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ELECTRIC FIELD EFFECTS ON NEMATIC WETTING LAYERS

G. KELLY, N. J. MOTTRAM, A. RAMAGE
Department of Mathematics, University of Strathclyde,

Livingstone Tower, Glasgow G1 1XH, U.K.

We present a theoretical investigation of the temperature and electric field dependence
of nematic liquid crystal wetting layers close to an aligning substrate within a confined
system. Using a mesoscopic Q tensor theory coupled to Maxwell’s equations for the elec-
tric field, we consider the existence and stability of homogeneous nematic wetting layers
close to the substrate. Numerical results are presented showing the phase diagram for
the isotropic (paranematic), nematic and wetting layer states. The effect on the isotropic-
wetting transition, from first order to second order, when an electric field is applied is then
investigated.

Keywords: nematic; wetting; surface anchoring; Q tensor theory; electric field.

INTRODUCTION

Liquid crystal devices usually require that bounding substrates induce uniform alignment,

and for this reason there has been intense interest in the technology of nematic alignment

at solid surfaces. The reduction in symmetry, induced order and alignment of the director

close to a substrate greatly affects the behaviour of a nematic and may compete with

the bulk liquid crystal configuration. An enhancement of the order parameter near the

substrate may induce a paranematic state even at temperatures well above the nematic to

isotropic transition point. Such surface ordering may also be sufficient to cause the growth

of a wetting layer of nematic between the isotropic phase in the bulk of the cell and the

substrate [1]. The growth of the wetting layer near to TNI , the clearing point temperature,

where the isotropic and nematic states are of equal energy, is controlled by the competition

between the surface anchoring and the energy of the nematic-isotropic interface.

Previous work has shown that, in a semi-infinite nematic sample bounded by an align-

ing substrate, the first order wetting layer phase transition occurs at higher temperatures

as an applied field increases [2]. For sufficiently large applied fields the transition from the

paranematic state to complete wetting becomes continuous. However, work in this area

has assumed that the applied field is constant and not affected by the nematic orientation

or order parameter [1-3]. This is either because a magnetic field was applied which remains

constant due to the low magnetic susceptiblity, or because an electric field was applied

perpendicular to the direction of director and order variations.
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In this paper, we consider a sample of liquid crystal sandwiched between two sub-

strates which are fixed in the xy-plane (see Figure 1). It is assumed that the two substrates

are treated so that they induce director alignment in the x-direction and will tend to induce

order in an otherwise isotropic system. Although in the theoretical model the director is

not constrained, we find that it remains in the x direction throughout the cell. We consider

a material with a negative dielectric permittivity in the nematic phase so that, when an

electric field is applied across the cell in the z direction, the field induces order in directions

perpendicular to z. We therefore expect that a reduction in temperature or an increase

in field strength will induce order and the system will undergo a transition to the nematic

phase. Investigating the nature of this transition and the possibility of an intermediate

(wetting) state will be the main aim of this paper.

For such a system, where spatial changes in order are important, it is necessary to

use the Landau-de Gennes Q tensor theory [4]. The Q tensor is derived from the second

moment of the molecular orientational distribution function and contains information about

the directors (the eigenvectors of Q) and the order in the direction of the directors (the

corresponding eigenvalues of Q). This theory is outlined below.

LANDAU-DE GENNES THEORY

The symmetry of the orientational probability distribution, f , of nematic liquid crystal

molecules is such that f(l) = f(−l), where l is the vector along the molecular long axis.

Therefore, the first moment of this distribution is zero and a useful measure of order in

such a system is the second moment, which is proportional to l ⊗ l [4]. Subtracting the

appropriate multiple of the identity matrix forms the symmetric traceless tensor order

parameter Q,

Q =




q1 q2 q3

q2 q4 q5

q3 q5 −q1 − q4


 . (1)

In more physically understandable terms, we can express Q in terms of two directors, the

unit vectors n and m, and two order parameters, S1 and S2, as

Q = S1(n⊗ n) + S2(m⊗m)− 1

3
(S1 + S2)I, (2)

where I is the identity matrix. The vectors n and m are then two of the eigenvectors of Q,

the third being n ×m, and the corresponding eigenvalues are (2S1 − S2)/3, (2S2 − S1)/3

and −(S1 + S2)/3, respectively. Note that in a uniaxial system two of the eigenvalues are

equal so either S1 = 0, S2 = 0 or S1 = S2 and the largest eigenvalue is 2S/3, where S is

either S1 or S2.

In our system we will see that the director n remains in the x direction (and secondary
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director m remains in the y direction). In this case, Q is always of the form

Q =




q1 0 0

0 q4 0

0 0 −q1 − q4


 , (3)

and the eigenvalue associated with n is q1. When considering the solutions below we will

often plot only the element q1, or a measure dependent on q1, since this is directly related

to the amount of order along the main director, which is in the x direction. The scalar

order parameter in this direction is then S = 3q1/2. It should be noted at this point that

although our calculations always find a solution for which q2 ≡ 0, q3 ≡ 0 and q5 ≡ 0, so

that the order tensor is always of the form given in (3), we have not constrained Q to be

so. We will however assume that variation in Q only occurs in the z direction.

Taking the total free energy F (per unit area in the xy-plane) of the system to be the

integral over the region of the sum of the thermotropic, Ft, distortion, Fd, and electrostatic,

Fe, energy densities together with the surface energy, Fs, evaluated at the two substrates,

gives

F =

∫ d

0

(Ft + Fd + Fe) dz + Fs|0 + Fs|d

=

∫ d

0

(
a tr

(
Q2

)
+

2b

3
tr

(
Q3

)
+

c

2
tr

(
Q2

)2

+
∑

i=1,2,3

[
L1

2

(
∂Qii

∂z

)2

+
L2 + L3

2

(
∂Qi3

∂z

)2
]

− 1

2
ε0(εεεE).E

)
dz + W0 (Q−Q0)

2 |0 + W0 (Q−Q0)
2 |d (4)

where d is the extent of the region in the z-direction, E is the electric field, εεε is the

dielectric permittivity tensor and Q0 is the preferred value of the tensor order parameter

at the substrate. The form of these energy densities has been discussed many times before

[4-6] and we shall simply summarise the main features of each energy term here.

The thermotropic energy density, Ft, is a Taylor expansion of the actual energy den-

sity about the isotropic phase Q = 0. The absence of a term linear in Q is due to the fact

that the order tensor is traceless. The coefficients a, b and c will be temperature dependent

although it is usual to assume that b and c are largely independent and a is linearly depen-

dent on temperature. We take a = α(T − T ∗) where T ∗ is the supercooling temperature,

below which the isotropic phase is unstable [4].

The distortion energy, Fd, is also an expansion of the true elastic energy, assuming that

higher derivatives of Q and higher powers of Q and its derivatives are negligible compared

to the leading order terms. The number of terms to leading order has been reduced using

the symmetry properties of the nematic phase [5].

The electrostatic energy density, Fe, is derived from the integral of D.E, the scalar

product of the displacement field and the electric field. We assume the relationship D =
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ε0εεεE, where ε0 is the permittivity of free space and εεε is the dielectric permittivity tensor

of the material, which can be written (to leading order) as εεε = ε̄I + ∆ε∗Q. Here ε̄ is the

permittivity of the isotropic phase while ∆ε∗ = ∆ε/Seq is the rescaled dielectric anisotropy

of the nematic phase, that is, the experimentally measured anisotropy ∆ε divided by the

bulk nematic scalar order parameter Seq when the measurement was performed.

One of Maxwell’s equations for a static system,∇×E, is utilised in order to express the

electric field in terms of an electric potential, E =
(
0, 0,−∂U

∂z

)
, whilst another of Maxwell’s

equations, ∇.D, is used to find a solution for the electric potential. This approach is

equivalent to using the Euler-Lagrange equation from the minimisation of the free energy

(4) with respect to U .

The surface energy in (4) is the simplest form that exhibits a minimum at the preferred

orientation Q0. The depth of this minimum is controlled by the anchoring strength W0.

For homogeneous alignment in the x direction, the form of Q0 is taken to be

Q0 =




0.4 0 0

0 −0.2 0

0 0 −0.2


 (5)

so that the substrate prefers an amount of order equivalent to S = 0.6.

For the total energy F given by (4), the governing differential equations for the qi

values are then the Euler-Lagrange equations, the solution of which minimises the free

energy. The Euler-Lagrange equations for the five elements of Q are (for i = 1 . . . 5)

0 =
∂F

∂qi

− ∂

∂z




∂F

∂

(
∂qi

∂z

)


 , (6)

and the equation for the electric potential is

0 =
∂F

∂U
− ∂

∂z




∂F

∂

(
∂U

∂z

)


 , (7)

where F = Ft + Fd + Fe is the bulk energy density.

The boundary conditions for the qi equations, derived from the minimisation of the

total free energy, are

± ∂F

∂

(
∂qi

∂z

) =
∂Fs

∂qi

(8)

where i = 1 . . . 5 and the plus and minus signs correspond to the substrate at z = 0 and

z = d respectively. For the electric potential we assume a potential difference of V is

applied across the substrates so that

U = 0 on z = 0

U = V on z = d
. (9)
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The parameters used in this model are L1 = 9.7 × 10−12 N, L2 = 3.5 × 10−12 N,

L3 = 0.0 N, b = −1.6× 106 Nm−2, c = 3.5× 106 Nm−2, ε0 = 8.854× 10−12 Fm−1, ε̄ = 8.33

and ∆ε = −3 which are typical values for a nematic liquid crystal. The parameters a, W0

and V take various values and will be specified when needed. For the thermotropic energy

in (4) there are three critical values of a as temperature (and therefore a) is reduced: a =

b2/24c = 0.0305 when the nematic phase first becomes locally stable; a = b2/27c = 0.0271

when the nematic and isotropic states have the same energy; and a = 0, at which point

the isotropic phase becomes unstable.

NUMERICAL SOLUTION OF GOVERNING EQUATIONS

To solve the Euler-Lagrange equations (6) and (7) together with the boundary conditions

(8) and (9) numerically, we introduce a ‘time’ derivative and then relax to a steady-state

solution, discretising in time via a semi-implicit Euler method. This time-dependent equa-

tion is equivalent to a balance of dissipative energy and free energy variations [7], where

dissipation is derived from director motion and order changes rather than viscous flow.

Second-order central finite differences are used to evaluate the spatial derivatives in the

bulk of the sample and, at the boundaries, second-order left-handed and right-handed

differences are used.

We consider that a steady-state solution has been reached when the difference in the

scaled 2-norm of the solution from one time step to the next is below a certain tolerance

set by the user depending on the accuracy required. The scaled 2-norm of a vector v is

defined as

||v||2 =

√√√√ 1

N

N∑
j=1

(vj)2 (10)

where vj is the jth entry of v and N is the length of the vector v. For the above test,

the vector used contains the values of all the the dependent variables on the computational

grid.

After determining that a steady state has been reached, we then ensure that a min-

imum energy state has been reached by using numerical quadrature to calculate the free

energy and the local curvature of the free energy surface. If the curvature is positive, we

have found a minimum energy state. This final check is used to make sure that we are not

either at a maximum in the energy (which would also satisfy the Euler-Lagrange equations)

or on an energy plateau where the change in solution may be small while a minimum has

not been reached.

To find a sequence of solutions as a particular parameter (a, W0 or V ) varies, we use

a simple form of continuation, that is, we use the solution at the previous parameter value

as the initial guess for the next computation.
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RESULTS

Figure 2 shows three possible solutions of the governing equations for parameter values

a = 0.0282 × 106 Nm−2, W0 = 3.0 × 10−5 Nm−1 and V = 0 volts. We can now classify

solutions at other parameter values with reference to these three solutions: the isotropic

solution (I) where the bulk of the cell is in the isotropic state with the ordering substrates

inducing partial wetting of the nematic state (also termed a paranematic state); the nematic

solution (N) where the bulk of the cell contains a nematic phase, with the order parameter

equal to the equilibrium value determined by the thermotropic potential except close to the

substrates where enhanced ordering occurs; and the wetting solution (W) in which there

are distinct layers of the nematic phase at and close to the substrates with the isotropic

state in the bulk of the sample. The wetting solution is the result of an energy balance

between the substrate anchoring, which prefers the boundaries to be in a nematic state,

and the thermotropic energy which, at this temperature, prefers the system to be in an

isotropic state.

Figure 3 shows the regions of existence of these solutions as temperature varies, using

the scaled 2-norm of the vector of q1 values on the computational grid as a solution measure,

for a number of anchoring strengths. Close to critical points, where solutions lose stability,

the parameter continuation step was decreased to improve accuracy. We have also marked

certain important points on each graph: NU is the upper bound at which a nematic solution

exists; IL is the lowest temperature at which an isotropic solution exists; WU and WL are

the upper and lower bounds of the wetting solution, respectively. Note that, from the

solutions in Figure 2, in the nematic state we expect the scaled 2-norm of q1 to be around

0.1 and similarly, we expect the scaled 2-norm of q1 to be close to zero for the isotropic

state.

From Figure 3(a) and (b) we see that, for low anchoring strengths, the range of a

values for which the wetting solution exists [WL, WU ] is contained within the range [IL,NU ]

(note that in Figure 3(a) WU and WL almost coincide). Therefore, when cooling from the

isotropic state or heating from the nematic state, the wetting will never be accessed. As

the anchoring strength is increased (Figure 3(c)) the lower bound of wetting solution, WL,

and the lower bound of the isotropic solution, IL, cross. In this case the wetting layer

solution will be accessed, through a first order transition, by decreasing the parameter

a (in other words temperature) past IL. By further decreasing temperature, the wetting

solution will be transformed, through another first order transition, to the nematic solution.

Increasing temperature will cause the nematic state to transform directly to the isotropic

state. Finally, when the anchoring strength is increased further, the isotropic to wetting

transition becomes continuous (Figures 3(d) and (e)).

By plotting values of NU , IL, WU and WL over a large range of anchoring strengths,

we can encapsulate the information in Figure 3 in a single phase diagram (see Figure 4(a)).

This shows all the behaviour described above: although, for low anchoring strengths, the

wetting layer is confined to a temperature region between IL and NU , as anchoring is
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increased the IL curve crosses the WL curve so that the wetting solution is accessible; at

higher anchoring strengths the IL and WU curves meet so that the isotropic to wetting

layer transition becomes continuous. For W0 = 0 we expect that no wetting solution exist.

Figure 4(b) shows the equivalent phase diagram when a voltage of 2 volts is applied

to the cell. An applied electric field in the z direction, when ∆ε < 0, should increase the

tendency for molecules to align in a direction perpendicular to z. For the present situation,

because the boundaries prefer alignment in the x direction, the electric field will induce

order and alignment in the x direction. This can be seen when comparing Figures 4(a)

and (b). In the latter, the NU and WL curves have shifted upwards, indicating that the

nematic and wetting layer states have been stabilised for higher temperatures. The point at

which the IL curve meets the WL curve occurs at a higher temperature and lower value of

W0 implying that, even though the wetting state is stabilised for higher temperatures, the

influence of both field alignment and anchoring alignment will induce the nematic state at

a lower anchoring strength. This last point can be seen clearly in Figure 5, which indicates

the extent of the wetting state region for voltages ranging from 0 volts to 12 volts. The

range of anchoring strengths at which wetting solutions exist decreases as the voltage is

increased until the wetting state does not exist at 12 volts. This decrease in the range

of anchoring strengths over which the wetting state exists is due to the combined aligning

effects of the applied field and the anchoring substrates inducing enough order to transform

the wetting state into the nematic state. The circles marked in Figure 5 indicate the points

at which the IL and WL curves cross in Figure 4. As discussed above, the wetting state

can only be accessed (by reducing temperature whilst in the isotropic state) when the IL

curve is above the WL curve, or equivalently, to the right of the circle in Figure 5.

SUMMARY

We have investigated the existence of wetting layers in a nematic confined between two

aligning substrates as the anchoring strength, temperature and applied voltage are varied.

The range of temperatures over which wetting solutions exist was found to initially increase

as anchoring strength increased but then decrease until the isotropic to wetting layer tran-

sition transformed from a first order to continuous transition. With the introduction of

an electric field, which induces additional order in the system, we found that the nematic

state can occur at higher temperatures and with a sufficiently high voltage the wetting

layer regime is destroyed.
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Figure 1: Schematic of the cell configuration: an isotropic material is sandwiched between

two aligning substrates, a distance d apart. The application of an electric field and/or a

reduction in temperature will induce a phase change.
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Figure 2: Solutions for q1(z): the isotropic solution (I), nematic solution (N) and wetting

solution (W) for a = 0.0282× 106 Nm−2, W0 = 3.0× 10−5 Nm−1 and V = 0 volts.
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Figure 4: Phase diagrams as temperature, a, and anchoring strength, W0, are varied: (a)

V = 0 volts, (b) V = 2 volts. The labels I, W and N indicate the regions in which the

isotropic, wetting layer and nematic states are stable.
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Figure 5: Extent of the wetting state region as a function of anchoring strength and voltage.

The circle indicates the anchoring strength at which IL = WU .


