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Abstract

The effective grouping, orpartitioning, of semistructured
data is of fundamental importance when providing support
for queries. Partitions allow items within the data set that
share common structural properties to be identified effi-
ciently. This allows queries that make use of these prop-
erties, such as branching path expressions, to be acceler-
ated. Here, we evaluate the effectiveness of several parti-
tioning techniques by establishing the number of partitions
that each scheme can identify over a given data set. In par-
ticular, we explore the use of parameterised indexes, based
upon the notion of forward and backward bisimilarity, as a
means of partitioning semistructured data; demonstrating
that even restricted instances of such indexes can be used to
identify the majority of relevant partitions in the data.

1 Introduction

Efficient resolution ofbranching path expressionsover
XML data requires that data items having a structure that
matches thatspecified by the query can be identified with-
out traversing the complete data set. This can be achieved
with a suitable form of index graph. Such graphs can pro-
vide a structural summary of the complete data set and allow
data items with similar structure (and semantics) to be col-
lected together and accessed efficiently. Consequently, in-
dex graphs implicitly define a partitioning of the data, with
the number, and nature, of partitions identified varying with
choice of indexing technique. In this paper, we explore the
effectiveness of a number of forms of index graph through
an exploration of the number of partitions that each index
can identify over a given data set.

The different forms of index that can be used with semi-
structured data each define a set ofpartitionsover the data.
Each vertex on the index graph corresponds to exactly one

partition, with all data therein sharing some notion of com-
mon structural properties. The size of the index graph, and
therefore the number of partitions identified, varies dramat-
ically with choice of indexing technique. There is a trade-
off between the size of the index graph and accuracy con-
sequently the choice of index and the number of partitions
identified, will vary considerably depending on which form
of index has been selected.

Constructing a suitable index graph, and identifying a set
of partitions, is a fundamental step in the efficient process-
ing of semistructured data. In addition to the benefits of
efficient access provided by the index graph, partitions pro-
vide a valuable opportunity for optimisation. Firstly, it is
likely that data within a given partition will be accessed to-
gether. Secondly, partitions capture regular aspects of the
data set, presenting an opportunity to exploit techniques
aimed at such data (which have been extensively studied for
the relational model). Index graphs, and the partitions that
they identify, are central to the efficient processing of XML
and can be used as the basis of query processing models in
the absence of globally valid schemata or when cost-based
optimisers are unavailable.

The remainder of this paper is structured as follows. Sec-
tion 2 summarises the necessary concepts and terminology,
while Section 3 describes a number of techniques for par-
titioning semistructured data. Section 4 presents the main
contribution of this paper: an evaluation of how effective
different indexing techniques are at identifying partitions of
the data. Section 5 concludes the paper.

2 Background

The data graph representation of semistructured data is
a directed node-labelled graph. The vertices of this graph
represent data items, with the edges representing structural
relationships. Directly creating a data graph from the flat-
file representation of XML gives a tree rather than a graph:



it is only when additional relationships, such as those en-
coded using ID:IDREF references, are included that a graph
containing cycles can be obtained. Here, we refer to a tree
view of the data that is both a spanning tree and is rooted at
the root vertex as adistinguished spanning tree. The forms
of index graph of interest here are all targeted at path ex-
pressions (i.e. they do not index the values of the atomic
data) and provide a graph derived from the data graph that
can associate multiple data items with a single vertex.

Branching path expressionsare a form of query that can
be performed over a data graph. These queries are com-
prised of a sequence of labels (alabel path), and can con-
tain both forward and backward separators. Evaluating such
a query consists of finding all vertices on the data graph
that have a path leading to them matching the path given by
the labels with forward separators (this is referred to as the
primary path) that also satisfy the conditions given by the
backward separators. If a given index graph is smaller than
the data graph it summarises, then it is possible to evaluate
a query more efficiently using the index than it would be to
traverse the complete data set.

The use ofbisimilarity as a means of partitioning semi-
structured data was first demonstrated by Buneman et
al. [1]. Such indexes group vertices on the data graph ac-
cording to the equality of the complete set of outgoing and
incoming edges to a given vertex. This produces a refined
set of partitions over a given data set that can be used as
an aid to the efficient processing of branching path expres-
sions. However, such index graphs can become too large
to be useful. Kaushik et al. [5] introduce a parameterised
index based upon bisimilarity, with a view to using such pa-
rameters to limit the size of the index graph. More recently,
He and Yang [4] proposed a multi-resolution index upon
bisimilarity: a form of index with the degree of bisimilarity
varied according to the needs of each node.

3 Partitioning Techniques

Partitions can be categorised in one of three ways (de-
pending on the type of vertices contained therein). Firstly,
a partition comprised solely of vertices representing atomic
data is said to be anatomic partition. Secondly, a parti-
tion that contains only complex vertices, those vertices that
combine the information stored in other vertices by means
of a set of outgoing edges, is said to be acomplex partition.
Finally, a partition that contains both atomic and complex
vertices is said to be amixed partition. Such distinctions
will be considered when contrasting different partitioning
schemes.

Technique 1 (Label Partitions)This is the simplest par-
titioning technique discussed here. For a given data set (Fig-
ure 1), all vertices carrying an identical label are grouped
together. Using this approach, there will be exactly one
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Figure 2. XMill containers.

atomic partition and one complex partition for each source-
specific tag present in the data graph (including the root ver-
tex).

Technique 2 (Parent Partitions) This technique is
based on the equality of the label of a node’s parent node
in the distinct spanning tree system [7]. A vertex on a
data graph may have more than one incoming edge (par-
ent node), so it becomes possible for a node to be present in
more than one partition. The total number of partitions that
can be identified is bounded by the size of the label alpha-
bet. Since the root vertex has no incoming edge it does not
belong to any partition. Inversely, there is no partition cor-
responding to the tag labelDATA, as atomic vertices have
no outgoing edges.

Figure 2 illustrates the transformation of our example
data graph as used with XMill. This approach causes all
data items representing a ‘name’ to be merged into one
atomic partition, regardless of whether they are the names
of people, projects or courses. This effect of combining un-
related information is referred to aspartition mixing.

Technique 3 (Path Partitions) This partitioning tech-
nique attempts to avoid partition mixing by partitioning the
vertex set based upon the entire path from the root node to a
given vertex. This may result in a given vertex being part of
more than one partition. In fact, cyclic graphs will result in
an unbounded number of partitions being identified. How-
ever, the equivalent technique based upon the distinguished
spanning tree is bounded by the size of the node set giv-
ing a usable definition of partitioning. This is equivalent to
the strong DataGuide [3] and can result inpartition splitting
(Figure 3).

Technique 4 (Depth Partitions)The notion of partition-
ing that we are using here allows for the characterisation of
partitions based upon node level. Here, all nodes that occur
at the same depth in the tree view of the data are grouped
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together. Although such a partitioning may initially seem
to be of limited use, certain queries can be accelerated with
an index based upon such a partitioning. For example, the
query/*/*/* , can be resolved efficiently using this tech-
nique. If this technique is used on the graph view of the data
then, as was the case with Path Partitions, an unbounded
number of partitions can be identified. Given that the parti-
tions identified do not take account of node labelling, mixed
partitions can be identified. Figure 4 shows such a partition-
ing imposed on the data graph.

Technique 5 (Skeleton Partitions)This technique is
based on the concept of forward bisimilarity of a node [2],
i.e. the equality of the collection of outgoing paths. This
technique states that two nodes in the tree are said to be
bisimilar if they have the same label and the same ordered
sequence of bisimilar child nodes. This allows common
substructures in a document to be identified, for example,
the two staff nodes shown in Figure 1; however, this
technique splits the twoclass nodes because of the dif-
ferences in their respective sub-trees. Given that only out-
going edges are considered when computing bisimilarity, all
atomic data is grouped in a single atomic partition.

Technique 6 (Local Backward Bisimilarity Parti-
tions) Here the entire set of incoming edges is used to de-
termine the partition of each node [6]. This gives an index
that is similar to that of path partitioning, whilst avoiding
nodes being present in multiple partitions based on each in-
coming edge. Since, in practice, path expressions are often
of limited length, the lengths of the paths used when calcu-
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lating the bisimilarity can also be limited. The definition of
bisimilarity then becomes recursive, stating that a vertex is
k-bisimilar to another if they have equal labels and have the
same set of incoming edges from vertices that are(k − 1)-
bisimilar. Thus, the parameterk can be used to control the
balance between index size and index coverage. Figure 5
shows the index graph of the example source based on 1-
bisimilarity. Again, every vertex defines a partition of the
data set. The twostaff vertices that were contained in a
single partition when using skeleton partitions are now split
As seen previously, all names are merged into a single par-
tition regardless of whether they refer to people, projects
or courses. Increasing the value ofk would overcome this
limitation.

Technique 7 (Forward and Backward Bisimilarity
Partitions) This method combines the structural properties
identified by techniques such as skeleton partitions, with
the contextual properties that can be identified using back-
ward bisimilarity [5]. The resulting index graph is covering
for general branching path expressions without value pred-
icates. As with local backward bisimilarity, the lengths of
paths considered can be limited. Here, two parameters,kb

andkf , that restrict the lengths of incoming and outgoing
paths respectively, can be used to reduce the complexity of
the final index graph. Figure 6 shows the index graph based
on (1,1)-F+B-bisimilarity, Thename and lecturer ver-
tices occurring belowclass vertices have been split, al-
though their incoming paths of length one are identical.
This is because they can be distinguished based on their
siblings by using a branching path expression whose length
does not exceed one. For example, the branching path ex-
pressionclass [/prerequisite ]/name selects vertex
&11 but not vertex&14, which were combined in partition
c11 in Figure 5 but are split into the partitionsc11 andc14.

4 Partition Statistics

Our analysis using various data sources (Figure 8) ex-
plores both the expressive power of a given partitioning
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technique and the complexity of the underlying data source.
Partition Techniques 1–5 are classified asfixed-partitioning
techniques, in that they do not support the use of param-
eters to influence the operation of the algorithm. With
parameterised-partitioningtechniques however, a range of
parameter combinations are possible.

4.1 Fixed-Partitioning Statistics

Figure 9 shows the number of distinct partitions that can
be identified over our sample data when using partition-
ing Techniques 1–5 (the partitioning techniques that do not
make use of parameters). The results shown in Figure 9
clearly demonstrate that competing partitioning techniques
produce significantly different numbers of partitions for a
given data.

In contrast to the regular structure of the Ensembl file
(Figure 9), the XMark data exhibits few indications of a reg-
ular structure since its data, by design, is convoluted. This is
indicated by the results presented in Figure 9. In the XMark
data set there is no correspondence between the number of
complex partitions identified by label partitioning and path
partitioning (or indeed, any of the chosen schemes). A large
number of partitions are identified using the skeleton parti-
tioning technique, even though the size of the data graph is
significantly smaller than the data graph of the other sam-
ple documents. This is a consequence of similar elements
occurring in many contexts in XMark generated files.

Of the remaining two example files, PubMed and
MAGE, the results shown indicate that they do have some
degree of varying content (i.e. tags appearing in differ-
ent contexts), but that these real data sources do not have
the same complexity as the synthetically generated XMark
data. When using the skeleton partitioning technique, the
number of partitions identified for the PubMed and MAGE
files is comparable to that of the XMark data, although,
again, it should be noted that there is a significant differ-
ence in the size of the data sets.

With the exception of the regularly structured Ensembl
file, the number of partitions identifiable using the Skele-
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ton technique greatly exceeds that of the more simple par-
tition techniques. This suggests that techniques based upon
bisimulation are likely to be the most applicable when ac-
celerating branching path expressions or when clustering
the data according to its context.

4.2 Parameterised-Partitioning Statistics

In contrast to partitioning Techniques 1–5, Techniques
6 and 7 define a family of partition structures, with one or
more parameters being used to specify the exact nature of
any given instance of the partitioning. Points in the param-
eter space that correspond to either stable or rapidly chang-
ing numbers of partitions are of interest. Knowledge of such
points may be beneficial when automating parameter choice
for such indexes. The sets of partitions that can be identified
using Technique 6 (local backward bisimilarity) are a sub-
set of the sets of partitions that can be identified using Tech-
nique 7 (forward and backward bisimilarity). Thus, only the
results obtained using Technique 7 are given here.

Figures 10 and 11 show the numbers of partitions ob-
tained using a parameterised index for tree depths of 1 and
3. The results are shown as 3D-surfaces to allow the inter-
action of the two parameters that control the size of the for-
ward and backward bisimilarity to be seen. For any given
parameter combination(i, j), the set of partitions identifi-
able will include all partitions, or a refinement thereof, that
are identifiable using a lower value ofi and/orj. Thus,
as the bisimilarity is extended in either direction, the num-
ber of identifiable partitions increases until such a point is
encountered when all the partitions identifiable using this
technique have been encountered. The maximal number of
partitions that can be identified using such indexes is equal
to the number of partitions identified by the F&B index [5].

Two trends emerge from the results presented in Fig-
ures 10 and 11. Firstly, it is possible identify a maximal set
of partitions using relatively low values for the three param-
eters that define the index. Secondly, the rate at which we
approach this maximal number of partitions increases with
tree depth. For the XMark document, it was found that the
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maximal number of partitions that could be identified us-
ing this technique was very close to the number of vertices
on the data graph: 285,372 partitions compared to 322,327
vertices on the data graph.

Figures 12 and 13 show the number of parameters that
can be identified in the PubMed file using parameterised in-
dexes of tree depths 1 and 3. In each case, the overall shape
of the surfaces is similar to that obtained when using XMark
data, although the surfaces are smoother and more closely
resemble that which would be obtained over normally dis-
tributed data. These smoother surfaces indicate that the
structure of the PubMed data is more regular than that of
XMark. The most significant difference in the data gath-
ered over PubMed is that the maximal number of partitions
identified is significantly smaller than the size of the origi-
nal data graph: 73,874 partitions compared to a data graph
of 1,288,555 vertices. Here, the full F&B index would be
an order of magnitude smaller than the original data graph.
Again, it can be seen that increasing the tree depth increases
the rate at which the number of partitions grows.

Overall, it can be seen that even restricted instances of
parameterised covering indexes have a complexity similar
to that of the full F&B index [5]. Thus, if it is intended to
provide a partitioning (index graph) that is smaller than that
obtained with F&B index then the parameters for the pa-
rameterised index can only be drawn from a limited range.
When compared to the size of the data graph, the maxi-
mal number of partitions identified over our two sample
documents differed considerably. For XMark the maxi-
mal number of partitions approaches the size of the data
graph, whereas for PubMed the maximal number of parti-
tions was an order of magnitude smaller than the size of the
data graph. The input data determines whether it is viable
to use higher values for the index parameters.

5 Conclusions

This paper summarised seven different techniques for
partitioning semistructured data, contrasting their effective-

ness over various XML documents. As expected, the num-
ber of identifiable partitions varied greatly with choice of
partitioning technique; however, it was also found the num-
ber of partitions varied greatly with the nature of the source
data. Partitioning convoluted data sources, such as XMark
data, can result in an index graph that approaches the com-
plexity of the data graph. However, this was not found to be
the case for real sources of semistructured data. Hence, in-
dex graphs that potentially have a complexity equal to that
of the data graph may well be viable over real data sources.

Of the seven techniques described, those based upon bi-
simulation (Techniques 5, 6 and 7) identified significantly
more partitions for data with varying structure than the more
simplistic partitioning techniques. Furthermore, employ-
ing both forward and backward bisimulation (Technique 7)
allowed significantly more partitions to be identified than
is possible using bisimulation in only one direction (e.g.
Skeleton Partitions). This suggests that partitioning on for-
ward and backward bisimulation is the most appropriate
technique for both accelerating branching path expressions
and for clustering the atomic data according to context. Ad-
ditionally, it was demonstrated that the number of partitions
identified using parameterised indexes quickly approaches
the maximum as the parameters controlling the forward and
backward bisimilarity are increased. Hence, in situations
were it is desired to limit the size of the index graph (and
the number of partitions) then it will be necessary to draw
values for these parameters from a restricted set of values.
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