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 The Eternal Triangle

Adam McBride 

Based on a presentation at the SMC Conference, University of Stirling, 28 April 2001 

Introduction 

The story starts one lunchtime in August 1998. A group of bright young postgraduates are 
perusing the problems set in the 1998 International Mathematical Olympiad which I had 
brought back from Taiwan. The problems are tough. (You can see for yourself in my 
article in SMC Journal 28, pages 13-15.) I expected the students to run into trouble sooner 
or later but I had hoped that they would get a little further than the first problem. Among 
all these experts in things like fluid mechanics and numerical analysis, none knew what a 
cyclic quadrilateral was. (However, there were some novel suggestions!) 

Although this does not quite represent the end of civilisation, it is nevertheless a poor 
show and epitomises the lack of basic geometrical knowledge among the vast majority of 
today's undergraduates in science and engineering. Forty years ago when I was a lad, life 
was rather different. Geometrical deductions were part of the curriculum for a large 
percentage of each cohort. This percentage was almost certainly too large, with many 
pupils finding the going very hard indeed. The 'solution' adopted was to do away with 
almost everything and introduce new approaches, with topics like transformation 
geometry and tessellations becoming flavour of the month. 

One major casualty in this revolution was the idea of proof in mathematics. Geometry 
provided an excellent vehicle for developing powers of deductive reasoning, which are 
needed in all branches of mathematics. Undergraduates embarking on a first course in 
analysis are hit by a double whammy. The dreaded  and  are bad enough but, in 
addition to learning what is tantamount to a foreign language, students have to string the 
'words' together to form sentences and logical arguments. A 'proof' produced nowadays by 
a typical student usually contains most of the right words but all in the wrong order. 

In my view (and all views in this article are personal), the prospective scientists and 
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engineers are being short-changed by the way geometry is taught at present. At the other 
end of the spectrum are lots of people who will get through life perfectly happily without 
knowing that the altitudes of a triangle are concurrent. How to satisfy the needs of a 
disparate population is a challenge that needs to be faced. 

Let's go back to the postgraduates eating their sandwiches in 1998. I decided there and 
then to give them a course of lectures on the geometry of the triangle. The response was 
remarkable. The topic was totally different from the usual material of such courses and 
they loved it! At one level they were exposed to sustained logical arguments. At another 
level they could appreciate the elegance of many of the results. 

●     Two non-parallel lines intersect at a point but we keep coming across sets of three 
concurrent lines (medians, altitudes, etc.) 

●     In general two circles either intersect at two distinct points or miss each other 
completely but we keep coming across circles which touch. 

●     Three non-collinear points are sufficient to determine a circle. What then is the 
likelihood of nine interesting points lying on one circle? 

We have no right to expect any of these flukes and yet they are all nestling inside the 
humble triangle. 

Come with me as we attempt to unravel the mysteries of what's going on. For some 
readers this will be a voyage of discovery, while for others it may be more of a trip Down 
Memory Lane. The material contains opportunities for the lowest attainers to draw pretty 
pictures as well as opportunities to teach high attainers how to construct rigorous proofs. 
For everyone, there is the chance to wallow in the sheer beauty of it all. 

Congruent Triangles 

Any triangle has three sides and three angles. However, we do not need all six bits of 
information to determine a triangle uniquely. For example, suppose we know that 

 

Draw a line segment of length 2 cm to represent . Form an angle of  and head off in 
this direction for a distance of 3 cm to arrive at . The three vertices  and  are now 
known and the triangle is completely specified. 
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Figure 1: triangles given SAS 

If the three triangles shown in Figure 1 were made of cardboard, any one could be placed 
exactly on top of either of the others. In this sense the triangles are regarded as equivalent 
or congruent. Knowing the lengths of the sides  and , as well as the size of the 
included angle , we can calculate the length of  and the size of the angles at  
and . Here are four ways of proving two triangles congruent. 

●     SSS (side-side-side) 
●     SAS (side-angle-side; two sides and the included angle) 
●     AAS (angle-angle-side; two angles and the corresponding side) 
●     RHS (right angle-hypotenuse-side). 

SAS was the one discussed above. To illustrate AAS consider  and 
. Note that  and  correspond to  and  respectively. 

Hence  and  are corresponding sides. We say that  is congruent to  and 
write . 

(Note that we use  and not  because  correspond to  respectively in 
Figure 2.) 

 

Figure 2: triangles given AAS 
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In contrast, knowing the three angles of a triangle is not enough to specify a triangle 
uniquely (although it would be unique up to similarity, rather than congruence). Likewise 
two pairs of angles and a pair of non-corresponding sides are not sufficient. 

In days of yore, before the advent of vectors, the proofs in school geometry books were 
based fairly and squarely on the use of the four cases of congruence listed above. We are 
talking here of books like those by Walker and Millar (12s 3d in old money) or White and 
Morrison. It is instructive to recall what such proofs looked like. (I'll only include two in 
detail now, but those of a frail disposition may wish to jump ahead.) Let us consider the 
(internal) bisectors of the angles of a triangle. As a starter for ten, we need 

Theorem 1 The locus of a point equidistant from two intersecting straight lines is the bisector of the 
angle between them. 

There is actually quite a lot to be done here as we shall now see. 

 

Figure 3:  equidistant from  and  

Part 1 We shall prove that any point which is equidistant from two intersecting lines lies on the bisector 
of the angle between them. Let us set things up in Figure 3. 

Given:- Straight lines  and  meeting at ; 

 any point equidistant from  and . 

RTP (Required to prove):-  lies on the bisector of . 

http://www-maths.mcs.st-andrews.ac.uk/~smc/journal/mcb.html (4 of 20)16/11/2006 15:32:11



SMCjournal

Construction:- Join . Draw  perpendicular to  respectively. 

Proof:- In  and , 

1.  (given;  is equidistant from  and ) 

2.  (  is a common side of the two triangles) 

3.  (right angles, by construction). 

∴  (RHS). 

∴ . 

∴  is on the bisector of . 

Don't relax yet. We are only half finished! 

Part 2 

 

Figure 4:  on the bisector of  

Given:- Straight lines  and  meeting at , 

 any point on the bisector of . 
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RTP:-  is equidistant from  and . 

Construction:- Draw ,  perpendicular to  respectively as in Figure 4. 

We want to prove that . 

Proof:- In  and  

1.  (given) 

2.  (right angles, by construction) 

3.  (common side) 

∴  (AAS;  is opposite the right angle in both triangles). 

∴ . 

∴  is equidistant from  and . 

Only now can we add Q.E.D. (quod erat demonstrandum) if we wish! 

Theorem 2 The internal bisectors of the three angles of a triangle are concurrent. The point of 
concurrence is called the incentre and is the centre of the inscribed circle which touches the three sides 
of the triangle. 

 

Figure 5: concurrence of internal bisectors 
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Given:- . 

RTP:- The bisectors of ,  and  are concurrent. 

Construction:- Draw  and , the bisectors of  and , respectively which 
meet at , as shown in Figure 5. 

Draw  perpendicular to  respectively. 

Join . 

We shall show that  bisects . 

Proof:-  is the bisector of . 

∴  is the locus of points equidistant from  and  (Theorem 1, Part 2). 

∴ . 

Similarly . 

∴ . 

∴  is equidistant from  and . 

∴  lies on the bisector of  (Theorem 1, Part 1). 

Also, since ,  is the centre of a circle which passes through  and 
therefore touches the three sides of . 

Q.E.D. 

Commentary 

The old style was nothing if not disciplined. In order we have 
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●     a clear statement of the result 
●     a diagram with relevant points labelled 
●     a clear statement of what we are given 
●     a clear statement of what we are trying to prove 
●     some constructions, if required 
●     a proof based on congruent triangles (and using results proved previously). 

Note the use of '∴' for 'therefore' rather than the all-pervasive '⇔' which is frequently 
misused and abused nowadays. Theorem 1 also highlights the difference between a 
statement and its converse (i.e.  versus ). 

Note Those of a frail disposition can rejoin us here! 

Triangle Centres 

There are four well-known (?) sets of three lines, associated with a triangle , which 
meet at a point. 

●     The medians meet at the centroid,  

●     The altitudes meet at the orthocentre,  

●     The (internal) angle bisectors meet at the incentre,  

●     The perpendicular bisectors of the sides meet at the circumcentre, . 

 is the centre of the circumcircle of , i.e. the unique circle which passes through 
the three vertices of the triangle. 

The letters , ,  and  will be used for these special points from now on. 

As mentioned earlier, we have no right to expect three lines to be concurrent. Yet here we 
have four such 'flukes'. However, these are not all independent of each other. 

Theorem 3 Given that the perpendicular bisectors of the sides of any triangle are concurrent, it follows 
that the altitudes of any triangle are concurrent. 

Proof:- We shall adopt a streamlined version of the style used in Theorem 1 and 2. 

Let  be any triangle. We wish to prove that its altitudes are concurrent. 
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Through each vertex draw a line parallel to the opposite side (i.e. lines through  
parallel to  respectively). Let these intersect at  as shown in Figure 6. 

It is not hard to prove that  and  are parallelograms so that , both 
being equal to . 

 

Figure 6: altitude of  

Let  be the altitude of  through . Since  and  are parallel,  is 

perpendicular to . From above, it follows that  is the perpendicular bisector of 

. By a similar argument applied to the other two altitudes of , we see that the 

altitudes of  are the perpendicular bisectors of the sides of . By assumption, 

the perpendicular bisectors of  are concurrent. Hence the altitudes of  are 
concurrent. 

Q.E.D. 

Here is another interconnection. 

Definition Let  be the feet of the altitudes from  respectively in  as shown in 

Figure 7. Then  is called the pedal triangle of . 
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Figure 7: pedal triangle of  

Figure 7 contains a lot of rich structure. At this stage, the dreaded cyclic quadrilateral 
surfaces. (For younger readers in the same boat as the postgraduates, a cyclic quadrilateral 
is a quadrilateral whose four vertices all lie on a circle.) In the diagram,  is the 
orthocentre of . We know that 

 

∴  is a cyclic quadrilateral (opposite angles supplementary). 

∴  (angles in same segment of circle ). 

Similarly  since  is a cyclic quadrilateral. 

Also  since  is a cyclic quadrilateral. 

∴  (relabelling angles). 

∴ . 

∴  bisects . 
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We have therefore proved the following result. 

Theorem 4 The altitudes of a triangle are the angle bisectors of the corresponding pedal triangle. 

Euler Line 

Next let us investigate connections between various triangle centres. To get the full 
flavour, we shall work with a scalene triangle, i.e. one in which the sides all have different 
lengths. (If the original triangle is isosceles or equilateral, diagrams will degenerate. For 
example, if  is equilateral, , ,  and  coincide.) 

Use of some package such as Geometer's Sketchpad or Cabri Geomètre may suggest 
various results. For example, it looks as though ,  and  lie on a line and that  
trisects . Can this be true? 

Theorem 5 The centroid , the orthocentre  and the circumcentre  of a (scalene) triangle lie on a 
straight line, called the Euler Line of the triangle. Further, in vector notation, 

 

Proof:- 

 

Figure 8: Euler line of  

Let A' be the mid-point of , so that  is the perpendicular bisector of  and  is 
the median through . 
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It is a standard result that . 

Let  be the point on the line through  and  such that , as shown in Figure 

8. 

We shall prove that  is actually . 

In  and  

1.  (from above) 

2.  (vertically opposite angles). 

∴  and  are similar. 

∴ . 

∴  is parallel to . 

∴  (extended) is perpendicular to  (since ). 

∴  lies on the altitude of  through . 

Similarly  lies on the altitudes of  through  and . 

∴  is the orthocentre  of . 

∴  are collinear and . 

Q.E.D. 

Theorem 5 provides us with another wonderful surprise and one which escaped all the 
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Greek geometers. (Euler discovered this in the 18th century.) We shall meet the Euler line 
again in a moment. 

Meanwhile, let us turn our attention to circles related to a triangle. We have already met 
the incircle and the circumcircle, but that's only a start. 

The 9-point circle 

Given that three non-collinear points determine a circle uniquely, the likelihood of nine 
special points lying on a circle seems remote indeed. However, we are in for another 
wonderful surprise. 

Theorem 6 Given , there is a circle passing through the following nine points: 

 the mid-points of , ,  respectively 

 the feet of the altitudes , ,  respectively 

 the mid-points of , ,  respectively. 

Further, the centre  of the circle is the mid-point of  and the radius of the circle is 

, where  is the radius of the circumcircle of  shown in Figure 9. 
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Figure 9: 9-point circle 

Proof:- To start with we shall use vectors and take , the circumcentre, as origin (a shrewd choice!). 

Let , , . 

By definition of the circumcircle, 

 

By a standard result . 

∴  (Theorem 5). 

Also  (  is the mid-point of ). 

Now  (  is the mid-point of ). 

∴ . 
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∴  (by(*)). 

Similarly . 

∴  and  lie on the circle with centre  and radius . 

Next . 

∴ . 

∴ . 

Similarly . 

∴  and  lie on the circle with centre  and radius . 

From above  and . 

∴  is the mid-point of . 

However  subtends a right-angle at . 

∴  is a diameter of the circumcircle of  and 

 is the centre of this circle. 

∴ . 

Similarly . 

∴  and  lie on the circle with centre  and radius . 

http://www-maths.mcs.st-andrews.ac.uk/~smc/journal/mcb.html (15 of 20)16/11/2006 15:32:11



SMCjournal

Q.E.D. 

For your further amazement, we can state 

Theorem 7 The 9-point circle of  is also the 9-point circle of each of ,  and 

. 

Proof:- Consider  in Figure 9. It is enough to prove that the 9-point circle of  is the 

unique circle passing through the mid-points of the sides ,  and . However, these are the 

points,  and  in the notation of Theorem 6 and do indeed lie on this circle. 

The same applies to  and . 

Q.E.D. 

Three more circles now come into the picture. We consider one in detail, with the other 
two being similar. We shall bisect  of  internally as before. However, we now 
bisect  and  externally as shown in Figure 10. 
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Figure 10 : escribed circle opposite  

Theorem 8 The internal bisector of  and the external bisectors of  and  are concurrent at a 

point , which is the centre of a circle which touches  internally and the sides  and  

externally (in the sense that  and  are extended beyond  and ). 

Definition In the notation of Theorem 8,  is called the excentre of  opposite  and the 

corresponding circle is called the escribed circle opposite . 

There are excentres and escribed circles opposite vertices  and  as well. 

Relations between the various circles 

We now have 6 circles and it is of interest to see how they interact with each other. The 
following table is useful. 
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Circle Centre Radius 

Circumcircle   

Inscribed   

Escribed, opposite    

Escribed, opposite    

Escribed, opposite    

Nine-point   

Table 1 

Calculation of the radii of the inscribed and escribed circles involves the use of 
trigonometric identities and is left as an exercise for the reader. Here are two more such 
exercises. 

●     , so that . 

●      

However, rather than dwell on algebraic manipulation, we turn to yet another remarkable 
result, proved by Karl Feuerbach in 1822. 

Theorem 9 (Feuerbach's Theorem) 

The 9-point circle of a triangle touches the inscribed circle and each of the three escribed 
circles. 

What right have we to expect this? None at all. We shall not give a proof but instead invite 
the reader to get a sheet of A3 paper and draw a large diagram. 
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Challenge Starting with a large scalene triangle, construct every special point and circle mentioned so 
far, using only a straight edge (with no scale) and a pair of compasses. If you succeed, frame the 
drawing and hang it on the wall in your classroom. 

While we are in this neck of the woods, look at the diagram below in which the angles of 
an arbitrary triangle  have been trisected. What do you think is true of ? 

 

Figure 11: Morley's theorem 

Theorem 10 (Morley's Theorem; 1899) 

(i)  is equilateral. 

(ii) Each side of  has length , where  is the circumradius of 

. 

The formula for the side-length is reminiscent of those in Table 1. However, there is one 
new feature. You can bisect an angle using a straight edge and compasses but you cannot 
trisect an angle in this way. The reason must wait for another time. 

Conclusion 

We have explored a number of remarkable surprises which we have no right to expect. 
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Actually this is only the tip of the iceberg. For example, look again at Theorem 9. The 9-
point circle of  contains 4 more interesting points, where it touches the inscribed 
and escribed circles of . Moreover, Theorem 7 tells us that we'll get another 4 
interesting points from each of ,  and . So our 9-point circle now has 
25 interesting points lying on it! 

As for interesting points inside a triangle,  and  are a mere drop in the ocean. 
Find hundreds more 'triangle centres' at the website 

http://cedar.evansville.edu/~ck6 

which is lovingly maintained by Clark Kimberling. 

The next time you see a triangle, just think of all that's going on inside it! 


