
Strathprints Institutional Repository

Walkinshaw, N. and Roper, M. and Wood, M. (2005) Understanding object-oriented source code
from the behavioural perspective. In: Proceedings of the 13th International Workshop on Program
Comprehension (IWPC’05). IWPC, USA. ISBN 0-7695-2254-8

Strathprints is designed to allow users to access the research output of the University of Strathclyde.
Copyright c© and Moral Rights for the papers on this site are retained by the individual authors
and/or other copyright owners. You may not engage in further distribution of the material for any
profitmaking activities or any commercial gain. You may freely distribute both the url (http://
strathprints.strath.ac.uk/) and the content of this paper for research or study, educational, or
not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to Strathprints administrator:
mailto:strathprints@strath.ac.uk

http://strathprints.strath.ac.uk/

http://strathprints.strath.ac.uk/
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk
http://strathprints.strath.ac.uk/

Walkinshaw, N. and Roper, M. and Wood, M. (2005) Understanding
object-oriented source code from the behavioural perspective.
In: Proceedings of the 13th International Workshop on Program
Comprehension (IWPC'05). IWPC, USA. ISBN 0-7695-2254-8

http://eprints.cdlr.strath.ac.uk/2706/

Strathprints is designed to allow users to access the research
output of the University of Strathclyde. Copyright © and Moral
Rights for the papers on this site are retained by the individual
authors and/or other copyright owners. Users may download
and/or print one copy of any article(s) in Strathprints to facilitate
their private study or for non-commercial research. You may not
engage in further distribution of the material or use it for any
profitmaking activities or any commercial gain. You may freely
distribute the url (http://eprints.cdlr.strath.ac.uk) of the Strathprints
website.

Any correspondence concerning this service should be sent to The
Strathprints Administrator: eprints@cis.strath.ac.uk

http://eprints.cdlr.strath.ac.uk/2815/

Understanding Object-Oriented Source Code from the Behavioural Perspective

Neil Walkinshaw, Marc Roper, Murray Wood

Department of Computer and Information Sciences,
The University of Strathclyde, Glasgow G1 1XH, UK

E-mail: {neil.walkinshaw, marc, murray}@cis.strath.ac.uk

Abstract

Comprehension is a key activity that underpins a variety
of software maintenance and engineering tasks. The task of
understanding object-oriented systems is hampered by the
fact that the code segments that are related to a user-level
function tend to be distributed across the system. We in-
troduce a tool-supported code extraction technique that ad-
dresses this issue. Given a minimal amount of information
about a behavioural element of the system that is of interest
(such as a use-case), it extracts a trail of the methods (and
method invocations) through the system that are needed in
order to achieve an understanding of the implementation of
the element of interest. We demonstrate the feasibility of our
approach by implementing it as part of a code extraction
tool, presenting a case study and evaluating the approach
and tool against a set of established criteria for program
comprehension tools.

Keywords: slicing, hammock graphs, behavioural com-
prehension

1. Introduction

Many software engineering activities such as mainte-
nance, testing and inspection rely heavily on the use of ef-
fective comprehension techniques. As an example, if a pro-
grammer has to perform a maintenance task on a software
system (which they may not have written themselves), they
need to understand it to determine which element(s) of the
system are relevant. If the task results in a change, they also
need to understand how it will affect the rest of the system.

In object-oriented systems, the object is the primary and
sole unit of decomposition. Objects model important enti-
ties within a system and consist of data tightly bound with
the methods that manipulate them. The system executes by
passing messages (invoking methods) between objects. A
consequence of this decomposition strategy is that function
and structure are no longer coincidental: functionally re-
lated code is distributed over many different objects.

Polymorphic
Binding

Different Class Instances
Shared
Object
References

State

Methods

Inheritance

Class

Class Library
Reference

Return values

Method Calls

Return values

Inheritance

Figure 1. Challenges of Understanding the
Behaviour of an Object-Oriented System

Understanding the behaviour of object-oriented code
from a static presentation of the source code is very chal-
lenging and time consuming. Paradigm features such as in-
heritance, small methods, polymorphism and dynamic dis-
patch mean that the type of an object (the class containing
the method of interest) can often not be determined stat-
ically. Tracing along every path in a non-trivial object-
oriented system becomes practically infeasible because ev-
ery permutation of run-time object types produces a differ-
ent combination of paths that need to be taken into account.
The problem is summarised succinctly by Gamma et al.
[10]: “In fact, the two structures [run-time and compile-
time] are largely independent. Trying to understand one
from the other is like trying to understand the dynamism
of living ecosystems from the static taxonomy of plants and
animals”. Figure 1 illustrates some of these problems.

In an ideal situation, specification documents could be
used as a guide through the code, removing much of the
manual overhead. In reality however they are rarely detailed
enough to accurately map to the source code [5]. They of-
ten only feature key interactions and are not maintained ac-
curately as the system evolves. With legacy systems this

problem tends to be amplified. Inaccurate specification doc-
uments place an enormous overhead on manually reading
the source code because it is left to the reader to intuitively
determine what source code is related to the program points
they have been able to directly link with the specification.

Manually comprehending object-oriented systems from
the dynamic perspective has been investigated by Robillard
et al. [17], who investigate comprehension with respect to
a software change task, Dunsmore et al. [4] and Thelin et
al. [20], who both investigate reading techniques to sup-
port comprehension for software inspections. Robillard et
al. conclude that a systematic approach is required to com-
pensate for the fact that code artefacts related to a single
change task are spread across the system. In their previous
work [18] they provide a good example of the distribution of
functionally related code, stating that trying to modify the
conditions under which logging occurs in Jakarta Tomcat
would entail the consideration of 32% of the system’s Java
source files. Dunsmore et al. stress the need to reduce the
manual overhead involved in tracing relevant source code
elements across classes via some form of tool support. This
is the rationale for the work presented in this paper, which
aims to significantly reduce the expense inherent in reading
through functionally related code by removing the need to
manually determine what is relevant.

We present an approach that uses program slicing to de-
termine method calls that are relevant to a (potentially lim-
ited) set of ‘landmark methods’ that must be executed for a
given use-case scenario that could be traced from the spec-
ification. A use-case is a description of a set of sequences
of actions, including variants, that a system performs that
yields an observable result of value to an actor [3]. A sce-
nario is a particular instantiation of a use-case. Our solution
provides a manageable amount of code to read and under-
stand for a given use-case. We restrict the call graph to pro-
vide only those methods and invocations that are related to
the use-case (or use-case scenario) under consideration. We
trim the source code base to make it more manageable for
the code reader as follows:

1. Elicit points, called landmark methods, from the speci-
fication that we know will be executed for a given use-
case and map them to the source code.

2. Induce hammock graphs on the call graph between
these points (hammock graphs are defined in section
2.2).

3. Use the calls in the hammock graphs as slicing crite-
ria in order to mark further calls whose executions in-
fluence the computation of methods belonging to the
hammock graphs.

4. Expand paths from calls marked by step 3.

The next section provides an overview of code slicing and
provides definitions. Section three presents our approach.
Section four contains an evaluation and details of our im-
plementation. Section five surveys related work and section
six provides conclusions and directions for future work.

2. Background

2.1. Slicing

Slicing is a technique used to highlight statements that
are relevant to a particular computation. Since it was in-
troduced by Weiser in his thesis in 1979 [24], it has grown
into an active field of academic research. In abstract terms,
a slice presents a fragment of the program, consisting of
statements that are semantically related to some slicing cri-
terion specified by the user.

There exists a plethora of slicing approaches to suit dif-
ferent software maintenance tasks. The approach we pro-
pose uses static intra-procedural backward [25] and forward
[12] slices. For a comprehensive introduction on how to
compute these slices, the reader is referred to either Tip’s
[21] or Binkley and Gallagher’s [1] slicing overview.

A static backward slice answers the question: “What
statements can affect the behaviour of a variable v at a point
p?”. The standard criterion format for a slice is denoted
<p,v>, where p denotes the point of interest in the program
and v denotes the variable. Usually it is assumed that v is
either defined or used at p.

A static forward slice answers the question: “What state-
ments contain variables that can be affected by a variable v
at a point p?”.

There are two popular approaches to computing a slice.
Weiser’s original approach is an iterative algorithm that
computes the slice as the solution to a set of data-flow equa-
tions [25]. The other approach is based on representing the
program as a graph where vertices represent expressions
and edges represent different types of inter-dependences
[8]. Our approach uses dependence graphs to represent in-
dividual methods (the graphs are referred to as Method De-
pendence Graphs or MDGs).

We avoid the problematic issue of calling-context that
can cause inter-procedural slices to be imprecise [12] be-
cause we use intra-procedural slices. To construct an ac-
curate intra-procedural slice within an object-oriented sys-
tem, we do however still rely on inter-procedural data flow
information which is necessary to compute transitive de-
pendences caused by method calls. In procedural systems,
a transitive dependence occurs when the argument to a
method affects the value it returns [12]. In object-oriented
systems a transitive dependence also occurs if the call mod-
ifies the state of the target object. A transitive dependence is
represented (on the dependence graph) by a summary edge

between the actual-in and actual-out vertices of a call. Reps
et al. [16] provide an efficient approach for their computa-
tion.

2.2. Definitions

A digraph (or directed graph) D is a structure
< N, E >, where N is a set of nodes and E is a set of edges.
A path from n to m of length k is a list of nodes p0, p1, ..., pk

such that p0 = n, pk = m and for all i 1 ≤ i ≤ k − 1,
(pi, pi+1) is in E. A node nx precedes a node ny (and ny

succeeds nx) if there exists a path from nx to ny . If they
are adjacent then nx directly precedes ny . The set of nodes
preceding ny on a graph D is denoted as Pre(ny, D) and
the set of nodes succeeding nx is denoted as Succ(nx, D).

A flow graph F is a structure < N, E, n0 >, where
< N, E > is a digraph and n0 is a member of N such that
there is a path from n0 to all other nodes in N . We will refer
to n0 as the initial node. If m and n are two nodes in N , m
dominates n if m is on every path from n to ne.

An object-oriented call graph C is a flow graph that rep-
resents the call relationships between methods. The node
set N represents the set of methods (every method is rep-
resented by a single node), E represents the set of calls be-
tween methods and n0 is the entry point to the system. A
call edge e takes the form e = c → m, where c is the call
site (statement where the call originates) and m is the target
method.

The original definition of a hammock graph is provided
by Kas’janov [13]. In the context of static program analy-
sis it is commonly defined with respect to the control flow
graph of a method (e.g. Weiser [25] and Ferrante et al. [8]).
In our work, Kas’janov’s notion of a hammock graph re-
mains the same, but instead of referring to hammock graphs
in the context of CFGs, we refer to them in the context of
call graphs. Our definition for hammock graphs is the same
as Weiser’s.

A hammock graph H is a structure < N, E, n0, ne >
such that < N, E, n0 > and < N, E−1, ne > are both flow
graphs, where E−1 = {(a, b)|(b, a) ∈ E}.

We will refer to the information we garner from the
specification in terms of a set of landmark methods M =
{m0, ..., mn}. Methods can only belong to M if they can
be traced from the specification to the source code.

3. Using Dependence and Specification Infor-
mation to Produce a Reduced Call Graph

Because of the large edge-to-vertex ratio in object-
oriented call graphs, it is difficult to determine the context
in which a method might be called during the execution of a
given scenario. Here we suggest an approach that uses any
available information about the execution of the scenario

1. Trace landmark methods from specification to call
graph

2. Identify direct paths between traced methods:

(a) Mark methods traced from the specification on
the call graph

(b) Induce hammock graphs on the call graph be-
tween every pair of traced methods

3. Identify paths that can influence and be influenced
by the paths in the hammock graphs:

(a) Identify call statements for every edge in the
hammock graphs

(b) Generate intra-procedural slices, using call state-
ments as slicing criteria

(c) Mark all calls belonging to the slices

(d) Follow all paths in the call graph originating from
the marked call sites

Figure 2. Process of extracting code relevant
to a particular aspect of system functionality

to limit the number of contexts in which a set of meth-
ods may be called. This divides the call graph into self-
contained segments that can be read individually, following
a ‘divide and conquer’ policy. The process of extracting
relevant code is outlined in figure 2.

We identify relevant paths through the system by mak-
ing use of information from the specification. Our approach
caters for the realistic situation that the specification may
be incomplete, but that any scenario contains a set of land-
mark method invocations M that can be traced to the source
code. We create a chain of hammock graphs between the
methods in M , isolating calls on direct paths between the
methods. We then use their call sites (see section 2.2) as
slicing criteria to detect calls that do not belong to paths in
the hammock graphs but can still influence or be influenced
by their execution.

3.1. Obtaining Hammock Graphs

A hammock graph H induced on a call graph C be-
tween methods l and m is denoted H(C, l, m) where
H(C, l, m)=< N, E, l, m > and H(E) ⊆ C(E), where
H(E) denotes the edges belonging to H and C(E) denotes
the edges belonging to C. H(C, l, m) is a vertex-induced
subgraph of C, which contains the nodes that belong to the

a

b c

g

f d

e

hk

ij

r

m

q

l

n

p o

s

a

b c

g f

h

i j

m

q

l

n

p

a

b c

f

i

h

m

q

a

b c

f

i

h

m

q

s r

(a) (b) (c) (d)

Figure 3. Trimming the call graph by inducing hammock graphs between landmark methods

intersection of Succ(l, C) and Pre(m, C) (see section 2.2)
and the edges that connect them in C.

We use the set of landmark methods M garnered from
the specification to eliminate as many superfluous call graph
edges as we can. Methods elicited from the scenario spec-
ification act as landmarks in the call graph; every path to
be understood must pass through them. A hammock graph
H(C, l, m) contains all call edges that may belong to a path
from l to m. To restrict paths through the call graph to
those that execute landmark methods, we produce a ham-
mock graph for every pair of methods in M ∪m0 where m0

is the entry method to the system.

An example of how to induce a hammock graph on a call
graph is provided in figure 3. Here the nodes C = {a, ..., s}
represent the vertices of the entire call graph, a = m0 and
{q, i} ∈ M . Figure (a) shows the entire call graph, with
nodes a and q highlighted. Figure (b) shows the call graph
obtained by inducing the hammock graph H(C, a, q). Fig-
ure (c) shows the hammock graphs that are obtained when
we divide the graph from (b) by using node i as an addi-
tional landmark method. Because i succeeds a and precedes
q on the call graph, we can split the graph H(C, a, q) into
H(C, a, i) and H(C, i, q).

Assuming we do not know what happens after the execu-
tion of method q, we have to add all of q’s successors to the
list of calls to be inspected. The final result is represented
in (d). This is what is used as the basis for computing the
path dependencies, as described in the following section.

3.2. Computing Dependencies of Hammock Graph
Paths

The edges contained in the hammock graphs currently
identify the calls on the call graph that directly link methods
belonging to M ∪ m0. Following paths that only directly
link landmark methods is not sufficient. Simply because
there is not a direct path between two methods in the call
graph does not mean that they cannot be executed as part of
the same execution.

An example is provided in figure 4. The hammock graph
between the methods main and getFirstName is shown in (a)
(note that these methods belong to different classes). The
information provided by the hammock graph alone is in-
sufficient. To be thorough we would want to know how
firstName is initialised in object p and how the Registry ob-
ject is initialised. This would require the scrutiny of the
Person and Registry constructors, which are not part of the
hammock graph in (a).

We identify these relevant paths by using call sites in the
hammock graphs as slicing criteria to identify call sites for
relevant indirect calls (marked bold in (a)). A slicing crite-
rion consists of a program point (usually a statement) and
a set of variables [25]. When slicing backward, we use the
arguments for the call as variables for the slicing criterion.
When slicing forward we use variables that are assigned a
value by the call and variables representing objects that have
had their state changed by the call for the criterion. Edges
belonging to paths out of these call sites can be added to the

p.getFirstName()

Driver.java

Registry.java

Person.java

public static void main(String[] args){
Registry r = new Registry()
r.constructPerson();
}

public void constructPerson(){
String name = "Percy";
Person p = new Person(name);
register(p);
}

}

public void getFirstName(){
return firstName;
}

public void register(Person p){
registered.add();

Driver.java

Registry.java

Person.java

public static void main(String[] args){
Registry r = new Registry()
r.constructPerson();
}

public void constructPerson(){
String name = "Percy";
Person p = new Person(name);
register(p);
}

public Registry(){
this.registered = new Vector();
}

public Person(String name){
this.firstName = name;
}

public void register(Person p){
registered.add(p.getFirstName());
}

public void getFirstName(){
return firstName;
}

(a) hammock graph between main and getFirstName (b) hammock graph from (a) with dependences

Figure 4. Adding dependences to hammock graphs

final body of code to provide a self-contained unit.
A callsite can be derived from a call graph edge because

a call takes the form callsite → method (see section 2.2).
For every callsite belonging to an edge in a hammock graph,
we produce intra-procedural backward and forward slices.
Any call sites that belong to the slices and are not the source
of an edge in a hammock graph are marked. Marked calls
are significant because we know that (a) they may be ex-
ecuted at run-time and (b) if they are executed, they can
influence or be influenced by the execution of methods be-
longing to the hammock graph. If a marked call site is not
succeeded by any landmark methods, we cannot restrict the
path that would occur if it were executed. To provide a con-
servative estimate of the code that is relevant, all call graph
edges that can be transitively reached by that callsite must
be taken into account.

In figure 4, the call sites r.constructPerson(), register(p) and
p.getFirstName() (the call sites that spawn edges on the ham-
mock graph) are used as slicing criterion points. Vari-
ables representing parameters and destination objects (e.g.
actual-in vertices belonging to these call sites in the MDG)
are used as criterion variables (r and p). Intra-procedural
slices on these criteria contain the calls Registry r = new Reg-

istry() in main, Person p = new Person() in constructPerson and
registed.add(...) in register. If there is a call to a library
method we do not add it to the paths to be inspected, be-
cause we currently treat library calls as being beyond our
scope of interest. registered.add(...) is a library method (the
Vector.add(Object) method in Java). The Person and Registry

initialisers are however application methods so they need to
be taken into account. If they were to call any further appli-
cation methods (they do not in this example), these method
calls would have to be traced through the call graph.

3.3. Restricting Path Dependencies

By taking both forward and backward slices from the
hammock graph call sites into account, we are answering
the following question: “What are the paths on the call
graph that can either affect or be affected by a set of meth-
ods M?”. Depending on the system being analysed and the
set of landmark methods, the code base that is extracted us-
ing this approach may still be too large to be of practical
use.

Given the same hammock graph, we can further restrict
the code base by being more specific about the dependen-
cies that are computed. By using only backward slices, the
code base extracted answers the following question: “What
are the paths on the call graph that can affect the execution
of a set of methods M?”. By slicing forward from call sites
instead of backward, using any value returned by the call
instead of the call arguments as slicing criteria, the question
is rephrased to “What are the paths on the call graph that
can be affected by the execution of a set of methods in M?”.

Whether to use forward slices, backward slices or both
depends on the comprehension task. If, for example, the
task is to determine the effect a maintenance fix will have
on the rest of the system, the appropriate choice would be
to use forward slicing, choosing landmark methods on the
paths that execute the code containing the fix. Code inspec-
tions on the other hand often require knowledge about how
a particular variable could have obtained its value. Using a
conventional inter-procedural backward slice would not be
concise enough (not restricting the slice to a set of paths or
a single path of interest), so we can use our approach with
backward slicing to restrict the results.

Figure 5. Call graph navigator with window to
show call stack

4. Evaluation

To assess the feasibility of our approach, it has been im-
plemented as a code extraction tool for Java systems. The
tool is currently being evaluated on a range of systems, to
understand the effect that different landmark methods have
on the results produced. To evaluate its usefulness with re-
spect to comprehension we refer to Storey et al.’s set of
guidelines [19] that tools for program understanding should
aim to satisfy.

4.1. Implementation and Example

Upon loading Java classes the tool produces a call graph.
This can be refined by selecting methods that belong to the
specification and applying the approach outlined in the pre-
vious section. We use the Soot byte code analysis frame-
work1 as a basis for extracting dependence information and
the call graph. Soot operates on byte code, so slices have to
be mapped back to the source code. Graphs are traversed
and visualised using the Java Universal Network/Graph
(JUNG) framework2.

As the call graph is trimmed, it can be navigated as
shown in figure 5. Outgoing calls are listed in the pane
on the left. When selected, the text-pane reloads with
the source code belonging to the selected method. Intra-
procedural slices can be highlighted.

As a basis for our example, we have chosen a use-case
from JHotDraw3, a framework for drawing editors. It con-
tains about 120 classes and uses a variety of object-oriented
paradigm features such as polymorphism and inheritance.

1http://www.sable.mcgill.ca/soot/
2http://jung.sourceforge.net/
3http://www.jhotdraw.org

Figure 6. Call graph from PaletteBut-
ton.mouseReleased method in JHotDraw

It has evolved into a mature system (its initial Smalltalk im-
plementation was produced in the Eighties) and its design
has been developed by using typical framework construc-
tion techniques such as design patterns.

The use-case, accompanied by a set of sequence di-
agrams, was produced by an individual who has expert
knowledge of the system. It covers the selection of a draw-
ing tool and commences when the user releases the mouse
over a tool button. We use the mouseReleased method (im-
plementing the mouseListener interface) as the entry point for
the call graph. The unrefined call graph contains 251 ver-
tices (methods) connected by 719 edges (potential method
invocations) and is shown in figure 6.

The problem of distributed functionality that has to be
dealt with becomes apparent when we consider that every
method in the call graph is executed as part of at least one
use-case. Although it is possible to read the 251 methods
individually, reading each method in every possible context
of execution becomes infeasible. For this reason we need to
apply our technique of reducing the call graph.

The approach was evaluated in the context of a software
inspection task, so the tool was modified to use only back-
ward slices at call sites. The reduced graph that corresponds
to the supplied use-case is shown in figure 7 and was ob-
tained by using four landmark methods. The graph is re-
duced to 16 vertices, connected by 20 edges, returning two
edges that are superfluous because of a polymorphic call
that is not restricted by landmark methods.

The choice of landmark methods is going to be crucial,
so as part of our initial evaluation we are investigating its
precision and recall with respect to different method com-
binations. We have added a function to our tool that allows

Figure 7. Reduced Call Graph

the user to specify a set of relevant edges R and the number
of landmark methods to be considered l. The tool then pro-
ceeds to generate every combination of l landmark meth-
ods in R. For every combination it produces the reduced
call graph and calculates its precision and recall. Precision
measures the proportion of retrieved edges that are actually
relevant and is calculated by dividing the number of rele-
vant edges retrieved by the total number of edges retrieved.
Recall measures the proportion of relevant edges that are
actually retrieved and is calculated by dividing the number
of relevant edges retrieved by the total number of relevant
edges.

It should be emphasised our evaluation of this work is
still on-going. We have shown that the approach performs
very well, given a good combination of landmark methods
(the combination that produced the graph in figure 7 scored
90% precision and 100% recall. Several of the four-method
combinations however also produced very poor precision-
recall results (the worst case produced 1% precision and
33% recall). A sample of the output produced by the tool
is provided in figure 8. The results are displayed in the
form of a bubble graph, where the size of the bubble rep-
resents the number of landmark method combinations that
produced that precision-recall result.

The initial precision-recall results vary significantly from
one use-case to the other. By comparing the properties of
the landmark methods that produced poor results to those
that were useful, we have so far managed to highlight two
key features of successful method combinations: (1) wher-
ever possible they should specify the destination of a poly-

Figure 8. Precision-recall results for the sam-
ple use-case, using 4 landmark methods

morphic call (otherwise the call graph follows all destina-
tions) and (2) if a scenario contains multiple branches that
execute independently of each other (i.e. the call to one
branch would not belong to the slice from the call to another
branch), each branch must contain a landmark method. Fu-
ture work will explore further the criteria that make for suc-
cessful landmark methods.

4.2. Tool Evaluation

Storey et al. [19]4 propose a list of fourteen cognitive de-
sign elements that should be supported by a software com-
prehension tool if it is to be effective. Out of these, it was
found that our approach can assist on the following nine
points:

Improve program comprehension

Enhance bottom-up comprehension

• Indicate syntactic and semantic relations between soft-
ware objects: Edges contained in the reduced call
graph produced by our approach link the methods that
are relevant to a given execution.

• Reduce the effect of delocalized plans: This is the key
aim of our approach. Our reduced call graph pulls to-
gether elements of code from across the system that
may affect or be affected by a particular method.

Enhance top-down comprehension

• Support goal-directed, hypothesis-driven comprehen-
sion: Using our approach, the hypothesis is expressed
in terms of the landmark methods that should be exe-
cuted if a scenario executes.

4Their work carries a strong bias towards software visualisation, but the
comprehension aspect is just as important for our work.

Reduce maintainer’s cognitive overhead

Facilitate navigation

• Provide directional navigation: As shown in figure 5,
navigating the call graph before or after it has been
reduced is simply a matter of selecting methods from
the list and using the ‘forward’ and ‘back’ buttons.

Provide orientation clues

• Indicate the maintainer’s current focus: The current
focus is the source code for the method in the pane.

• Display the path that led to the current focus: This
is represented by the call stack, shown in the lower
window in figure 5.

• Indicate options for further exploration: The list of
methods to the left of the pane indicate methods called
by the current method and can be selected for further
exploration.

Reduce disorientation

• Reduce additional effort for user-interface adjustment:
The interface provided by our tool is minimal and very
intuitive, only requiring that the maintainer choose the
destination method from a list and navigate forwards
or backwards.

• Provide effective presentation styles: This refers to the
need for effective visual feedback from the tool. Our
tool presents the call graph and updates it every time
an additional landmark method is added (see figures 6
and 7), this is particularly effective because it immedi-
ately presents the user with a visualisation of the im-
pact that different landmark methods have on the final
call graph.

Our approach is particularly successful with respect to the
design elements aimed at reducing the maintainer’s cogni-
tive overhead, where it satisfies six out of the seven points
listed. The one unsatisfied point states that a tool should
also provide arbitrary navigation, which was not imple-
mented in our approach.

With respect to improving program comprehension our
approach satisfies three of the seven elements listed. Storey
et al. list that a tool should also: provide abstraction mech-
anisms, provide an adequate overview of the system archi-
tecture at various levels of abstraction, support the construc-
tion of multiple mental models and cross-reference mental
models. Their model is however intended for software ex-
ploration tools that support program comprehension. Ours
is not a software exploration tool, but a code extraction tool,
so dealing with different levels of abstraction and different
mental models is outside of its scope.

4.3. Code Reading

To explore the nature of the code returned by our ap-
proach and the practical issues that arise when trying to read
and understand it, we analysed the information produced by
the tool for a smaller system [23]. Calls in the reduced call
graphs were highlighted in the source code. Classes were
printed out individually, and a reverse engineered class di-
agram was provided to help identify class data members.
Methods not belonging to the reduced call graph were re-
moved. Method calls representing edges on the reduced
call graph were highlighted, and marked with an identifier
of their target method5. The following issues were high-
lighted:

1. Understanding code without further tool support is
problematic because it is difficult to maintain the call-
ing context in which a method is being read. It is diffi-
cult to remember the caller of a method, so when men-
tally executing a chain of calls, it is difficult to ‘de-
scend’ back down the call chain.

2. Although the reduced code set appears to be useful, a
clear reading strategy is needed to mark out the impor-
tant paths through the code.

3. It would be useful to be aware when a method call
crosses a class boundary.

4. An approach is needed to handle multiple instances
of different objects (possible of the same type) from
a static perspective.

Issue 1 can be partially addressed when using a tool. As
mentioned previously, the tool displays the call stack that
has led to a given method and provides a ‘backwards’ but-
ton to skip back to the previous method (see figure 5). The
solution is only partial, because a mental abstraction of the
functionality produced by the chain of calls is needed. Is-
sue 2 clearly needs to be addressed and is an important area
of future work. Issue 3 is another feature that could be pro-
vided by tool support. Issue 4 needs to be taken into account
by any static object-oriented comprehension approach. Dif-
ferent objects of the same type may have different states.
This is a clear challenge when trying to understand the code
from the dynamic perspective and must be taken into ac-
count when addressing issue 2.

5. Related Work

Given a complete system, the challenge is to identify
the code belonging to a set of use-cases. The key problem

5A postscript file can be downloaded from:
http://www.cis.strath.ac.uk/~nw/occupantInforScenario.ps

with reverse engineering use-cases (or particular scenarios)
is that computing them statically is generally accepted to be
an unsolvable problem. Static approaches tend to be nec-
essarily conservative and include a large number of super-
fluous method invocations. Various static approaches exist
that attempt to minimise the amount of irrelevant informa-
tion (see section 5.2).

Although dynamic approaches are based on an exact
trace of the methods that are invoked at run-time, they are
unsuitable if we need to understand software without exe-
cuting it (as is the case with inspections). Another challenge
with respect to dynamic approaches is that they rely on the
determination of a suitable set of test cases that are exhaus-
tive and representative with respect to the use-cases. They
also rely on the availability of a system that is executable in
the first place. In object-oriented systems it is particularly
common that incomplete systems (such as frameworks) are
created, which can then be used in different contexts. Our
approach presents a compromise, where dynamic informa-
tion pertaining to a given set of executions can be used for
the analysis in the form of a set of landmark methods.

5.1. Dynamic Approaches

Bojic and Velasevic [2] propose an approach for using
run-time information to reverse-engineer use-cases. Their
approach is based on relating run-time information obtained
from a set of test cases corresponding to a use-case to a
concept lattice constructed using formal concept analysis.

El-Ramly et al. [7] propose another dynamic approach
that records user interaction with the system. Based on
these interactions, data mining and pattern matching tech-
niques are applied. Any frequently occurring interactions
are used as a basis for use-case models.

Egyed [5] proposes an approach that uses run-time in-
formation to produce traces between scenarios, model el-
ements and the system. The user supplies a series of rep-
resentative test cases and an executable version of the sys-
tem. The system is executed and a ‘footprint graph’ is con-
structed. This is used as a basis for automatically generating
further traces.

Eisenbarth et al. [6] combine dynamic analysis with for-
mal concept analysis to map program features to procedural
source code. They produce an execution profile of scenarios
that are of interest and use formal concept analysis to pro-
duce a mapping between the features that are invoked by the
scenarios and the source code. Their work emphasises the
source code units that map to a feature, whereas our work
concentrates on the call relationships between units that im-
plement a feature (Eisenbarth et al.’s definition of a feature
is invoked by a set of scenarios).

5.2. Static Approaches

Di Lucca et al. [14] propose an approach that is based
on the premise that a scenario starts with a system-level in-
put and ends with a system-level output. They represent
the message sequences in the form of a Method-Message
Graph (MMG). ‘Threads’ of message invocations are ex-
tracted from the graph and collated to form use-cases.

Tonella and Potrich [22] provide a reverse-engineering
approach for interaction diagrams from C++ code. Ac-
knowledging that a purely static approach is over conser-
vative, they use two mechanisms called partial analysis and
focussing to ensure that the average size of a graph is small
enough to be of use. They validate their approach by apply-
ing it to a substantial real-world project.

Qin et al. [15] propose an approach based on construct-
ing a call graph-based abstract representation of the subject
program called the Branch-Reserving Call Graph (BRCG).
This represents calls between methods and retains control
dependence information, so that predicate statements that
control the execution of a given procedure call are inte-
grated. Because no prior use-case information is used and
the approach is static, it returns all possible execution sce-
narios of the system. This can be alleviated by pruning
nodes using a graph-based ‘importance metric’.

6. Conclusions and Future Work

We show how to restrict the call graph to contain only
methods and calls that may be relevant to the execution of
a particular use-case or scenario. A strength of this work is
that it allows for the context to be restricted without rely-
ing on a fine-grained specification or a dynamic execution
trace. This makes it extremely flexible and applicable to the
realistic situation of understanding how a system executes
given only a high level specification.

The results of our analysis depend on the methods cho-
sen as landmarks, the scenarios in which they are analysed
and the system being inspected. These are three variables
that need to be investigated in order to determine the rela-
tionship between the information garnered from the speci-
fication and the resulting code base. This should give us a
good idea of how much specification is required to produce
a useful code base with respect to a given use-case and how
the technique scales to larger systems.

Although this paper has shown how to extract the source
code related to aspects of system behaviour, it does not ad-
dress the problem of how to read through, comprehend and
verify it. This area is a potent field for further research,
particularly with respect to code inspections, where read-
ing techniques have a major influence on their success. Al-
though there has been a significant amount of research in
comprehension and reading techniques for procedural code,

there is still a void in corresponding object-oriented tech-
niques.

With respect to the output generated by our program,
a ‘degree-of-interest’ (DOI) [9] function would guide the
code reader to calls that are particularly important by as-
signing a ‘weight’ to different edges in the graph. On a
call-graph level, it would be useful to now enable the exclu-
sion of methods (and relevant edges) because we know that
they won’t be executed. On a method statement level, we
need to investigate techniques such as Harman et al.’s Key
Statement Analysis algorithm [11], to emphasise statements
that contribute to the computation of principal variables be-
longing to a method.

The reduced call-graph produced by our approach pro-
vides benefits beyond software comprehension. It also has
the potential to significantly economise further static anal-
ysis. Static inter-procedural slices of object-oriented pro-
grams tend to be very large because the context in which
methods are called is not restricted. Our approach would be
a suitable pre-processing step to produce a cut-down depen-
dence graph (reducing the significant overhead involved in
constructing dependence graphs) and should produce more
precise results with respect to the given scenario.

References

[1] D. Binkley and K. Gallagher. Advances in Computers, vol-
ume 43, chapter Program Slicing. Academic Press, San
Diego, CA, 1996.

[2] D. Bojic and D. Velasevic. Reverse engineering of use case
realisations in UML. In Proceedings of the ACM Symposium
on Applied Computing (SAC’00), pages 741–747, 2000.

[3] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Mod-
eling Language User Guide. Addison Wesley, 1999.

[4] A. Dunsmore, M. Roper, and M. Wood. The develop-
ment and evaluation of three diverse techniques for object-
oriented code inspections. IEEE Transactions on Software
Engineering, 29(8):677–686, August 2003.

[5] A. Egyed. A scenario-driven approach to traceability.
IEEE Transactions on Software Engineering, 29(2):123–
132, 2003.

[6] T. Eisenbarth, R. Koschke, and D. Simon. Locating features
in source code. IEEE Transactions on Software Engineering,
29(3):210–224, 2003.

[7] M. El-Ramly, E. Stroulia, and P. Sorenson. Mining system-
user interaction traces for use case models. In Proceedings
of the 10th International Workshop on Program Comprehen-
sion (IWPC’02), pages 21–29, 2002.

[8] J. Ferrante, K. Ottenstein, and J. Warren. The program de-
pendence graph and its use in optimization. ACM Transac-
tions on Programming Languages and Systems, 9(3):319–
349, July 1987.

[9] G. Furnas. Generalized fisheye views. In Proceedings of
Human Factors in Computing Systems (CHI’86), pages 16–
23, 1986.

[10] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1999.

[11] M. Harman, N. Gold, R. Hierons, and D. Binkley. Code
extraction algorithms which unify slicing and concept as-
signment. In 9th IEEE Conference on Reverse Engineering
(WCRE ’02), Richmond, Virginia, USA, 2002.

[12] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing
using dependence graphs. ACM Transactions on Program-
ming Languages and Systems, 12(1):26–60, January 1990.

[13] V. Kas’janov. Distinguishing hammocks in a directed graph.
Soviet Math. Doklady, 16(5):448–450, 1975.

[14] G. A. D. Lucca, A. R. Fasolino, and U. D. Carlini. Recov-
ering use case models from object-oriented code: A thread
based approach. In Proceedings of the 7th Working Confer-
ence on Reverse Engineering (WCRE’00), pages 108–117,
2000.

[15] T. Qin, L. Zhang, Z. Zhou, D. Hao, and J. Sun. Discovering
use cases from source code using the branch-reserving call
graph. In Proceedings of the Tenth Asia-Pacific Software
Engineering Conference (APSEC’03), pages 60–67, 2003.

[16] T. Reps, H. Horwitz, M. Sagiv, and G. Rosay. Speeding up
slicing. In Proceedings of the third ACM SIGSOFT Sym-
posium on the Foundations of Software Engineering, pages
11–20, 1994.

[17] M. Robillard, W. Coelho, and G. Murphy. How effective
developers investigate source code: An exploratory study.
IEEE Transactions on Software Engineering, 30(12):889–
903, December 2004.

[18] M. Robillard and G. Murphy. Concern graphs: Finding and
describing concerns using structural program dependencies.
In Proceedings of the 24th International Conference on Soft-
ware Engineering, pages 406–416, May 2002.

[19] M.-A. Storey, F. Fracchia, and H. Mueller. Cognitive de-
sign elements to support the construction of a mental model
during software exploration. Journal of Software Systems,
special issue on Program Comprehension, 44, 1999.

[20] T. Thelin, P. Runeson, and C. Wohlin. An experimental com-
parison of usage-based and checklist-based reading. IEEE
Transactions on Software Engineering, 29(8):687–703, Au-
gust 2003.

[21] F. Tip. A survey of program slicing techniques. Journal of
Programming Languages, 3(3):121–189, 1995.

[22] P. Tonella and A. Potrich. Reverse engineering of the inter-
action diagrams from C++ code. In Proceedings of the Inter-
national Conference on Software Maintainence (ICSM’03),
pages 159–168, 2003.

[23] N. Walkinshaw. Statically partitioning object oriented code
for use-case driven code inspections. Technical Report
EFoCS-55-2004, The University of Strathclyde, December
2004.

[24] M. Weiser. Formal, Psychological, and Practical Investi-
gation of an Automatic Program Abstraction Method. PhD
thesis, University of Michigan, Ann Arbor, MI, 1979.

[25] M. Weiser. Program slicing. IEEE Transactions on Software
Engineering, SE-10(4):352–357, July 1984.

