

Strathprints Institutional Repository

Terzis, S. (2004) *Trust lifecycle management in ad-hoc collaborations*. In: Second UK-UbiNet Workshop, 2004-05-05 - 2004-05-07, Cambridge.

Strathprints is designed to allow users to access the research output of the University of Strathclyde. Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (http://strathprints.strath.ac.uk/) and the content of this paper for research or study, educational, or not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to Strathprints administrator: mailto:strathprints@strath.ac.uk

Terzis, S. (2004) Trust lifecycle management in ad-hoc collaborations. In: Second UK-UbiNet Workshop, 5-7 May 2004, Cambridge, United Kingdom.

http://eprints.cdlr.strath.ac.uk/2588/

This is an author-produced version of a paper from the Second UK-UbiNet Workshop.

Strathprints is designed to allow users to access the research output of the University of Strathclyde. Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Users may download and/or print one copy of any article(s) in Strathprints to facilitate their private study or for non-commercial research. You may not engage in further distribution of the material or use it for any profitmaking activities or any commercial gain. You may freely distribute the url (http://eprints.cdlr.strath.ac.uk) of the Strathprints website.

Any correspondence concerning this service should be sent to The Strathprints Administrator: eprints@cis.strath.ac.uk

Trust Lifecycle Management in Ad-hoc Collaborations

Sotirios Terzis

Sotirios.Terzis@cis.strath.ac.uk
University of Strathclyde

A Ubiquitous Computing Environment

www.smartlab.cis.strath.ac.uk

The characteristics of the environment

- A plethora of computational entities with a need for collaboration
- Significant variation in the supporting infrastructure
- A highly changeable set of potential collaborators

Ad-hoc collaborations become the norm

- Entities cannot rely on the availability of particular infrastructure
- Entities need to collaborate with little known or even unknown entities.

Entities need to decided who to collaborate with

- Collaborations are unavoidable and can be dangerous
 - Collaborations may have both costs and benefits
- Decisions need to be taken autonomously and despite the lack of complete information about potential collaborators

Trust in Ad-hoc Collaborations (1)

www.smartlab.cis.strath.ac.uk

- The human notion of trust seems appealing as a basis for entity decision making
 - Despite the difficulty in defining trust, certain characteristics are apparent and appealing
 - Trust is subjective in nature disposition
 - Trust is situation specific
 - Trust evolves over time in the light of experience
 - Trust propagation is a desirable property
- The goal is to use trust as the mechanism for managing the dangers/risks of collaboration
 - Trust conveys information about likely behaviour
 - Virtual anonymity: identity conveys little information about likely behaviour
 - Entity recognition as a superset of authentication

Trust in Ad-hoc Collaborations (2)

www.smartlab.cis.strath.ac.uk

Entity recognition versus authentication

Authentication Process (AP)	Entity Recognition (ER)		
A.1. Enrollment: generally in-			
volves an administrator or human			
intervention			
A.2. Triggering: e.g. someone	E.1. Triggering (passive and ac-		
clicks on a Web link to a resource	tive sense): mainly triggering (as		
that requires authentication to be	in A.2), with the idea that the		
downloaded	recognizing entity can trigger it-		
	self		
A.3. Detective work: the main	E.2. Detective work: to recog-		
task is to verify that the princi-	nize the entity to-be recognized		
pal's claimed identity is the peer's	using the negotiated and available		
	recognition scheme(s)		
	E.3. Retention (optional):		
	"preservation of the after ef-		
	fects of experience and learning		
	that makes recall or recognition		
	possible" [30]		
A.4. Action: the identification is	E.4. Action (optional): the out-		
subsequently used in some ways.	come of the recognition is subse-		
Actually, the claim of the iden-	quently used in some ways (loop		
tity may be done in steps 2 or 3	to E.1)		
depending on the authentication			
solution (loop to A.2)			
subsequently used in some ways. Actually, the claim of the identity may be done in steps 2 or 3 depending on the authentication	come of the recognition is subsequently used in some ways (loop		

Trust in Ad-hoc Collaborations (3)

www.smartlab.cis.strath.ac.uk

- Credential-based versus evidence-based trust management
 - Implicit view of trust as delegation of privileges to trusted entities
 - Avoid the issues of what trust is made of, how it is formed
 - Very restricted view of trust evolution certificate revocation
 - Explicit view of trust as likely entity behaviour on the basis of the history of past interactions
- Trust lifecycle management is key to a trust-based model for ad-hoc collaborations
 - Need for explicit modelling of risk
 - Need for a trust model supporting trust formation, evolution and propagation
 - Need for a decision making process that relates the trust and risk models and incorporates entity recognition

The SECURE Collaboration Model (1)

www.smartlab.cis.strath.ac.uk

A trust model

- A trust domain with a trustworthiness and an information ordering
 - An "unknown" trust value representing lack of information
- A local trust policy that assigns trust to principals and may reference other principals

A risk model

- Trust mediated actions with a set of possible outcomes
- Each outcome with an associated cost/benefit
- Risk as the likelihood of an outcome occurring combined with its associated cost

The relationship between trust and risk

- Trust determines the likelihood of the outcomes
- Trustworthy principals make beneficial outcomes more likely
- Access right-based versus behaviour-based trust models

The SECURE Collaboration Model (2)

www.smartlab.cis.strath.ac.uk

Collaboration decision making

Collaboration request → Entity recognition → Entity trust assignment →
Collaboration risk assessment → Collaboration policy application →
Decision

Trust evaluation

- The result of multiple interactions with the same entity
- Monitoring of collaboration → Production of evidence about entity's behaviour → Evidence processing → Update entity's trust value

Risk evaluation

- The result of multiple instances of similar interactions with different entities
- Monitoring of collaborations → Production of evidence about outcome costs → Evidence processing → Update outcome costs/benefits

The SECURE Collaboration Model (3)

www.smartlab.cis.strath.ac.uk

Evidence of entities' past behaviour

- Direct evidence results from a personal interaction with an entity observations
 - Unquestionable in nature, treated as fact
- Indirect evidence results from entities communicating their experiences from personal interactions with a particular entity to other entities – recommendations (trust values)
 - Subjective in nature, its value depends on the source
 - Trust in the recommender & recommendation adjustment

Evidence processing

Evaluate evidence with respect to the current trust value → Evolve the current trust value in accordance to the evidence evaluation

The SECURE Collaboration Model (4)

www.smartlab.cis.strath.ac.uk

Evidence evaluation in terms of Attraction

- Attraction is a measure of the effect evidence has to the current trust value
- The trust domain determines the direction of the attraction
 - In terms of trustworthiness can either be positive or negative
 - In terms of information can either be reinforcing or contradicting
- The risk domain determines the measure of the attraction
 - The more different the associated profiles of likely behaviour the stronger the attraction

Trust value evolution

- In the form of a trust evolution or trust update function
- Encodes dispositional characteristics: trusting disposition & trust dynamics

The SECURE Collaboration Model (5)

www.smartlab.cis.strath.ac.uk

Operational issues

- An architecture with the following component
 - Trust Lifecycle Manager
 - Collaboration Monitor
 - Evidence Gatherer
 - Evidence Store
- Trust Information Structure

T_{ov} (Stored or combined from the layer below)		
T _{obs}	T _{rec}	
Evidence Layer (Lists of all observations and received recommendations)		

The SECURE Collaboration Model (6)

www.smartlab.cis.strath.ac.uk

The formation of trust

- The "unknown" trust value
 - We always have an initial trust value
- References in local trust policies
- Recommendations
 - When using recommendations formation is the same to evolution with "unknown" as the current trust value
 - Approaches to evidence gathering
 - Initial list of recommenders, authorisation hints, ask neighbours for good recommenders, recommender brokers, broadcast

Food for Thought

www.smartlab.cis.strath.ac.uk

Context as a situational modifier of trust

- Who and what are already elements of the decision making process
- Explicit modelling of relationships between contexts are crucial
- Different aspects of trust
 - Keep in mind the need for trust propagation

System trust

- Trust in the underlying infrastructure (e.g. recognition mechanism)
- Taking into account available (security) infrastructure

The role of the user

Introducing user into the trust loop

Trust and obscurity

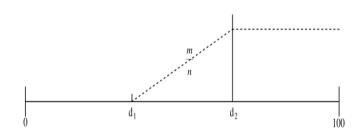
- Security by obscurity should be avoided
- Openness of trust policies opens the possibility of trust scams

Final Word

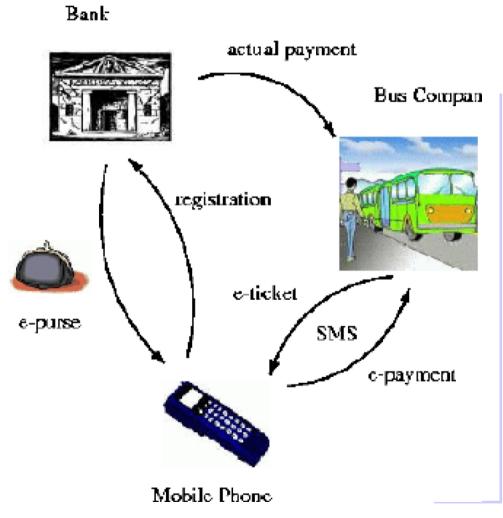
www.smartlab.cis.strath.ac.uk

SECURE is an EU FET project (IST-2001-32486)

http://secure.dsg.cs.tcd.ie



 iTrust is an EU FET working group on Trust Management in Dynamic Open Systems (IST-2001-34810) http://www.itrust.uoc.gr



The e-purse scenario (1)

- The focus is on the bus company – passenger interaction
- The trust values are intervals (d1, d2)
- The risk analysis

www.smartlab.cis.strath.ac.uk

The e-purse scenario (2)

www.smartlab.cis.strath.ac.uk

Trust evolution in the light of observations

- Observation validity of e-cash
- Observations adjust the boundaries of the intervals
 - Valid e-cash ⇒ positive attraction
 - Invalid e-cash ⇒ negative attraction
 - Expected outcome (i.e. probability > 50%) ⇒ reinforcing
 - Unexpected outcome ⇒ contradicting

attraction direction	direction of boundary movement	interval size
positive, reinforcing	\longrightarrow	$m_1 > m_2$
positive, contradicting	 →	$m_1 < m_2$
negative, reinforcing		$m_1 > m_2$
negative, contradicting		$m_1 < m_2$

- If the amount of money is less than d1 and the e-cash is valid we don't really change the trust value
- We consider the level of positive and negative adjustment as dispositional parameters