-

View metadata, citation and similar papers at core.ac.uk brought to you by .{ CORE

provided by University of Strathclyde Institutional Repository

I._‘.
Unlversltyﬂ@

Strathclyde
Glasgow

Strathprints Institutional Repository

Neumidiller, M. (2002) Compact in-memory representation of XML data - design and implementation
of a compressed DOM for data-centric documents. [Report]

Strathprints is designed to allow users to access the research output of the University of Strathclyde.
Copyright © and Moral Rights for the papers on this site are retained by the individual authors
and/or other copyright owners. You may not engage in further distribution of the material for any
profitmaking activities or any commercial gain. You may freely distribute both the url (http://
strathprints.strath.ac.uk/) and the content of this paper for research or study, educational, or
not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to Strathprints administrator:
mailto:strathprints@strath.ac.uk

http://strathprints.strath.ac.uk/


https://core.ac.uk/display/9015629?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://strathprints.strath.ac.uk/
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk
http://strathprints.strath.ac.uk/

. IH
I"-. MNIVERSITY OF
'\ 3 TRATHCLYDE

N GEASGORY

Neumueller, M. (2002) Compact in-memory representation of XML data -
design and implementation of a compressed DOM for data-centric documents.
Project Report. University of Strathclyde, Glasgow, UK.

http://eprints.cdlr.strath.ac.uk/2544/

Strathprints is designed to allow users to access the research
output of the University of Strathclyde. Copyright © and Moral
Rights for the papers on this site are retained by the individual
authors and/or other copyright owners. Users may download
and/or print one copy of any article(s) in Strathprints to facilitate
their private study or for non-commercial research. You may not
engage in further distribution of the material or use it for any
profitmaking activities or any commercial gain. You may freely
distribute the url (http://eprints.cdlr.strath.ac.uk) of the Strathprints
website.

Any correspondence concerning this service should be sent to The
Strathprints Administrator: eprints@cis.strath.ac.uk


http://eprints.cdlr.strath.ac.uk/2815/

Compact In-Memory Representation of XML

Design and Implementation of a compressed DOM for
data-centric documents

Mathias Neumiiller and John N. Wilson

Department of Computer and Information Science, University of Strathclyde,
Glasgow G1 1XH, Scotland, U.K.

{mathias, jnw}@cis.strath.ac.uk

Abstract. Over recent years XML has evolved from a document ex-
change format to a multi-purpose data storage and retrieval solution.
To make use of the full potential of XML in the domain of large, data-
centric documents it is necessary to have easy and fast access to indi-
vidual data elements. We describe an implementation of the Document
Object Model (DOM) that is designed with these objectives in mind.
It uses compression to allow large documents to be stored in the com-
puter’s main memory. Query-relevant DOM methods are optimised to
work on top of the created data structure. Measurements indicate that
compression up to a factor of 5 is possible without losing the ability to
directly address individual elements. No prior decompression is needed
to query and locate nodes.

1 Introduction

XML has been established in the domain of document management systems and
is now emerging as an alternative to conventional database approaches. It already
provides support for some of the features that have hitherto been provided by
database systems. Further development of this capability requires that one must
be able to query XML data sources with acceptable performance [25]. Although
the syntax of XQuery [23], the upcoming query language for XML designed by
the W3C, is on its way to completion, so far there is limited support for it
in existing products. It is our belief that potential difficulties originate at the
access level. While large volumes of XML data stored in textual form are hard
to access, mappings to a relational database typically result in a large number
of performance limiting joins [16]. Common implementations of the Document
Object Model (DOM) [19] [21], defined to give easy access to individual elements
of an XML document, struggle with memory limitations. We therefore decided
to design a DOM implementation with low memory requirements that could
serve as base for query engines.

2 Related Work

Significant research has already been carried out in the area of integrating XML
data into relational [6] [5] and object orientated databases [26] [14]. Several



mapping schemata exist that allow storage of hierarchical XML into relational
tables or object stores. The easiest approach is to store the entire document
as one BLOB; all major database suppliers have incorporated specialised data
types for such attributes into their products. More sophisticated methods usually
break documents down into their elements to allow more efficient querying. On
the downside these methods require a large number of joins to generate a view
of the reconstructed document.

It is an accepted fact that data processing can be speeded up by avoiding
access to secondary memory, usually magnetic media, and the use of memory-
resident data instead. This technique can significantly improve querying pro-
cesses that require random access to the stored data. Primary memory database
systems were derived in the relational world in order to reduce access time [7].
Due to the price of solid-state memory, compact representation of the data is
essential for the success of such systems. Because operations in main memory
are typically several orders of magnitude faster than those accessing external
storage, even penalties caused by compression/decompression algorithms can be
tolerated if all data can be held in main memory [3].

Little research has been done in the area of compact representation of XML
data. Its semi-structured, hierarchical nature makes it harder to treat than two-
dimensional, strongly typed relational data. Existing research [12] [8] concen-
trates on compressing entire documents. Documents compressed in this way are
unsuitable for querying. Access to the individual data elements requires decom-
pression and subsequent parsing of the document.

Most implementations of the DOM so far have concentrated on extensive
functionality rather than on compact representations. Thus those implementa-
tions can only handle relatively small documents. PDOM [9], which is a persis-
tent DOM implementation that supports queries using XQL, allows to access
elements of larger documents. The data is held on disk and copied into a buffer
memory for processing. Compression is used for disk storage but not in mem-
ory. dbXML! [2], a native XML database, supports compression of individual
elements, both in main memory and in secondary storage. The compression is
limited to the tokenisation of element and attribute names and primarily used
to increase the speed of querying. This approach is somewhat related to the ap-
proach suggested by the WAP forum [18], where element names are replaced by
binary symbols to reduce transmission bandwidth. However, redundancy present
in the data itself is not utilised, thus the compression achievable is moderate.
Compression for document-centric XML is provided by some systems such as
Tamino [15]. All of the designs mentioned are aimed at relatively small docu-
ments, though dbXML and Tamino allow documents to be grouped into collec-
tions and support queries across these collections.

! dbXML will become an Apache project named “Xindice” in the near future



3 Design

The basic design combines two approaches to achieve a compact in-memory
representation: dictionary substitution for the occurring strings and minimising
of the number of objects required to represent the DOM tree. Although the
created structure is intended to be fully compliant with any well-formed XML
document, a number of assumptions about typical documents are made.

3.1 Assumptions

The chosen compression method will only work well if a large number of iden-
tical data or metadata entries exist. A particular tag needs to occur sufficiently
frequently to allow for multiple occurrences of the same values within its scope.
Because the metadata, i.e. the XML tags, are compressed in the same way as
the actual data, ideally only a few different tags appear many times in the doc-
ument. In fact this assumes a non-random distribution of both data and meta-
data, which is true for practically every given data source. It is especially true
for automatically created collections of data, like log entries, or data exported
from relational databases, where the source dictionary is typically limited by
explicit constraints. In general these kinds of XML documents are referred to as
data-centric XML.

3.2 Dictionary Substitution

In a relational database, redundancy can be avoided by normalisation. Whether
this is done in practice will often depend on the individual requirements of the
application. However, in XML such an approach is not only impractical but
will also result in a document that is more difficult to read, conflicting with
the original design goals of XML. Links between different entities of an XML
document, are possible through the use of ID and IDREF attributes or KEY
and KEYREF types using XML Schema [22] and can be used to achieve similar
functionality as a primary /foreign key pair in a relational database. However, this
will conflict with the idea of localising related information within one document.
Furthermore it would introduce the need to normalise data prior to storing it.
Since this kind of conventional logical design approach can not be applied to
XML documents, other ways of reducing this redundancy must be found.
Dictionary substitution is a well understood, relatively simple compression
mechanism [3]. It is is based on the replacement of textual representation of
information by a short binary token, just big enough to represent the occurring
values for the attribute in question. These tokens are fixed-length minimal bit-
patterns. Every occurring data word is stored in a dictionary. Every occurrence
of this word in the source document is replaced by its corresponding token. The
document will be compressed if the same word occurs more than once. This
compression technique is especially suitable for XML as its verbosity requires
every piece of information to be expressed in textual form. In the extreme case
of Boolean values the most common representation are the terms “TRUE” and



“FALSE”. In the worst case 80 bits (5 x 16 bit Unicode characters) are used to
express information content of just one bit.

In terms of our DOM, a data word is the name or the value of an attribute,
an element name or any character data section. This means that the metadata
contained in the element tags is compressed using the same compression tech-
nique as used for the data. Because data-centric documents have a large number
of identical mark-up tags and may have a lot of identical attribute values and
character data sections, considerable savings can be achieved. Figure 1 shows a
simple example, a list of two server names together with their Internet domain
names. It is a fairly regular structure, all tag names with the exception of DN/
appear in both list entries. Some of the values are identical for the two different
entries as well.

<?xml version="1.0" 7>
<DNS>
<SERVER ID="www-0'">
<IP>130.159.23.21</IP>
<DNO>uk</DNO>
<DN1>ac</DN1>
<DN2>strath</DN2>
<DN3>www</DN3>
</SERVER>
<SERVER ID="www-cis'">
<IP>130.159.40.0</IP>
<DNO>uk</DNO>
<DN1>ac</DN1>
<DN2>strath</DN2>
<DN3>cis</DN3>
<DN4>www</DN4>
</SERVER>
</DNS>

Fig.1. A simple example in XML

Our system builds a separate dictionary for every domain. The type of the
node serves as a primary domain, e.g. all element names exist in one common
domain FELEMENT. The domains of character data, attribute names and values
are additionally subdivided by the name of their containing or direct parent ele-
ment, e.g. all IP addresses in our example are stored in the domain PCDATA:IP
as shown on the right side of figure 2.

The nodes of the created DOM tree will only store references to this dic-
tionary. If a value occurs repeatedly, only a second reference to the same value
will be stored. In the example the values for DNO to DN2 are all identical for



Type

ELEMENT

START-DOCUMENT
START-ELEMENT
START-ELEMENT
START-ATTR
PCDATA
END-ATTR
START-ELEMENT
PCDATA
END-ELEMENT
START-ELEMENT
PCDATA
END-ELEMENT
START-ELEMENT
PCDATA
END-ELEMENT
START-ELEMENT
PCDATA
END-ELEMENT
START-ELEMENT
PCDATA
END-ELEMENT
END-ELEMENT
START-ELEMENT
START-ATTR
PCDATA
END-ATTR
START-ELEMENT
PCDATA
END-ELEMENT
START-ELEMENT
PCDATA
END-ELEMENT
START-ELEMENT
PCDATA
END-ELEMENT
START-ELEMENT
PCDATA
END-ELEMENT
START-ELEMENT
PCDATA
END-ELEMENT
END-ELEMENT
END-ELEMENT
END-DOCUMENT

I G A e i I e e = IS I S N e OO S OIS ETH

OONICHCH»JAOJI\DI—A:H:

DNS
SERVER
1P

DNO
DN1
DN2
DN3
DN4

ATTR:SERVER

his

ID

PCDATA:SERVER

l\?b—‘:H:

www-(
WWW-CS

PCDATA:IP

l\)l—‘:H:

130.159.23.21
130.159.40.0

PCDATA:DNO

ks

uk

PCDATA:DN1

b

ac

PCDATA:DN2

ks

strath

PCDATA:DN3

l\?b—‘:ﬁ:

WWW
cis

PCDATA:DN4

=3k

WWW

Fig. 2. The structure arrays and corresponding dictionaries for the example file




the two entries. Only one entry per domain will be stored, reducing the mem-
ory requirements of the created data structure. Note though that the reoccuring
string “www” will be stored twice, because it exists in the two distinct domains
PCDATA:DN3 and PCDATA:DNJ. In the case of completely random data, as
used for some benchmarks, this method can not result in any savings. Because all
entries will have to be saved in the dictionary, the associated lexemes will actu-
ally increase the memory requirements. We rejected this limitation as irrelevant
as no practical data source is completely random.

3.3 Object Minimisation

The most direct approach to implementing the DOM recommendations of the
W3C is to parse every XML entity into a separate object. Each entity is rep-
resented by a corresponding node in the DOM tree. Depending on the kind of
node and implementation system, more internal objects may be needed to store
the contained information. In the case of Java, the implementation platform
chosen, this will typically result in more than 2n objects for a DOM tree with n
nodes (n objects for the nodes, n String objects to store the node names or val-
ues and some additional objects for node types that have additional properties
such as attributes). Compared to elementary types such as integers, the use of
many objects will result in an increased memory footprint, as references must
be maintained [17].

Most DOM methods have sub-classes of Node objects as their result type.
As a consequence, object representations of the different entities have to exist
in order to communicate with DOM compliant applications. However, this does
not imply that one object per node has to exist at any given time. In a typical
usage situation, where a document is parsed once and then queried for a limited
set of its individual elements, the requirements will be quite restricted. During
the construction phase, one typically has one unconnected node, which is cur-
rently filled with data, and a reference to its future parent node. Tree traversal
algorithms usually need a reference to one node and one of its children. Most
query operations will also require only a reference to the node being queried
and a limited set of nodes representing the query result. In all these cases the
program will typically maintain a reference to the document root.

The idea behind the designed system was to reduce the number of objects
held in memory to a minimum. This can be achieved by replacing object rep-
resentation with primary types. This approach does not only allow for further
memory savings but can also help to speed up searching processes [17]. Only
node objects to which external references exist will persist, while other objects
will be garbage collected and dynamically re-created on demand. Of course their
data needs to be maintained somewhere: actual values of each node will be stored
in the dictionaries, the structure of the tree and the references to the dictionar-
ies will be stored in arrays containing only elementary types handled by the
document, node.



3.4 Structure Arrays

Conceptually XML data is represented as a tree although, as in the case with all
trees, they can also be represented as a linear data structure. In the case of XML
a possible flat representation is already given: XML text files are flat character
files. The structure is given by corresponding start and end tags. It is reasonably
easy to translate this into a series of tokens as shown in [18], which can be stored
in a simple array of integers. This is shown in the left half of figure 2. Note that
the “type” shown in the first column is also stored as a short integer type and
just presented in textual form for the purpose of readability.

4 Implementation

The designed system, the Dictionary substitution based DOM implementation
(DDOM), was implemented in Java. Classes for nodes as defined by the W3C
name-binding schema for the DOM level 1 [20] with the exception of entities,
entity references and notations, which need to be resolved by the underlying
parser, were implemented. All classes were based on a common abstract class
DNode, which implements most of the functionality. Nodes can either be con-
nected or unconnected to a parent node. As long as they are unconnected, they
hold their own data locally, together with a reference to the owning document.
When they are appended to another node, which has to be a descendant of the
abstract class DGroupNode, the parent node becomes responsible for maintain-
ing the contained data. If no further external references to the child node exist,
it can cease to exist. Once the entire document is built, either manually using
the DOM interface or automatically by the parser using an existing XML source
file, all structural information is maintained by the document node. All literal
data is held in a collection of dictionaries, which are in turn maintained by the
document object.

New nodes can only be appended to the end of an existing structure, i.e.
as last child of their parent node. That is, it is effectively a write once, read
multiple (WORM) data structure. Although this was not essential to the concept
it simplified the implementation and seemed to be reasonable for the targeted
application area, where a usual life cycle would consists of a single parsing process
at the beginning followed by many read-only queries. The implemented parser
appends nodes in the required order and is based on an underlying SAX parser.

Object minimisation preservers memory but may also result in excessive pro-
cessing power requirements for frequent object creation and destruction. To min-
imise this, internal methods do not use the methods provided by the DOM in-
terfaces, which generally return node objects and thus would require frequent
object creation. Instead, they work directly on the arrays containing the docu-
ment structure. Tree traversals are translated into linear search algorithms over
the structure array. The method Element.getElementsByTagNames is especially
useful for querying purposes and utilises the compressed data structure as well.
Rather than generating and traversing a complete object tree, whose node values
would then be compared to a given query expression, the query value is looked



up in the corresponding dictionary. If no entry exists, the query will return an
empty result. Otherwise the corresponding token will be looked up in the struc-
ture array. Only those nodes that actually fulfil the query conditions will be
instantiated.

5 Measurements

5.1 Test Data

We have evaluated the approach using two sets of data. The first set is a file
containing DNS entries. Each row relates a server name to the 4 components of
its IP address and up to 6 parts of its domain name, i.e. it is a slightly more
complicated version of the example given in figure 1. The data was taken from
the root domain server for the “ac.uk” domain, thus all rows have the constant
entries “uk” and “ac” in the two most significant domain name fields. The data
was loaded into a relational database and different sized subsets were exported
into XML files. Each row resulted in an element with one child element per
attribute. Attributes with null values were suppressed in the resulting XML.
This is an example of a data-centric document. A suitable DTD was generated
from the data files.

The second set of data was a collection of Shakespearean plays encoded
in XML [1]. Although these documents were limited in size, they provided a
less regular and redundant data source, falling into the category of document-
centric documents. Measurements on these data sets were included to examine
the performance of the developed solution under less optimal conditions. Finally
some smaller documents with XML specific features such as entity references
were tested to verify the standard conformance. Because classes for entities and
associated references were not implemented, these needed to be resolved by the
parser. This behaviour is in conformance with the W3C recommendation [19].

5.2 Results

The memory consumption of the DDOM was compared with those of the two
most dominant implementations, Xerces [24] and Crimson [4]. All three imple-
mentations support JAXP [11] integration, hence only the property controlling
the implementation to be used needed to be changed for the different measure-
ments. However, all measurements were performed on a “clean” virtual machine,
i.e. in separate runs. This was done to remove artifacts caused by incomplete
garbage collection processes. The results for the DNS table can be found in
tables 1 and 2. In addition figure 3 shows the size of the XML text file. Its com-
pressed size using maximum gzip compression is shown as practical measure of
its entropy.

The DDOM implementation showed the lowest memory consumption in all
measurements performed. However, parsing was quite slow for large documents.
This was caused by the actual parser implementation, which used a linear search



Table 1. Absolute and relative memory usage of different DOM implementations

for the domain name server database

Entries

DDOM Xerces (rel.) Crimson (rel.)]
100 92.0 KB 312.8 KB (3.4) 195.0 KB (2.1)
1,000 461.1 KB 1602.4 KB (3.5) 1916.3 KB (4.2)
10,000 3.2 MB 14.9 MB (4.6) 19.3 MB (6.0)
100,000 25.2 MB 141.7 MB (5.6) 191.0 MB (7.6)
Comparison of different DOM implementations
" DDOM —— '
100000 | Xerces s 1
| Crimson —x-
- XML text e X
10000 F XML gzip -~ - i
a L
X 1000 ¢ o
[0} I
N L e
? 100t .
10 ¢ //,r"// i
1 I * - ] 1 1 1
100 1000 10000 100000

Cardinality (Entries)

Fig.3. Memory consumption of the different DOM implementations for the
domain name server database. Note that the textual representation uses 8 bit
character encoding whereas all DOM implementations store characters using 16
bits according to the W3C recommendation.



algorithm for every new entry in the dictionary, resulting in a O(n?) run-time
performance. This could be overcome by a better parsing process using an
O(nlogn) algorithm without increasing the memory footprint as described in
[13]. Both Crimson and Xerces showed linear growth in memory consumption
for files above a certain threshold. The memory consumption of the DDOM grew
less than linear, but depended on the redundancy present in the data.

In addition to the size of the actual input its format can also influence the
memory requirements. In the absence of a DTD, additional white spaces between
elements can not be detected, because they are indistinguishable from charac-
ter data. Measurements for the DNS database using an XML file containing
10,000 entries were repeated using three different formats. By default, measure-
ments were performed in the absence of a DTD, using XML text files formatted
with white space to facilitate legibility. For the second run a suitable DTD was
provided, allowing to detect the unnecessary white space in the otherwise un-
changed XML file. The final run was performed in absence of a DTD but with no
white spaces present in the source document. Different formatting of the XML
source files and the presence or absence of a DTD had only a minimal effect
on the DDOM as the additional white spaces are highly redundant and can be
stored with minimal effort. Xerces and Crimson memory consumption suffered
significantly if white spaces are to be conserved as shown in table 2.

Table 2. Absolute and relative memory usage of different DOM implementations
for the domain name server database formatted using different styles

Format DDOM Xerces (rel.) Crimson (rel.)
standard 3.24 VB 14.85 MB (4.6) 19.31 MB (6.0)
with DTD 3.32 MB 9.58 MB (2.9) — (—)e
compact 3.19 MB 9.07 MB (2.8) 12.85 MB (4.0)

“ caused runtime exception

On document-centric XML with low redundancy, the chosen approach had
only minimal impact. Savings of about 20 % to 30% were achievable, mostly
due to the compression of the actual mark-up tags. Table 3 shows the results
for the Shakespearean plays. The DDOM is capable of handling this kind of
document-centric files without modification, although they do not conform to
the assumptions stated earlier.

6 Conclusions and future work

The prototype implementation showed good compression ratios compared with
standard DOM implementations. Real-world examples showed saving of about
30% to 80% in terms of memory requirements. Applications that could be ex-
pected to profit from this involve data-centric documents that need to be ac-
cessed randomly and repeatedly for processing. However, like most compression



Table 3. Absolute and relative memory usage of DDOM and Xerces DOM
implementation for some of Shakespeare’s plays

Play XML file DDOM Xerces (rel.)]
Macbeth 150.3 KB 6282 KB 870.1 KB (1.39)
Julius Caesar 179.2 KB 739.6 KB 981.6 KB (1.33)
Henry VIII 212.7 KB 825.6 KB 1092.8 KB (1.32)

techniques, the designed structure suffers in the presence of key entries. As these
are unique by definition, the application of compression actually results in higher
memory consumption and some performance problems. Such entries can be de-
tected automatically and then be excluded from the compression process.

More work will be required to analyse the query performance of this and
other solution. The lack of a suitable query engine did not allow the resolution
of queries nor the measurement of their performance. Although it is our belief,
that this will be comparable or better to those of other implementations and
may be significantly better for certain types of queries, this needs to be verified.

The success or failure of this and other implementations will depend heavily
on the way future applications and middleware, especially XQuery engines, will
store and access data. So far the rather complicated DOM standard seems to
be more a hindrance than a unifying model to access XML data. Large, data-
centric applications typically push the workload into a RDBMS whilst supplying
only a lightweight front-end, translating XQuery expressions into equivalent SQL
queries. Native XML databases tackle the problems inherent to this approach
but are just entering the arena. They will depend on compact and easy to access
representations of the contained data.

Currently we are using 32 bit integer numbers as tokens within the structure
arrays. This limits every domain to a total of 232 entries, although this limit
would be hard to reach using current 32 bit implementations of the JVM. On
the other end of the scale, in domains with only very few items, this represents
a significant waste. Ways to improve the number of bits used per token need
to be found. Within the dictionaries every word is stored as a separate String
object. Using only one or a few StringBuffer instead and just noting the starting
points of individual entries should allow for further savings. For long character
data sections, conventional compression methods could push compression even
further.

Given the compact, tokenised nature of the data representation we anticipate
that query performance will exceed that of uncompressed DOM representations.
String matching will be required only once per query and can be performed
within the dictionary structure. In contrast conventional implementations have
to compare strings once per node visited. Optimisation of the dictionaries is
possible and should allow for better parsing and querying performance. Further
improvements in compression may be also achieved by packing the tokens more
tightly. Other performance improving techniques from the relational database
world, especially indexing, could be applied to the generated structure.



We are currently planing to adapt a suitable query system to run against
our DDOM representation to evaluate the performance. This will enable us to
identify the circumstances under which dictionary based compression of XML
will provide a basis for optimal query processing.

References

1. J. Bosak. Shakespeare’s plays encoded in XML, 1996-1998. http://www.ibiblio.
org/xml/examples/shakespeare/.

2. Tom Bradford. dbXML XML database application server version 0.4. dbXML
core technical specification, dbXML Group, L.L.C., Dec 2000. ” Xindice“ since Dec
2001.

3. W. Paul Cockshot, Douglas McGregor, and John Wilson. High-performance opera-
tions using a compressed database architecture. The Computer Journal, 41(5):283—
296, 1998.

4. The Apache XML project: Crimson XML parser. http://xml.apache.org/
crimson.

5. Alin Deutsch, Mary Fernandez, et al. Querying XML data. Data Engineering
Bulletin, 22(3):10-18, Sep 1999.

6. Daniela Florescu and Donald Kossmann. Storing and querying XML data using
an RDBMS. Data Engineering Bulletin, 22(3):27-34, Sep 1999.

7. H. Garcia-Molina and K. Salem. Main memory database systems: An overview.
IEEE Trans. Knowledge Data Eng., 4:509-516, 1992.

8. M. Girardot and N. Sundaresun. Millau: An encoding format for efficient repre-
sentation and exchange of XML over the web. In Proceedings of the 9th WWW
Conference, pages 747-765, Amsterdam, Netherlands, May 2000.

9. Gerald Huck, Ingo Macherius, and Peter Frankhauser. PDOM: Lightweight per-
sistency support for the document object model. In Proceedings of the 1999 OOP-
SLA Workshop “Java and Databases: Persistence Options”, Denver, CO, USA,
Nov 1999.

10. IEEE Computer Society. Proceedings of the 17th International Conference on Data
Engineering, April 2-6, 2001, Heidelberg, Germany, Heidelberg, Germany, 2001.

11. Java Community Process™: Java APIs for XML Parsing (JAXP). Project home-
page. http://java.sun.com/xml/xml_jaxp.html.

12. H. Liefke and D. Suciu. XMILL: An efficient compressor for XML data. In Wei-
dong Chen, Jeffrey F. Naughton, and Philip A. Bernstein, editors, SIGMOD 2000,
volume 29 of SIGMOD Record, pages 153-164. ACM, 2000.

13. Mathias Neumiiller. Compression of XML data. MSc thesis, University of Strath-
clyde, Glasgow, Scotland, UK, Sep 2001.

14. A. Renner. XML data and object databases: The perfect couple? In ICDE 2001
[10], pages 143-148.

15. Harald Schéning. Tamino — a DBMS designed for XML. In ICDE 2001 [10], pages
149-154.

16. Jayavel Shanmugasundaram, Kristin Tufte, et al. Relational databases for querying
XML documents: Limitations and opportunities. In Malcolm Atkinson, Maria E.
Orlowska, et al., editors, VLDB 1999, pages 302-314. Morgan Kaufmann, 1999.

17. Jack Shirazi. Java Performance Tuning. Java series. O’Reilly, Sebastopol, CA,
USA, 2000.



18.

19.

20.

21.

22.

23.

24.

25.

26.

WAP Forum members IBM, Motorola and Phone.com. WAP binary XML content
format. W3C Note, Jun 1999. http://www.w3.org/TR/wbxml/.

World Wide Web Consortium. Document Object Model (DOM) Level 1 Specifi-
cation Version 1.0, W3C recommendation 1 october, 1998 edition, 1998. http:
//www.w3.org/TR/1998/REC-DOM-Level-1-19981001.

World Wide Web Consortium. Appendiz C: Java Language Binding,
2000. http://www.w3.org/TR/2000/WD-DOM-Level-1-20000929 /java-language-
binding.html.

World Wide Web Consortium. Document Object Model (DOM) Level 2 Spec-
ification Version 1.0, W3C recommendation 13 november, 2000 edition, 2000.
http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113.

World Wide Web Consortium. XML Schema Part 2: Datatypes, W3C
recommendation 02 may 2001 edition, 2001. http://www.w3.org/TR/2001/
REC-xmlschema-2-20010502.

World Wide Web Consortium. XQuery 1.0: An XML Query Language,
W3C working draft 7 june, 2001 edition, 2001. http://www.w3.org/TR/2001/
WD-xquery-20010607.

The Apache XML project: Xerces XML parser for java. http://xml.apache.org/
xerces-j.

Yasuo Yamane, Nobuyuki Igata, and Isao Namba. High-performance XML stor-
age/retrieval. Fujitsu Sci. Tech. J., 36(2):185-192, Dec 2000.

Ching-Long Yeh. A logic programming approach to supporting the entries of XML
documents in an object database. In E. Pontelli and V.S. Costa, editors, Practi-
cal Aspects of Declarative Languages, volume 1753 of Lecture Notes in Computer
Science. Springer Verlag, Berlin, 2000.



