevini &
Serina 2000; Veloso 1994; Kambhampati & Hendler 1992;
Hanks & Weld 1995; Koenig, Furcy, & Bauer 2002; van der
Krogt & de Weerdt 2005). Strategies vary from attempt-
ing to reuse the structure of an existing plan by construct-
ing bridges that link together fragments of the plan that
fail in the face of new initial conditions (Hammond 1990;
Kambhampati & Hendler 1992; Hanks & Weld 1995) to
more dynamic plan modification approaches that use a se-
ries of plan modification operators to attempt to repair a
plan (van der Krogt & de Weerdt 2005; Koenig, Furcy, &
Bauer 2002).

The approach we consider in this work is based on the
use of LPG (Gerevini, Saetti, & Serina 2003). LPG is a local-
search-based planner, that modifies plan candidates incre-
mentally in a search for a candidate that contains no flaws.
This approach to planning sits ideally with the problem of
plan repair, since the approach can be seen as consisting en-
tirely of an incremental plan repair strategy. However, we
are interested in an additional aspect of the plan repair pro-
cess, which is the stability of the plans it produces. For this
reason, we have modified the behaviour of LPG slightly, to
emphasise the importance of maintaining plan stability. We
describe the modification in the following section.

4.1 Heuristic Evaluation for Plan Adaptation
The behaviour of LPG is controlled by an evaluation function
that is used to select between different candidates in a neigh-
bourhood generated for local search. LPG searches a space
of partial plans where, at each search step, the elements in
the search neighbourhood of the current (partial) plan π are
the alternative possible plans repairing a selected flaw in π.

The elements of the neighbourhood are evaluated accord-
ing to an action evaluation function E (Gerevini, Saetti, &
Serina 2003). This function is used to estimate the cost of
either adding (E(a)i) or of removing (E(a)r) an action node
a in the partial plan π being generated or adapted. In order
to properly manage dynamic planning problems the func-
tion E has been extended to include an additional evalua-

tion term that has the purpose of penalising the insertion and
removal of actions that increase the distance of the current
partial plan π under adaptation from the input plan π0. In
general, E consists of four weighted terms, evaluating four
aspects of the quality of the current plan that are affected by
the addition or removal of a:

E(a)i =
µE

maxET
· Execution cost(a)i+

+
µT

maxET
· Temporal cost(a)i +

1

maxS
· Search cost(a)i+

+
µ∆

max∆
· (D(π0, π + πiR)−D(π0, π))

E(a)r =
µE

maxET
· Execution cost(a)r+

+
µT

maxET
· Temporal cost(a)r +

1

maxS
·Search cost(a)r+

+
µ∆

max∆
· (D(π0, π + πrR − a)−D(π0, π))

The first three terms of the two forms of E are unchanged
from the standard behaviour of LPG. The first term of E
estimates the increase of the plan execution cost, the second
estimates either the end time of a (for Ei) or the earliest
time when all preconditions that would become unsupported
by removing a from π could be supported again, and the
third estimates the increase of the number of the search steps
needed to reach a solution graph (see (Gerevini, Saetti, &
Serina 2003) for a detailed description). The fourth term,
used only for dynamic planning problems, is the new term,
estimating how the proposed plan modification will affect
the distance from π0.

Each cost term in E(a)i is computed using two func-
tions, EvalAdd(a) and EvalDel(a), which are fully described
in (Gerevini, Saetti, & Serina 2003). Briefly, EvalAdd(a) re-
turns an estimate of Temporal cost(a)i together with a re-
laxed plan, πiR, that contains a minimal set of actions for
achieving, in the context of the current plan π, (1) the unsup-
ported preconditions of a and (2) the set of preconditions of
other actions in the current partial plan that would become
unsupported by adding a to it. The initial state for πiR is a
state derived by executing the actions in π up to the point
where a would be inserted. πiR represents the portion on the
plan that is likely to be added into π in the subsequent plan-
ning process to deal with the flaws introduced by a. πiR is
calculated to give an estimate of the expected distance be-
tween the finished plan we can expect to be constructed and
the result of modifying π with action a.

Similarly, EvalDel(a) returns a relaxed plan πrR contain-
ing a minimal set of actions required to achieve the precon-
ditions that would become unsupported if a were removed
from π, together with an estimation of Temporal cost(a)r.

The πR plans are computed by an algorithm, called Re-
laxedPlan, formally described in (Gerevini, Saetti, & Se-
rina 2003), that we have slightly modified to penalize the
selection of actions decreasing plan stability. Informally,
when we choose an action to achieve a subgoal in the re-
laxed plan, in addition to the preference criteria already
used by RelaxedPlan, we prefer those actions that do not
increase the last term of E. RelaxedPlan constructs the re-

laxed plan πR through a backward process using the heuris-
tic function Bestaction in order to select the actions to in-
sert in πR (Gerevini, Saetti, & Serina 2003). In the adapta-
tion context we extend Bestaction by introducing a penalty
term for a candidate action b, ∆(b), that evaluates the inser-
tion/removal of b into/from πR considering the elements of
π0, π and the current πR itself:

∆(b) =
{

1 if D(π0, π + πR + b)−D(π0, π + πR) > 0
0 otherwise

Thus, we penalize the evaluation of b for πR if its addi-
tion/removal increases the distance of π + πR from π0.

During adaptation, the last term of the evaluation function
E is a measure of the increase in plan distance caused by
adding or removing a: the difference betweenD(π0, π+πiR)
and D(π0, π), or D(π0, π + πrR − a) and D(π0, π), where
π + πiR contains the new action.

The coefficients of these terms are used to normalize them
and to weight them. Thus µE , µT and µ∆ are non-negative
coefficients that weight the relative importance of the exe-
cution, temporal and “differences” costs, respectively. Their
values can be set by the user or automatically derived from
the expression defining the plan metric for the problem. The
factors 1/maxET , 1/maxS and 1/max∆ are used to nor-
malize the terms of E to a value that is (upper) bounded by
1. The value ofmaxET is defined as µE ·maxE+µT ·maxT
andmaxE ,maxT andmax∆ are respectively the maximum
value of the first, second and fourth term of E over all ele-
ments of the neighborhood, multiplied by the number κ of
flaws in the current partial plan. The term maxS is defined
as the maximum value of Search cost over all possible ac-
tion insertions or removals that eliminate the flaw under con-
sideration.1 Without this normalization the first two terms of
E could be much higher than the others, guiding the search
towards good quality plans without paying sufficient atten-
tion to their validity and similarity with respect to π0. How-
ever, especially when the current partial plan contains many
flaws, we would prefer the search to give more importance
to reducing the search cost, rather than on optimizing the
quality of the plan.

LPG has an anytime behaviour. It can produce a succes-
sion of valid plans, where each successive plan improves
upon its predecessor. The first plan generated is used to ini-
tialize a new search for a second plan of better quality, and so
on. This is a process that incrementally improves the qual-
ity of the plans, and that can be stopped at any time to give
the best plan computed so far (πbest). Each time we start a
new search, πbest is used to initialize the data structures and
some flaws are introduced in it by removing some actions.
Similarly, during search, some random flaws are forced in
the plan currently undergoing adaptation, when a valid plan
that does not improve πbest is reached. This is a mechanism
for leaving local optima.

To allow LPG to repair an input plan, an initial structure is
constructed to represent the input plan. This requires a sim-
ple analysis of the input plan, to identify the causal structure

1The role of κ is to decrease the importance of the first, second
and fourth optimisation terms when the current plan contains many
flaws, and to increase it when the search approaches a valid plan.

in the plan. There can be choices to be made in this construc-
tion but we do not explore alternatives: in practice, it does
not significantly affect behaviour which choice is made.

5 Empirical Evaluation
LPG is a stochastic planner: it exploits a local search be-
haviour that uses random restarts in a similar way to Walk-
sat. As a consequence, the behaviour of LPG is different for
different random number seeds. In order to carry out our
evaluations we have therefore carried out 5 runs for each
problem instance, with different seeds, and we take the me-
dian of these values for our plots below. The tests were per-
formed on an AMD Athlon(tm) XP 2600+ (with an effec-
tive 2100 MHz rating) and 512 Mb of RAM. In these tests
the original input plan was obtained by using TLPLAN (Bac-
chus & Kabanza 2000) unless otherwise specified (this al-
lowed us to use a high quality input plan with comparatively
low investment of initial computation time). Using a plan
from a different planner also ensures that we are not arti-
ficially enhancing stability by relying on the way in which
the planner explores its search space. It might appear that in
contexts where stability is important, using the same plan-
ner to produce a plan is an obvious technique that might
help. We show that, for LPG at least, this is not an effec-
tive strategy. Of course, deterministic planning algorithms
might offer greater stability, but we believe that where plan-
ners are not influenced by existing plans, there is unlikely to
be reliable stability in the behaviour.

5.1 Experimental Set-up

Our tests are conducted on a series of variants of prob-
lems from different domains, including DriverLog Time and
STRIPS versions, Logistics Simple Time (both a typed and
an untyped variant), ZenoTravel Time and Rovers Time. We
have concentrated mainly on temporal variants, since the
contexts in which we anticipate exploiting the plan repair
strategy involve temporal domains. The tests are generally
performed by taking a single problem from the benchmark
test suite in each case and then methodically generating a
series of variants for that problem. In each case, where we
use this approach, we have taken a large problem instance
as the base problem, in order to make the question of re-
pair versus replanning an interesting one (for small prob-
lems, the difference between these strategies is negligible).
The variant problems are generated by modifying the initial
state and goals for the original problem. The modifications
are performed randomly, although the number of modifica-
tions is increased systematically: we consider successively,
zero through to five modifications to the goal set and, for
each of these cases, successively one modification through
to five modifications of the initial state. We create five vari-
ants for each combination of modifications, so that, for ex-
ample, there are five different variants with one goal and one
initial state modification. We also use the original problem
as the 176th instance, to be used as a special case. Doing this
shows the cost of initialising the data structures for adapta-
tion, since the repair strategy does not have to perform any
modifications for this problem.

Although we use only one base problem in each case, we
have generated a large number of variants and we have con-
sidered problems from several different domains, so these
results can be considered representative of the behaviour of
the system for other similarly sized base problems. How-
ever, to confirm that the results are not an artifact of the
particular problem instances chosen, we have adopted a dif-
ferent problem generation strategy for generating problem
instances in the ZenoTravel and Rovers tests. Here we se-
lected problems randomly from the benchmark suites, dis-
tributed across the smaller and larger problem instances, and
generated a variant problem for each case. We used the same
scheme as above to determine the combination of modifica-
tion values for the initial state and goals, but selected the
base problem to apply the modifications randomly.

Our first experiments demonstrate that plan repair, using
our approach, generates plans faster than replanning. It is
possible that the fast plan repair comes at a price in plan
quality, as a plan is adapted to fit a new problem rather than
constructed to fit the new problem directly. We therefore
compare the best relative qualities of plans generated by
repair and by replanning within a certain CPU-time limit.
We then check that the plan repair process really maintains
higher stability in the plans, since it might be that the plan
seed provides a good starting point for the search for a new
plan, but is completely replaced in the process of construct-
ing the new repaired plan. Thus, we compare the distances
between the final plans and the input plans for replanning
and plan repair (where replanning is, of course, completely
uninfluenced by the input plan).

5.2 Results

Our first results, shown in figures 1, 2, 3, 4, 5 and 6, exam-
ine plan repair versus replanning for variants of problems in
six different sets of variants. In each case we show the time
taken to produce a solution (this corresponds to the first plan
generated by LPG). We then show, giving time to both pro-
cesses to optimise the plans they find, the relative quality
of the plans produced and the distances of the plans from
the input plan. We show the best distance and plan quality
across all plans produced in the entire optimisation phase.2

All the tests have been performed using 5 minutes of cpu
time.

In the first four figures the data is ordered according to the
variation scheme we describe above, while in the latter two
figures the ordering is based on base problem size.

Speed of Plan Production If we first consider the time
to produce a solution (shown in the leftmost graph in each
case, using a logscale), we observe that the adaptation pro-
cess is at least as fast as replanning and, in all cases, taken
across the entire data sets the repair strategy is faster than the
replanning strategy. In individual cases, for some variants,
the replanning approach is faster than repair. This can hap-
pen when the modification required to repair a plan has to
achieve significant changes in order to support actions that

2The first plan generated by LPG, the best quality plan and the
best distance plan could be different plans.

are affected by changes to the initial state (it occurs most of-
ten in variants with many initial state modifications). In such
cases, the work involved in repairing a plan can be greater
than in building an initial plan from scratch, but the bene-
fits for investing this effort can be seen in the stability of
the plans. It can also be seen that, where smaller problems
are used as the base problems for ZenoTravel and Rovers,
the times vary far less. This is unsurprising, since where
the problem is easier to solve the advantage in working from
an existing solution is reduced. Furthermore, the modifica-
tions can represent a more significant distortion of the initial
state or goals in the case of a smaller problem, so that the
original plan offers a less useful guide to the solution of the
new problem. Nevertheless, the results show that plan repair
outperforms replanning in these cases, too.

Plan Quality We now consider relative plan quality,
shown in the rightmost graph in each of these figures. Here
we can see a more mixed picture. In figures 1, 4 and 5 we
see a marked improvement in quality where plan repair is
used. In the latter case, the improvements are only apparent
in the larger problems, where there is sufficient complexity
in the problem to support alternative solutions. In the case
shown in figures 2 the quality is similar using either repair
or replanning. In 3 we see an example in which quality is
traded off for stability. In contrast to the previous cases, in
figures 2 and 3 the base plan was a plan produced by FF.
As can be seen, the lower quality of the initial plan appears
to reduce the opportunity for repair to exploit its input to
achieve a better quality plan for the dynamic problem. The
last collection, shown in figure 6, shows virtually no differ-
ences in plan quality between repaired or replanned plans. A
careful examination of the data reveals a small advantage to
the repair strategy, but the smaller problems offer little scope
for repair to outperform replanning.

Overall, we see that the repair strategy produces high
quality plans, so the exploitation of an existing plan does not
undermine the planning process in achieving high quality so-
lutions. Furthermore, in many cases a high quality input plan
allows repair to exploit the reasoning already performed to
generate this initial plan and to find a higher quality solu-
tion to the modified problem instance than can be found by
replanning (using LPG to construct the plan).

Plan Stability The central graph in each of these figures
shows the relative distances between the original input plan
and the new plan produced by repair and by replanning
for each variant. The difference in these distances is very
marked. Replanning generates plans that are consistently
very different to the original input plan. In general, as lit-
tle as 15-20% of the original plan appears in the replanned
plan, while only small proportions of the repaired plans are
not common with the original plan. The distinctive saw-
cut shapes of the graphs in figures 1, 2, 3 and 4 reflect
the scheme we used for generating the variants. Recalling
that the first climbing segment of each of these graphs cor-
responds to a sequence of increasing changes in the initial
state, with no changes to the goals, it is clear that the impact
of the variations in the initial state is greater than the impact
of the changes in goals. This observation is interesting, since

it demonstrates that regular minor modifications to the goals
(including both deletion of existing goals and introduction
of new ones) can be handled very effectively by plan repair,
maintaining a very high degree of plan stability. It is also
evident that, though the impact of initial state changes is rel-
atively more significant, it is still possible to achieve high
degrees of stability when the changes are limited.

Figures 5 and 6 show that higher stability is also achieved
by using plan repair in these cases, too. However, where the
problems are smaller there is less opportunity for the repair
strategy to do better than replanning — in small problems
there is often only one way to solve the problem efficiently
and this is found by both replanning and plan repair. Here,
plan repair is unable to exploit the solution to the original
problem, because relatively small numbers of modified ini-
tial state or goal literals represent very significant changes in
the structure of small problems.

The Impact of Input Plan Quality It seems likely that
the quality of the original plan should have some impact on
the performance of the plan repair strategy. We explore this
impact in figures 7 and 8. In the second of these figures we
show speed of plan production when repairing input plans
generated by SHOP2 (Nau et al. 2003), TALplanner (Kvarn-
ström & Magnusson 2003) and a scheduled version of a plan
generated by Metric-FF (Hoffmann 2003). We also show
the speed of planning by replanning. In all cases, the repair
process is more efficient than replanning, but the times for
repair are dependent on the quality of the initial input plan
(the TALplanner plan was of highest quality and the SHOP2
plan was of lowest quality). In figure 7 we show both the dis-
tances of repaired and replanned plans from the input plan
(top row) and the qualities of repaired and replanned plans
(bottom row), for the Metric-FF (left), SHOP2 (centre) and
TALplanner (right) input plans. Plan stability is not greatly
affected by the source or quality of the input plan, but, in
general, the higher the quality of the input plan, the higher
the quality of the repaired plans. This indicates that the ap-
proach we adopt to plan repair achieves a high plan stability
and does so while exploiting the best aspects of the input
plan. This serves to reemphasise that discarding the input
plan, when it might be the product of significant reasoning,
is a poor strategy for handling dynamic planning problems.

Input Plans from the Same Planner We have also ex-
plored the possibility that stability is enhanced if the input
plans are generated by the same planner used for replanning.
It might be anticipated that using the same planning strategy
for both planning and replanning could lead to smaller plan
differences. In figure 9 we show the planning time and the
relative distances when using input plans generated by LPG.
In the centre graph we show behaviour for input plans gen-
erated using LPG tuned for quality and on the right for LPG
tuned for speed. In the large majority of the dynamic prob-
lems considered for this experiment, the speed of plan repair
is not significantly affected by the source of the plans and, as
before, overall plan repair produces high quality plans, with
greater stability, faster than is achieved by replanning.

As before, the plan distances are better for higher qual-
ity input plans. A important observation supported by these

 1000

 10000

 100000

 20 40 60 80 100 120 140 160 180

 DriverLog-Time-pfile20 variants - speed

Milliseconds (logscale)

LPG-adapt (176 solved)
LPG (176 solved)

 0

 50

 100

 150

 200

 250

 300

 20 40 60 80 100 120 140 160 180

 DriverLog-Time-pfile20 variants - differences

Plan distance

LPG-adapt (175 solved)
LPG (176 solved)

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 20 40 60 80 100 120 140 160 180

 DriverLog-Time-pfile20 variants - quality

Quality

LPG-adapt (176 solved)
LPG (176 solved)

Figure 1: CPU time (on a logarithmic scale), number of different actions with respect to the input plan of the adaptation process
and plan qualities for the DriverLog Time-pfile20 variants (considering the median value over 5 runs).

 1000

 10000

 100000

 20 40 60 80 100 120 140 160 180

 DriverLog-pfile20 variants - speed

Milliseconds (logscale)

LPG-adapt (176 solved)
LPG (176 solved)

 0

 50

 100

 150

 200

 250

 300

 20 40 60 80 100 120 140 160 180

 DriverLog-pfile20 variants - differences

Plan distance

LPG-adapt (175 solved)
LPG (176 solved)

 125

 130

 135

 140

 145

 150

 155

 160

 165

 170

 20 40 60 80 100 120 140 160 180

 DriverLog-pfile20 variants - quality

Quality

LPG-adapt (176 solved)
LPG (176 solved)

Figure 2: CPU time (on a logarithmic scale), number of different actions with respect to the input plan of the adaptation process
and plan qualities for the DriverLog Strips-pfile20 variants (considering the median value over 5 runs).

 1000

 10000

 100000

 20 40 60 80 100 120 140 160 180

 Logistics log41-SimpleTime variants - speed

Milliseconds (logscale)

LPG-adapt (176 solved)
LPG (176 solved)

 0

 50

 100

 150

 200

 250

 300

 20 40 60 80 100 120 140 160 180

 Logistics log41-SimpleTime variants - differences

Plan distance

LPG-adapt (175 solved)
LPG (176 solved)

 800

 850

 900

 950

 1000

 1050

 1100

 1150

 1200

 1250

 1300

 1350

 20 40 60 80 100 120 140 160 180

 Logistics log41-SimpleTime variants - quality

Quality

LPG-adapt (176 solved)
LPG (176 solved)

Figure 3: CPU time (on a logarithmic scale), number of different actions with respect to the input plan of the adaptation process
and plan qualities for the Logistics log41 Simple Time variants (considering the median value over 5 runs).

 10000

 100000

 1e+06

 20 40 60 80 100 120 140 160 180

 Logistics log70-SimpleTime-Untyped variants - speed

Milliseconds (logscale)

LPG-adapt (176 solved)
LPG (176 solved)

 0

 100

 200

 300

 400

 500

 600

 700

 20 40 60 80 100 120 140 160 180

 Logistics log70-SimpleTime-Untyped variants - differences

Plan distance

LPG-adapt (175 solved)
LPG (176 solved)

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 20 40 60 80 100 120 140 160 180

 Logistics log70-SimpleTime-Untyped variants - quality

Quality

LPG-adapt (176 solved)
LPG (176 solved)

Figure 4: CPU time (on a logarithmic scale), number of different actions with respect to the input plan of the adaptation process
and plan qualities for the Logistics log70 SimpleTime Untyped variants (considering the median value over 5 runs).

 10

 100

 1000

 10000

 100000

 1e+06

 20 40 60 80 100 120 140

 ZenoTravel-Time variants - speed

Milliseconds (logscale)

LPG-adapt (135 solved)
LPG (129 solved)

 0

 100

 200

 300

 400

 500

 600

 20 40 60 80 100 120 140

 ZenoTravel-Time variants - differences

Plan distance

LPG-adapt (135 solved)
LPG (129 solved)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 20 40 60 80 100 120 140

 ZenoTravel-Time variants - quality

Quality

LPG-adapt (135 solved)
LPG (129 solved)

Figure 5: CPU time (on a logarithmic scale), Number of different actions with respect to the input plan of the adaptation process
and plan qualities for the ZenoTravel Time variants (considering the median value over 5 runs).

 10

 100

 1000

 10000

 100000

 1e+06

 20 40 60 80 100 120 140 160 180

 Rovers-Time variants - speed

Milliseconds (logscale)

LPG-adapt (175 solved)
LPG (175 solved)

 0

 50

 100

 150

 200

 250

 20 40 60 80 100 120 140 160 180

 Rovers-Time variants - differences

Plan distance

LPG-adapt (175 solved)
LPG (175 solved)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 20 40 60 80 100 120 140 160 180

 Rovers-Time variants - quality

Quality

LPG-adapt (175 solved)
LPG (175 solved)

Figure 6: CPU time (in logarithmic scale), number of different actions with respect to the input plan of the adaptation process
and plan qualities for the Rover Time variants (considering the median value over 5 runs).

 0

 50

 100

 150

 200

 250

 300

 20 40 60 80 100 120 140 160 180

 DriverLog-Time-pfile20 variants - differences

Plan distance

LPG-adapt-FFsol (174 solved)
LPG (176 solved)

 0

 50

 100

 150

 200

 250

 300

 20 40 60 80 100 120 140 160 180

 DriverLog-Time-pfile20 variants - differences

Plan distance

LPG-adapt-SHOP2sol (175 solved)
LPG (176 solved)

 0

 50

 100

 150

 200

 250

 300

 20 40 60 80 100 120 140 160 180

 DriverLog-Time-pfile20 variants - differences

Plan distance

LPG-adapt-TALPsol (176 solved)
LPG (176 solved)

 800

 900

 1000

 1100

 1200

 1300

 1400

 1500

 1600

 1700

 1800

 1900

 20 40 60 80 100 120 140 160 180

 DriverLog-Time-pfile20 variants - quality

Quality

LPG-adapt-FFsol (175 solved)
LPG (176 solved)

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 20 40 60 80 100 120 140 160 180

 DriverLog-Time-pfile20 variants - quality

Quality

LPG-adapt-SHOP2sol (176 solved)
LPG (176 solved)

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 20 40 60 80 100 120 140 160 180

 DriverLog-Time-pfile20 variants - quality

Quality

LPG-adapt-TALPsol (176 solved)
LPG (176 solved)

Figure 7: D(πI) values and plan qualities produced by the generation and the adaptation processes considering the input
plans generated by FF, SHOP2, TALplanner (plans generated in the 3rd international competition) for DriverLog Time-pfile20
variants (considering the median value over 5 runs).

 1000

 10000

 100000

 20 40 60 80 100 120 140 160 180

 DriverLog-Time-pfile20 variants - speed

Milliseconds (logscale)

LPG-adapt-FFsol (175 solved)
LPG-adapt-SHOP2sol (176 solved)
LPG-adapt-TALPsol (176 solved)
LPG (176 solved)

Figure 8: CPU time for replanning and repair using input
plans produced by FF, SHOP2, TALplanner for DriverLog
Time-pfile20 variants.

results is that the distances for generated plans remain con-
sistent with earlier results, showing that, for LPG at least,
the stability is not significantly improved by using the same
planner to replan as was used to generate the original plan. It
is possible that this result would not hold to the same degree
if a deterministic planner were used for the comparison.

Plan Repair for Rapid Response We claim that an ad-
vantage offered by repair is that, by exploiting work already
performed in constructing the original input plan, a high
quality plan can be constructed very quickly. By simply con-
firming that the changed context does not invalidate the parts
of the plan it maintains, the repair strategy does not have to
repeat the reasoning that led to the construction of this plan
in the first place, but can still benefit from it. One situation
that can arise when solving dynamic planning problems is
that a change in context occurs very shortly before a deci-
sion must be made whether to commit to the next action or
not. In this case, producing a high quality plan very fast be-
comes far more important, with the opportunity to optimise
a plan using extra time becoming less useful.

In figure 10 we show that the benefits of using a good
quality input plan are apparent in the very first output solu-
tion from LPG, using the repair process. The upper graph
shows that the stability for first solutions follows the same
pattern as for solutions following optimisation. This con-
firms that the repair approach does not quickly generate a
new solution and then optimise it towards the original plan,
but rather it exploits the original solution from the outset.
The lower graph shows that the quality of the first repaired
plan is also much higher than the first solution generated
by replanning. This confirms that, from the outset, the em-
phasis on stability does not compromise quality and that the
original high quality solution provides a direct and powerful
guide to solving the new problem instance.

An alternative way to examine the speed of reaction to
changing contexts is to consider how often the first step of
the original plan remains a first step of the new plan. If we
can show that plan repair frequently leaves the first step sta-
ble then we can exploit a powerful heuristic in order to spend

longer finding a new plan in reaction to a change in context:
check whether the next step of the original plan is still ex-
ecutable and, if so, execute it and spend all the time up to
the end of this action repairing the plan for execution from
this point. In domains where actions take significant time to
execute compared with time to plan, this can be a valuable
opportunity to improve plan quality. The following table
shows our results for 880 DriverLog-Time variants:

Strategy Init Orig Diff Eq 1st
Repair 9517 75.8% 8.9% 100%
Replan 5645 47.7% 66.0% 44.3%

The columns show: the number of initial actions over all the
plan (there are typically many parallel initial actions), the
percentages of these that appear in the original collection of
initial actions (Orig) and the percentages of the original ini-
tial actions that are not included in the new plans (Diff). The
final column (Eq 1st) shows the percentages of plans whose
first listed action matches the first listed action of the orig-
inal plan. These figures strongly support our claim that the
repair strategy can be coupled with the proposed heuristic.

6 Conclusions
We have explored the problem of reacting to a dynamic en-
vironment, where plans fail because of changing contexts.
We have compared a repair-based approach with the alter-
native of constructing a new plan ab initio. An important
motivation for choosing to repair a plan is that plans provide
a means to communicate future intentions to other agents
and, to do so successfully, it is important to ensure that, as
contexts shift and plans become invalid, new plans are not
unnecessarily different from existing plans. We define a con-
cept of plan stability to reflect the degree of change a repair
process induces in a plan.

We have used LPG as our basis for performing plan re-
pair, because it already uses a strategy that can be closely
compared to plan repair. LPG performs an iterative cycle of
candidate revision in a local search process. By modifying
the evaluation function, we have adapted LPG to emphasise
the importance of plan stability. This is achieved by penal-
ising changes that drift away from the original input plan,
while still accounting for the need to find a solution and to
maintain plan quality and temporal compactness.

We have shown, empirically, that this modified LPG
achieves good results in a plan repair strategy, producing
plans more efficiently and of better quality than by apply-
ing LPG to construct a plan as if for a new problem. Fur-
thermore, the approach supports the discovery of plans with
greater stability. This demonstrates that, even for these
benchmark problems, there is a wide variation in the plans
that are possible, so that an uninformed search for a plan
will be unlikely to produce a plan that is close to a previ-
ous plan for a similar problem. In other words, there are
dynamic planning problems with closely similar initial state
and goals, but for which there are (good) plans at a con-
siderable distance from the original plan. We believe that
many useful dynamic planning problems are like this: that
is, the solution space for many planning problems is under-
constrained, with many different ways to solve them. In

 1000

 10000

 100000

 20 40 60 80 100 120 140 160 180

 DriverLog-Time-pfile20 variants - speed

Milliseconds (logscale)

LPG-adapt-lpgSPEEDsol (176 solved)
LPG (176 solved)
LPG-adapt-lpgsol (176 solved)

 0

 50

 100

 150

 200

 250

 300

 20 40 60 80 100 120 140 160 180

 DriverLog-Time-pfile20 variants - differences

Plan distance

LPG-adapt-lpgsol (176 solved)
LPG (176 solved)

 0

 50

 100

 150

 200

 250

 300

 20 40 60 80 100 120 140 160 180

 DriverLog-Time-pfile20 variants - differences

Plan distance

LPG-adapt-lpgSPEEDsol (176 solved)
LPG-lpgSPEED (176 solved)

Figure 9: CPU time and D(πI) values for repair and replanning with input plans generated by LPG-quality and LPG-speed for
DriverLog Time-pfile20 variants. median value over 5 runs.

these cases, and when plan stability is important, plan repair
can offer a far more useful strategy than replanning.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 20 40 60 80 100 120 140 160 180

 DriverLog-Time-pfile20 variants - speed

Plan distance

LPG-adapt (176 solved)
LPG (176 solved)

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 20 40 60 80 100 120 140 160 180

 DriverLog-Time-pfile20 variants - speed

Quality

LPG-adapt (176 solved)
LPG (176 solved)

Figure 10: Plan distance and plan qualities for the Driver-
Log Time-pfile20 variants considering the first solution gen-
erated (median value over 5 runs).

References
Bacchus, F., and Kabanza, F. 2000. Using temporal logic to
express search control knowledge for planning. Artificial Intelli-
gence 116(1-2):123–191.

Boutilier, C.; Dean, T.; and Hanks, S. 1999. Decision-theoretic
planning: Structural assumptions and computational leverage. J.
AI Res. 11:1–94.

Cushing, W., and Kambhampati, S. 2005. Replanning: a new
perspective. In Proc. of ICAPS.

Drummond, M.; Bresina, J.; and Swanson, K. 1994. Just-in-case
scheduling. In Proc. 12th Nat. Conf. on AI (AAAI), 1098–1004.

Frank, J.; Gross, M. A. K.; and Kürklü, E. 2004. SOFIA’s choice:
An AI approach to scheduling airborne astronomy observations.
In Proc. of AAAI, 828–835.

Gerevini, A., and Serina, I. 2000. Fast plan adaptation through
planning graphs: local and systematic search techniques. In Proc.
of Int. Conf. on AI Planning and Scheduling (AIPS’00).

Gerevini, A.; Saetti, A.; and Serina, I. 2003. Planning through
stochastic local search and temporal action graphs. J. AI Res. 20.

Hammond, K. 1990. Explaining and repairing plans that fail.
Artificial Intelligence 45:173–228.

Hanks, S., and Weld, D. 1995. A domain-independent algorithm
for plan adaptation. J. AI Res. 2:319–360.

Hoffmann, J. 2003. The Metric-FF planning system: Translating
“ignoring delete lists” to numerical state variables. J. AI Res. 20.

Horty, J. F., and Pollack, M. E. 2001. Evaluating new options in
the context of existing plans. Artificial Intelligence 127:199–220.

Kambhampati, S., and Hendler, J. 1992. A validation-structure-
based theory of plan modification and reuse. Artificial Intelli-
gence 55:193–258.

Kambhampati, S. 1990. Mapping and retrieval during plan reuse:
a validation structure based approach. In Proc. of AAAI, 170–175.

Koenig, S.; Furcy, D.; and Bauer, C. 2002. Heuristic search-based
replanning. In Proc. of Int. Conf. on AI Planning and Scheduling
(AIPS’02), 310–317.

Kvarnström, J., and Magnusson, M. 2003. Talplanner in the 3rd
international planning competition: Extensions and control rules.
J. AI Research 20.

Nau, D.; Au, T.-C.; Ilghami, O.; Kuter, U.; Murdoch, J.; Wu, D.;
and Yaman, F. 2003. An HTN planning environment. J. AI Res.
20.

Nebel, B., and Koehler, J. 1995. Plan reuse versus plan genera-
tion: A theoretical and empirical analysis. Artificial Intelligence
76(1-2):427–454.

Pryor, L., and Collins, G. 1996. Planning for contingencies: A
decision-based approach. J. AI Res. 4:287–339.

Simmons, R. 1988. A theory of debugging plans and interpreta-
tions. In Proc. of AAAI, 94–99.

Stulp, F., and Beetz, M. 2005. Optimized execution of action
chains using learned performance models of abstract actions. In
Proc. of IJCAI, 1272–1278.

Traum, D., and Allen, J. 1994. Towards a formal theory of repair
in plan execution and plan recognition. In Proc. UK PlanSIG.

van der Krogt, R., and de Weerdt, M. 2005. Plan repair as an ex-
tension of planning. In Proc. of the 15th Int. Conf. on Automated
Planning and Scheduling (ICAPS-05), 161–170.

Veloso, M. 1994. Planning and learning by analogical reasoning.
LNCS 886. Springer-Verlag.

