-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by University of Strathclyde Institutional Repository

I._‘.
Unlversltyﬂ@

Strathclyde
Glasgow

Strathprints Institutional Repository

Neumidiller, M. (2002) Compact data structures for querying XML. In: EDBT 2002 PhD Worshop,
2002-03-28, Prague, Czech Republic.

Strathprints is designed to allow users to access the research output of the University of Strathclyde.
Copyright © and Moral Rights for the papers on this site are retained by the individual authors
and/or other copyright owners. You may not engage in further distribution of the material for any
profitmaking activities or any commercial gain. You may freely distribute both the url (http://
strathprints.strath.ac.uk/) and the content of this paper for research or study, educational, or
not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to Strathprints administrator:
mailto:strathprints@strath.ac.uk

http://strathprints.strath.ac.uk/


https://core.ac.uk/display/9015567?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://strathprints.strath.ac.uk/
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk
http://strathprints.strath.ac.uk/

. IH
I"-. MNIVERSITY OF
'\ 3 TRATHCLYDE

N GEASGORY

Neumueller, M. (2002) Compact data structures for querying XML.
In: EDBT 2002 PhD Worshop, 28 Mar 2002, Prague, Czech
Republic.

http://eprints.cdlr.strath.ac.uk/2480/

This is an author-produced version of a paper presented at EDBT 2002
PhD Worshop. This version has been peer-reviewed, but does not
include the final publisher proof corrections, published layout, or pagination.

Strathprints is designed to allow users to access the research
output of the University of Strathclyde. Copyright © and Moral
Rights for the papers on this site are retained by the individual
authors and/or other copyright owners. Users may download
and/or print one copy of any article(s) in Strathprints to facilitate
their private study or for non-commercial research. You may not
engage in further distribution of the material or use it for any
profitmaking activities or any commercial gain. You may freely
distribute the url (http://eprints.cdlr.strath.ac.uk) of the Strathprints
website.

Any correspondence concerning this service should be sent to The
Strathprints Administrator: eprints@cis.strath.ac.uk


http://eprints.cdlr.strath.ac.uk/2815/

Compact Data Structures for Querying XML

Mathias Neumdiiller

Department of Computer and Information Science
University of Strathclyde, Glasgow G1 1XH, Scotland, U.K.
mathias@cis.strath.ac.uk

Abstract. XML is of growing importance in a range of computer ap-
plications. In addition to being a document exchange format it is now
commonly used for data storage and retrieval as well. While XML offers
great potential to unite data exchange and storage, it is expensive to pro-
cess data stored in textual format. The document object model (DOM)
defines convenient means to access XML data, but many implementa-
tions struggle with performance limitations. The data model implied by
the standard needs new data structures and adapted query algorithms to
enable native XML databases to perform acceptably. This introduction
describes a preliminary data structure developed with these objectives
in mind. It also gives an overview of our future research directions and
anticipated problems.

1 Introduction and Research Objectives

XML is of great importance in the domain of document management and is
now emerging as an alternative to conventional database approaches, partic-
ularly in the case of less regularly structured data [1]. Further development
of this capability requires that one must be able to query XML data sources
with acceptable performance. Many database suppliers offer extensions to their
RDBMSs that enable the data storage and retrieval in XML format, but the
primary data model of these engines remains table-orientated. Emerging native
XML databases (NXDs) [2] offer a tailor-made storage solution for XML, but
their implementation technology is as yet immature compared to that of the
established RDBMSs.

It is our belief that potential difficulties originate at the access level. While
large volumes of XML data stored in textual form are hard to access, mappings
to a relational database typically result in a large number of performance limit-
ing joins [3]. Common in-memory representations suffer from excessive memory
requirements while disk-based system suffer from poor response times. It is the
goal of our research to combine elements of these different approaches to find a
method suitable to handle large XML databases with acceptable performance.

2 Related Work

Significant research has already been carried out in the area of integrating XML
data into relational [3] and object orientated databases [4]. Several mapping



schemata exist that allow storage of hierarchical XML into relational tables or
object stores. Little research has been done in the area of compact representation
of XML data despite of the fact, that this could help to move more of the
processed data from external into internal storage. Similar approaches in the
relational field have shown good results [5]. The semistructured, hierarchical
nature of XML makes it harder to treat than two-dimensional, strongly typed
relational data. Most implementations of the DOM [6] so far have concentrated
on extensive functionality rather than on compact representations. Thus those
implementations can only handle relatively small documents. PDOM [7], which
is a persistent DOM implementation that supports queries using XQL[8], allows
access to elements of larger documents. The data is held on disk and copied into
a buffer memory for processing. Compression is used for disk storage but not in
memory. Xindice [9], a native XML database, supports compression of individual
elements, both in main memory and in secondary storage. The compression is
limited to the tokenisation of element and attribute names and primarily used to
increase the speed of querying. However, redundancy present in the data itself
is not utilised, thus the compression achievable is moderate. Compression for
document-centric XML is provided by some systems such as Tamino [10]. All of
the designs mentioned are aimed at relatively small documents, though Xindice
and Tamino allow documents to be grouped into collections and support queries
across these collections.

3 Design

The overall task of finding a suitable combination of data structure and query
algorithm is tackled in a bottom-up fashion. It is our believe, that a compact
in-memory representation of semistructured data will offer opportunities for
high-performance query algorithms. To date we already have developed a DOM
compliant compact data structure based on dictionary substitution. The follow-
ing sections describe some design decisions and early results from this work. It
is described in more detail in [11]. The basic design combines two approaches
to achieve a compact representation: dictionary substitution for the occurring
strings and minimising of the number of objects required to represent the DOM
tree. Although the created structure works with any well-formed XML docu-
ment, data-centric XML files were assumed for optimal compression.
Dictionary substitution is a well understood, relatively simple compression
mechanism [5]. Every occurring data word is stored in a dictionary and rep-
resented by a short binary token. Every occurrence of this word in the source
document is replaced by its corresponding token. This compression technique is
especially suitable for XML as its verbosity requires every piece of information
to be expressed in textual form. In terms of our DOM, a data word is the name
or the value of an attribute, an element name or any character data section. This
means that the metadata contained in the element tags is compressed using the
same compression technique as used for the data. Our system builds a separate
dictionary for every domain, with the type of a node serving as primary domain.



The domains of character data, attribute names and values are additionally sub-
divided by the name of their containing or direct parent element, hence allowing
the storage of related information in one dictionary and limiting the size of the
individual dictionaries. A programming technique that minimises the number of
objects held in memory to a minimum was used. The structure of documents is
stored in an array of integers rather than as a tree of objects [11]. This approach
is closely related to the flat, textual representation of XML. The structure is
given by corresponding start and end tags. It is reasonably easy to translate this
into a series of tokens as used for example for the binary WAP format [12]. The
document structure can then be stored in a simple array of integers.

4 Implementation

The designed system, the Dictionary substitution based DOM implementation
(DDOM), was implemented in Java. The object minimisation technique used
saves memory but may also result in excessive processing power requirements to
support the frequent generation of objects. To minimise this, internal methods do
not use the methods provided by the DOM interface, which return Node objects.
Instead they work directly on the compressed representation. Tree traversals are
translated into short linear searches over the structure array.

5 Measurements

Initial measurements confirm that significant savings can be achieved. Figure
1 shows the measured memory requirements of a domain name server (DNS)
database. The memory requirements of this real-world example lie 30-80 % be-
low those of typical DOM implementations. Both Crimson and Xerces showed
linear growth in memory consumption for files above a certain threshold. The
memory consumption of the DDOM grew less than linear, but depended on the
redundancy present in the data. However, data compressed using the current im-
plementation still requires 1-2 orders of magnitude more memory than its gzip
compressed textual representation, which was used as a practical measurement
of the entropy.

6 Conclusions and Future Work

The prototype implementation demonstrates a significant space saving compared
with standard DOM implementations. This could be improved using a better im-
plementation of the dictionaries. The influence of the type of data needs to be
analysed more closely, using a variety of possible sources. Currently the com-
pression mechanism works at document level. To make this technique useful for
NXDs, it will need to work on collection level [2] to allow queries across several
documents. More work will be required to analyse the query performance of this
and other solutions. Therefore the next step of our work aims to provide query



support for DDOM. We have currently two strategies to achieve this. One ap-
proach involves the integration of the compression technique used with an NXD.
The alternative is to adapt the DDOM to work with an external query engine.

References

[1]

[12]

[13]

Ceri, S., Fraternali, P., Paraboschi, S.: XML: Current developments and future
challenges for the database community. In Zaniolo, C., Lockemann, P.C., et al.,
eds.: EDBT 2000. Volume 1777 of LNCS., Springer (2000) 3-17

Staken, K.: Introduction to native XML databases. XML.com (2001) http:
//www.xml.com/pub/a/2001/10/31/nativexml.html.

Shanmugasundaram, J., Tufte, K., et al.: Relational databases for querying XML
documents: Limitations and opportunities. In Atkinson, M., Orlowska, M.E.,
et al., eds.: VLDB 1999, Morgan Kaufmann (1999) 302-314

Renner, A.: XML data and object databases: The perfect couple? [13] 143-148
Cockshot, W.P., McGregor, D., Wilson, J.: High-performance operations using a
compressed database architecture. The Computer Journal 41 (1998) 283-296
World Wide Web Consortium: Document Object Model (DOM) Level 1 Spec-
ification Version 1.0. W3C recommendation 1 october, 1998 edn. (1998) http:
//www.u3.org/TR/1998/REC-DOM-Level-1-19981001.

Huck, G., Macherius, I., Frankhauser, P.: PDOM: Lightweight persistency support
for the document object model. In: Proceedings of the 1999 OOPSLA Workshop
“Java and Databases: Persistence Options”, Denver, CO, USA (1999)

Robie, J., Lapp, J., Schach, D.: XML query language (XQL). Workshop proposal,
W3C (1998) http://www.w3c.org/TandS/QL/QLI8/pp/xql .html.

Bradford, T.: dbXML XML database application server version 0.4. dbXML core
technical specification, dbXML Group, L.L.C. (2000) ”Xindice“ since Dec 2001.
Schoning, H.: Tamino — a DBMS designed for XML. [13] 149-154

Neumiiller, M.: Compression of XML data. MSc thesis, University of Strathclyde,
Glasgow, Scotland, UK (2001)

WAP Forum members IBM, Motorola and Phone.com: WAP binary XML content
format. W3C Note (1999) http://www.w3.org/TR/wbxml/.

IEEE Computer Society: Proceedings of the 17th International Conference on
Data Engineering, April 2-6, 2001, Heidelberg, Germany. In: ICDE 2001, Heidel-
berg, Germany, IEEE Computer Society (2001)

Comparison of different DOM implementations

Fig. 1. Memory consumption of

the different DOM implementa- ;0000 | DDOM —
tions for the DNS database. Note Crimson --x- ’

that the textual XML files use 10000 | s garn vt &

8 bit character encoding whereas 4

all DOM implementations store > % -
characters using 16 bits accord- & [

ing to the W3C recommendation. .

The text files were subsequently 10 ¢ -

compressed using the Linux ver- .

sion of gzip 1.8.4 with maximum o 1000 10000 100000

compression.

Cardinality (Entries)



