
Strathprints Institutional Repository

English, C. and Terzis, S. and Nixon, P. (2005) Towards self-protecting ubiquitous systems:
monitoring trust-based interactions. Personal and Ubiquitous Computing, 10 (1). ISSN 1617-4909

Strathprints is designed to allow users to access the research output of the University of Strathclyde.
Copyright c© and Moral Rights for the papers on this site are retained by the individual authors
and/or other copyright owners. You may not engage in further distribution of the material for any
profitmaking activities or any commercial gain. You may freely distribute both the url (http://
strathprints.strath.ac.uk/) and the content of this paper for research or study, educational, or
not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to Strathprints administrator:
mailto:strathprints@strath.ac.uk

http://strathprints.strath.ac.uk/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/9015608?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://strathprints.strath.ac.uk/
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk
http://strathprints.strath.ac.uk/

English, C. and Terzis, S. and Nixon, P. (2005) Towards self-protecting
ubiquitous systems: monitoring trust-based interactions. Personal
and Ubiquitous Computing, 10 (1). ISSN 1617-4909

http://eprints.cdlr.strath.ac.uk/2523/

This is an author-produced version of a paper published in Personal
and Ubiquitous Computing ISSN 1617-4909.
This version has been peer-reviewed, but does not include the
final publisher proof corrections, published layout, or pagination.

Strathprints is designed to allow users to access the research
output of the University of Strathclyde. Copyright © and Moral
Rights for the papers on this site are retained by the individual
authors and/or other copyright owners. Users may download
and/or print one copy of any article(s) in Strathprints to facilitate
their private study or for non-commercial research. You may not
engage in further distribution of the material or use it for any
profitmaking activities or any commercial gain. You may freely
distribute the url (http://eprints.cdlr.strath.ac.uk) of the Strathprints
website.

Any correspondence concerning this service should be sent to The
Strathprints Administrator: eprints@cis.strath.ac.uk

http://eprints.cdlr.strath.ac.uk/2815/

Towards Self-Protecting Ubiquitous Systems
Monitoring Trust-based Interactions

Colin English, Sotirios Terzis and Paddy Nixon

University of Strathclyde
Department of Computer and Information Sciences

{Firstname.Lastname}@cis.strath.ac.uk

Abstract. The requirement for spontaneous interaction in ubiquitous
computing creates security issues over and above those present in other
areas of computing, deeming traditional approaches ineffective. As a
result, to support secure collaborations entities must implement self-
protective measures. Trust management is a solution well suited to this
task as reasoning about future interactions is based on the outcome of
past ones. This requires monitoring of interactions as they take place.
Such monitoring also allows us to take corrective action when interactions
are proceeding unsatisfactorily. In this vein, we first present a trust-based
model of interaction based on event structures. We then describe our on-
going work in the development of a monitor architecture which enables
self-protective actions to be carried out at critical points during principal
interaction. Finally, we discuss some potential directions for future work.

1 Introduction

As advances in mobile and embedded technologies coupled with progress in ad-
hoc networking fuel the shift towards ubiquitous computing systems it is be-
coming increasingly clear that security is a major concern. While this is true of
all computing paradigms, the characteristics of ubiquitous systems amplify this
concern by promoting spontaneous interaction between diverse heterogeneous
entities across administrative boundaries [5]. Entities cannot therefore rely on a
specific control authority and will have no global view of the state of the sys-
tem. To facilitate collaboration with unfamiliar counterparts therefore requires
that an entity takes a proactive approach to self-protection. We conjecture that
trust management is the best way to provide support for such self-protection
measures.

Trust management in its evidence based form [3, 7, 8] allows evidence to be
recorded about the outcome of past interactions to enable better reasoning about
future interactions. Thus trust management does not provide security in the
traditional sense of ensuring protection of resources, rather its purpose is to
mitigate the risks that are present in interactions. In the current paradigm, once
an interaction has been initiated, it executes and we trust the other principal to
behave as expected. After completion of the interaction, we evaluate the outcome
and can punish unexpected behaviour by reducing our trust in the principal.

Although we are less likely to interact with them in the future, it is possible that
damage from the completed interaction may already have occurred.

What if applications could protect themselves further? What if instead of only
observing the final outcome of an interaction, an application was able to monitor
progress throughout its execution, in order to be able to protect itself when things
are going wrong. By following the progress of an interaction, we facilitate the
implementation of safeguards for corrective action, which in extreme cases may
even involve the premature termination of an interaction, to prevent damage we
suspect may occur. This may help to increase to acceptability of evidence based
trust management solutions in the larger security community.

Our aim is to develop such a monitor for general use over a range of ap-
plications. To achieve this, an underlying interaction model for applications is
needed, capable of representing the types of interactions we are concerned with
and how these take place. The model must consider the observable factors both
within the interaction itself and its environment enabling the representation of
the interaction state. The monitor then can follow this interaction model, and
allow the application to intervene at critical points. This paper outlines our work
in developing the monitor, detailing our interaction model in section 2 and as-
pects of the monitor in section 3. We then discuss ongoing work and conclude
in section 4.

2 The Interaction Model

The basis for our model comes from work undertaken in the SECURE project [1],
which facilitates collaboration between entities through a decision making pro-
cess. This process allows evidence to be gathered to construct a trust value, which
is then used in conjunction with cost factors to facilitate a risk analysis process
upon which an interaction decision can be based. There is a formal theoretical
trust model based on event structures underlying this decision process [2].

More specifically the model acknowledges that interactions will have certain
relevant properties from the perspective of trust. During the interaction there
will be things that may be observed which determine the interaction’s outcome
and as such are of interest to future trust decisions. To represent such observables,
the model uses events, which could be generated internally or externally to the
application. An interaction is therefore modelled as an event structure, a set of all
observable events, ET , within which certain relations exist. These relations reflect
that the occurrence of some events may be necessary for the occurrence of others
(necessity relation), and the occurrence of some will prohibit the occurrence of
others (conflict relation). The outcome of an interaction is therefore represented
as a subset C ⊆ ET called a configuration, holding the set of events actually
observed, which is consistent with these relations.

Modelling outcomes as configurations enables a history (H) to be built from
a series of interactions, represented by a set of configurations where members
represent the outcomes of individual instances of the interaction. Through such
a history H, trust values can be represented as mappings of configurations to

triples (s, i, c), in the form of counts reflecting how many configurations in H
support (s), contradict (c) or are inconclusive (i) for each configuration. Whether
an observed outcome contributes to s, i, or c for each configuration is determined
by the necessity and conflict relations between events in the configurations. These
counts can therefore be used to estimate the likely outcome of the next such
interaction with the principal in question.

Further to the events that are of relevance to trust, many interactions will
incorporate observable properties of relevance to the cost of outcomes of the
interaction. We incorporate these into the interaction model as events in a set
EC , which can be generated either internally by the application or by some
external source aware of environmental conditions. Although these events do
not contribute to configurations, they are of importance to the overall decision
process, as they affect the risk analysis upon which decisions rely.

As an example consider the following scenario of a distributed file storage
service. This service allows users to subscribe to host files on many different
file servers, each for a specific duration. Users may decide to remove their files
from a particular server before the end of the subscription period if they become
dissatisfied with the quality of service offered. Alternatively they may decide
to replicate their files on multiple servers to make them more available and so
on. Observables (events) come from the application as a result of attempted file
actions or pings, or some external source such as an intrusion detection sys-
tem. For example, events of interest might be fileaccess, fileok, fileok, ping,
serveravailable and serveravailable, where the overline implies negation. We
should point out that the following relationships hold between the events; fileok
and fileok are in conflict and both are in necessity relation to fileaccess, while
serveravailable and serveravailable are also in conflict and both in necessity
relation to both fileaccess and ping. Hence an example of a valid configura-
tion is {fileaccess, fileok, ping, serveravailable}, whereas {fileaccess, fileok,
fileok} is invalid due to the conflict between fileok and fileok for a specific
fileaccess. Furthermore, an example of a cost relevant event is a critical update
of a file, fileupdate(critical), meaning the value of the file has increased for the
user. Notification of such an event could come from the application. Another
risk relevant event from an external source is changeconnection. This event de-
notes that depending on the kind of network connection used, e.g. home dail-up
connection or workplace LAN, the cost of accessing a file changes.

It is important to bear in mind that there are many possible interactions in
a ubiquitous computing environment and it may be difficult for the application
developer to characterise all of them. However, the model is based on a decision
process that requires developers to consider specific interactions and thus the
model need only cope with those that the developer is concerned with. From a
self-protection point of view there are certain properties that applications must
have:

– There must be a rich set of observable characteristics to be monitored.
– There exists sensible points at which an interaction initiated by a single

trusting decision can allow corrective action to be taken.

– The interaction must offer scope for reaction to observed events.

Although we show a limited ET above, this could be greatly expanded into a
more rich set. The example is both interruptible and has duration, as the service
allows subscription for a period of time, during which the file may be removed
at any time.

3 The Monitor

So we have an interaction model with events for trust observables reflecting
likelihoods of outcomes and events for cost observables dictating costs of the
outcomes. How does the monitor utilise this to follow the progress of such in-
teractions? It must track the state of the interaction at any time throughout
its execution. As the observable events of the model deal separately with cost
concerns and trust concerns, our monitor maintains a representation of both the
interaction trust-state and its cost-state.

Trust-state is a representation of how the interaction is proceeding in terms
of the events in ET . The configurations that represent outcomes in the model can
also represent partial executions of the interaction and hence its trust-state. The
monitor takes a snapshot of the current interaction. This is a set, or more specif-
ically a configuration, containing the observables from ET seen so far during the
execution. These snapshot configurations will be subsets of those configurations
that represent final outcomes of interactions. Cost-state is a set maintained by
the monitor which contains the events from EC that have occurred throughout
the course of the interaction. The snapshot and cost-state are updated as the
result of event notifications for the specific interaction.

The trust-state and cost-state reveal the currently available information on
the likelihoods and costs of outcomes respectively. This can be used to improve
our understanding of the risks in the progressing interaction compared to the risk
analysis used in the initial decision. To facilitate this the monitor must combine
trust-state and cost-state, with consideration for the concerns of the application,
to create a representation of overall risk-state. This is a subjective view of how
satisfactorily the interaction is proceeding from the perspective of the truster,
with respect to its initial risk estimation.

Figure 1 shows how observed trust and cost events influence the risk-state of
the interaction through the specification of conditions that reflect the trust and
cost concerns of the application given the risk estimation at the decision stage.
The following section will elaborate on this by detailing the construction of the
state space.

3.1 Constructing the Risk-State Space

The risk-state space is constructed by the application in terms of a set of con-
ditions. The number and content of the conditions is up to the application to
define. However, given that the application can have concerns relating to both

Trust
Value

Interaction 1 Snapshot 1

Interaction 2 Snapshot 2

Interaction n Snapshotn

....

Cost Events

Cost-State

RISK STATE SPACE
Condition 1
Condition 2

Condition m
....

Trust Component Cost Component

H

e

e

e

e
Trust-States

....

Fig. 1. Risk-State Space Construction.

trust and costs, these conditions will most likely have both a trust component
and cost component. These components are specified as predicates, involving the
current trust-state and cost-state of the interaction. The application can spec-
ify cost component predicates based on knowledge of how certain events in EC

affect the cost/benefit of certain outcomes. The trust component predicates can
be generated by the application based on which configurations are of concern
to the application. As an example, there may also be particular outcomes that
the application would like absolute protection from regardless of how small their
likelihood initially was. Furthermore, other evidence may become available dur-
ing an interaction. Therefore snapshots from other ongoing interactions of the
same or similar type with the same or other principals can be incorporated into
the trust component of conditions. Therefore if other interaction instances are
unsatisfactory, this may be an indication that the current instance will follow
suit. As an example from the file server scenario, if the application is concerned
about file integrity regardless of H, it may define a predicate that becomes true
when, across all snapshots, a file has been corrupt on four out of five file accesses.

Conditions may necessitate the comparison of the current snapshot to H or
to other snapshots. We can determine whether any of the snapshots support
or contradict particular configurations, or even express uncertainty via the in-
conclusive comparisons. This is key to specifying and evaluating conditions. For
example, the current snapshot may contradict certain configurations, limiting
the outcomes the interaction may proceed to. It is thus possible to define a
condition on all good outcomes having been ruled out or when the snapshot
supports too undesirable an outcome. An example condition from the file server
scenario with both a trust and a cost component is when in the current snapshot,
a particular file server has been unavailable on the past two occasions and at the
same time, the connection cost is quite high.

Each time the snapshot or the cost-state for the current interaction is up-
dated, this triggers the re-evaluation of the condition set. The set of all conditions
defined constitutes the risk-state space while the truth values of these conditions
dictate the risk-state at any time throughout the interaction. Therefore when a
condition’s predicate becomes true it effects a change in the risk-state which is
of concern and may trigger an action. Thus changes in risk-state can be seen to

reflect critical points in the interaction defined by the application, where some
action might be taken.

3.2 Triggering Actions Based on State

Further to the monitor requiring the application to define the risk-state space,
it must also define the actions to be taken upon specific changes in state. We
are currently examining Event-Condition-Action (ECA) rules [6] for inspiration
for a means to communicate this information to the monitor. These rules state
that the occurrence of one or more events will trigger evaluation of a condition,
which if true will trigger one or more actions. However, we wish to define actions
to be triggered based on risk-state rather than the individual conditions to allow
for more complex combinations of conditions to be the trigger. We envisage
this being done using ECA rules on the risk-state itself. A very basic ECA
rule to represent final outcome monitoring could be based on a risk-state space
consisting of only one condition, that becomes true when the snapshot of the
interaction matches a final outcome configuration. This is therefore a binary
state space, and an ECA rule could specify that when the risk-state’s single
condition becomes true, an action is triggered that communicates an updated H
to the application.

The specified actions will be application specific, possibly in the form of
callback methods or messages. The content of these message may vary and can,
for example, provide warnings to allow rollback or termination of the interaction
or other information dictated by the application. It is the responsibility of the
application to decide on the course of action to follow upon receipt of a message.
In our file server example, feedback could allow the application to replicate a file
on another file server or start some kind of recovery process.

3.3 The Monitor Architecture

The monitor we are developing must operate as a general, self-contained software
component to enable it to be used across a range of applications. To this end we
have developed a high-level architecture, seen in figure 2, to support the concepts
defined so far in this section.

The architecture highlights the responsibilities of the different components
and the interfaces between them. The application takes responsibility for speci-
fying the condition set based on trust and cost concerns for each interaction to
be monitored, communicating this to the monitor. It must also communicate to
the monitor the ECA rules as a means to specify actions and also the locations
of the necessary event sources to be subscribed to. This allows the monitor to
retain its generality. Based on the information supplied by the application, the
monitor must keep track of the cost-state and trust-state/snapshots for all inter-
actions that it has been instructed to. The monitor also takes responsibility for
maintaining H, as this can be updated based on the snapshot tracker when the
outcome of an interaction is observed. Aside from storing this information, the
monitor uses it in evaluation of the condition sets to build a representation of the

EVENT SYSTEM / MODEL(S)

External process 1

APPLICATION MONITOR

External process 2 External process nExternal process 3
publish publish publish publish

Trust Value

Internal Events

Condition Set

publish

Store

Event Manager

History Tracker Cost-State TrackerTrust-State Tracker

Risk-State Engine

Action Engine

subscribe notify

Action Rules (ECA)

Feedback + new H
Condition Set

initial H

Notify

Event Locations

Fig. 2. The Monitor Architecture.

risk-state of each interaction and performs the actions as specified. The monitor
does not reason about the risk-state, rather it just filters events and evaluates
the conditions to determine and maintain a representation of the interaction’s
current risk-state.

Several underlying event models could be implemented, for example event
channels using push or pull methods. The monitor may have to support a variety
of event models to allow it to cope with a variety of event sources. Measures for
the composition of events from different sources should be included, to allow
evaluation of complex conditions. For example multiple environmental events
might affect the cost of a single outcome. This is another aspect we are currently
investigating. It is important to note that it may not be possible to monitor all
events that may be of interest. Inaccessibility of certain external resources for
event generation, loss of event feed or even just excessive delay can all contribute
to this problem. The mechanism for dealing with this will be implementation
dependent. The necessity relation as defined in the model can be useful here since
if we observe an event which relies on the occurrence of others, those others must
have occurred also. This allows us in some sense to fill in missing observations.

4 Conclusions and Ongoing Work

In this paper, we have briefly described our initial steps towards a monitor
capable of providing support for self-protecting systems utilising trust. It does so
by following the progress of interactions initiated through a trust-based decision
process. The monitor is independent of application specific factors, requiring the
application to specify its concerns in terms of both cost and trust observables
and what action to take under certain circumstances in relation to this. We feel
that this approach will improve the robustness of trust management solutions,
increasing their acceptability through facilitating improved self-protection.

We have outlined our model of interaction and briefly introduced our ini-
tial ideas on the monitor. As this constitutes work in progress, we are currently
working on a variety of issues this paper presents. To develop the monitor and
architecture further, we are examining not only the aforementioned ECA rules,
but also work on probes and gauges in autonomic computing [4] for external
event generation. This will give us an insight into how the monitor can generate
the necessary code for evaluation of the predicates. As a step towards imple-
mentation, we are making initial investigations of two scenarios, the file storage
service briefly highlighted above and an online auction, to examine specification
of events and generation of conditions for specific trust values. This will also pro-
vide an insight into the operational aspects of the monitor, such as event models
and communication means, and provide the means to evaluate the self-protecting
abilities of the monitor.

Acknowledgements

This work is supported by the EU project SECURE: Secure Environments for
Collaboration among Ubiquitous Roaming Entities (IST-2001-32486). The au-
thors would also like to acknowledge contribution by Waleed Wagealla.

References

1. V. Cahill, E. Gray, J.-M. Seigneur, C. Jensen, Y. Chen, B. Shand, N. Dimmock,
A. Twigg, J. Bacon, C. English, W. Wagealla, S. Terzis, P. Nixon, G. Serugendo,
C. Bryce, M. Carbone, K. Krukow, and M. Nielsen. Using Trust for Secure Collab-
oration in Uncertain Environments. In Pervasive Computing Magazine, volume 2,
pages 52–61. IEEE Computer Society Press, 2003.

2. Marco Carbone, Karl Krukow, and Mogens Nielsen. Revised computational trust
model. SECURE Deliverable 1.3, 2004.

3. Tyrone Grandison and Morris Sloman. Trust management tools for internet ap-
plications. In Paddy Nixon and Sotirios Terzis, editors, Proceedings of the First
International Conference on Trust Management, volume 2692 of LNCS, pages 91–
107, Heraklion, Crete, Greece, May 2003. Springer.

4. Philip N. Gross, Suhit Gupta, Gail E. Kaiser, Gaurav S. Kc, and Janak J. Parekh.
An active events model for systems monitoring. In Working Conference on Complex
and Dynamic Systems Architecture, December 2001.

5. Tim Kindberg and Armando Fox. System software for ubiquitous computing. IEEE
Pervasive Computing, 1(1):70–81, January-March 2002.

6. Norman Paton. Active Rules in Database Systems. Springer Verlag, 1998.
7. Li Xiong and Ling Liu. Building trust in decentralized peer-to-peer electronic com-

munities. In Proceedings of the 5th International Conference on Electronic Com-
merce Research(ICECR-5), Montreal, Canada, October 2002.

8. Bin Yu and Munindar P. Singh. An evidential model of distributed reputation man-
agement. In Proceedings of the first international joint conference on Autonomous
agents and multiagent systems, pages 294–301, Bologna, Italy, 2002. ACM Press.

