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We use the lubrication approximation to investigate the steady locally unidirectional gravity-
driven draining of a thin rivulet of viscoplastic material, modelled as a biviscosity fluid (or, as
a special case, as a Bingham material), down a slowly varying substrate. In contrast to the
earlier work on viscoplastic rivulets we consider small-scale flows, such as those found in many
industrial coating and printing processes, in which surface-tension effects play a significant
role. We interpret our results as describing a slowly varying rivulet draining in the azimuthal
direction from the top to the bottom of a large horizontal circular cylinder. Provided that the
yield stress is non-zero we find that the flow is always unyielded near the top of the cylinder
(where the rivulet becomes infinitely wide in the transverse direction), and, except in the
special case when the viscosity ratio is zero, near the bottom of the cylinder (where it becomes
infinitely thick). For sufficiently small values of the prescribed volume flux the flow is unyielded
everywhere, but for larger values of the flux the flow near the substrate in the centre of the
rivulet is yielded. We obtain numerically calculated values of the semi-width of the rivulet
and of the yielded region as well as of the maximum height of the rivulet and of the yielded
region for a range of parameter values, and describe the asymptotic behaviour of the solution
in the limits of large and small yield stress, large and small flux, and small viscosity ratio.
In the special case of a Bingham material the flow near the top of the cylinder consists of an
infinitely wide rigid and stationary plug, while elsewhere it consists of two rigid and stationary
“levées” at the edges of the rivulet and a central region in which the flow near the free surface
is a “pseudo-plug” whose velocity does not vary normally to the substrate, separated from the
“fully plastic” flow near the substrate by a “pseudo-yield surface”.

!Author for correspondence. Telephone : + 44 (0)141 548 3820, Fax : + 44 (0)141 552 8657, Email :
s.k.wilson@strath.ac.uk



1 Introduction

The gravity-driven draining of a rivulet down an inclined substrate occurs in a number of
practical situations ranging from‘many industrial devices and coating processes to a variety
of geophysical flows. In practice many of the foodstuffs, paints and inks used in industrial
coating and printing processes, as well as many of the muds and lavas found in geophysical
contexts, are viscoplastic, that is to say they behave essentially like rigid solids when subjected
to a small stress but flow more readily (“yield”) when subjected to a large stress. The various
constitutive equations that have been proposed to model viscoplastic materials are reviewed
by Bird, Dai and Yarusso [1] and Barnes [2]. The existence of a true “yield stress” below which
flow never occurs is the subject of a continuing rheological debate (see, for example, the review
article by Barnes [2]). Notwithstanding this debate, the concept of a well-defined yield stress
enshrined in the Bingham model and its generélisa,tion the Herschel-Bulkley model (in both
of which the material behaves like a perfectly rigid solid “plug” unless the stress exceeds the
yield stress, but otherwise behaves like a viscous fluid) has proved a very useful idealisation in
a wide range of practical applications. However, in other situations it is necessary to allow for
some deformation at low shear rates. Several models have been proposed for these situations,
including the biviscosity model employed in the present work. In practice the appropriate
model to use will depend on the details of the specific flow under consideration.

However, as many authors have pointed out, a naive treatment of flows using either the
Bingham or the Herschel-Bulkley model can give rise to the so-called “Bingham paradox”,
namely that regions of material that appear to be unyielded (and which are therefore supposed
to behave like a rigid plug) are found to be deforming. In a pioneering paper Walton and
Bittleston [4] undertook a careful asymptotic analysis of unidirectional axial flow of a Bingham

material through a narrow eccentric annulus and found that the flow contains a “pseudo-



plug” region whose velocity is constant in the radial but not the azimuthal direction and
in which the stress is just above the yield stress, as well as “fully plastic” regions in which
the stress is significantly above the yield stress and a rigid “true-plug” region whose velocity
is constant and in which the stress is below the yield stress. In an important recent paper
Balmforth and Craster [3] showed that Walton and Bittleston’s [4] work contains the essence
of the resolution of the Bingham paradox. Balmforth and Craster [3] showed that, when
interpreted correctly, the Bingham model does in fact lead to a consistent description of non-
unidirectional two-dimensional thin-film flow, and that the apparently paradoxical solutions
of earlier authors can be justified if they are interpreted correctly. In particular, Balmforth
and Craster’s [3] careful asymptotic analysis of non-unidirectional two-dimensional thin-film
flow of a Herschel-Bulkley material down an inclined plane reveals that the “unyielded region”
is in fact a pseudo-plug region in which the stress is just above the yield stress and that the
“yield surface” is in fact a “pseudo-yield surface” separating the pseudo-plug and fully plastic
regions. Wilson [5] independently obtained the corresponding results using the biviscosity
model in the distinguished limit in which the aspect ratio of the flow and the ratio of the two
characteristic viscosities in the model approach zero together. In particular, he found that in
this limit the true yield surface divides the pseudo-plug region into regions in which the stress
is either significantly below or just above the yield stress. Balmforth and Craster’s [3] results
for a Bingham material are recovered as a special case of Wilson’s [5] analysis. Recently Ross,
Wilson and Duffy [6f used the same biviscosity model to study two-dimensional thin-film flow
round a large horizontal stationary or rotating cylinder. In the present work we shall allow
for the possibility of some deformation at low stresses by employing the biviscosity model.
Note that the Bingham model (in which such deformation is impossible) can be recovered as
a special case of the biviscosity model.

The pioneering analysis of the steady unidirectional flow of a uniform rivulet of Newtonian



fluid down an inclined plane in the presence of significant surface-tension effects was undertaken
by Towell and Rothfeld [7]. This work was subsequently extended by Rosenblat [8] to study
flow of a viscoelastic fluid and by Alekseenko, Geshev and Kuibin [9] to study flow down the
lower surface of an inclined circular cylinder. Duffy and Moffatt [10] used the lubrication
approximation employed by Allen and Biggin [11] to obtain analytically the leading-order
solution for Newtonian rivulet flow down a planar substrate in the special case when the
cross-sectional profile of the rivulet in the direction transverse to the flow is thin. Duffy and
Moffatt [10] calculated the shape of the rivulet (and, in particular, its width and maximum
height) as a function of «, the angle of inclination of the substrate to the horizontal, for
0 < a < 7. Duffy and Moffatt [10] also interpreted their results as describing the locally
unidirectional flow down a locally planar substrate whose local slope o varies slowly in the
flow-wise direction and, in particular, used them to describe the flow in the azimuthal direction
round a large horizontal circular cylinder. Wilson and Duffy [12] extended this analysis to study
flow of a non-uniform rivulet down a slowly varying substrate with variation transverse to the
direction of flow. Recently Holland, Duffy and Wilson [13] used the same approach to study
flow of a non-uniform rivulet whose surface tension depends linearly on temperature down a
slowly varying substrate that is uniformly hotter or colder than the surrounding atmosphere.
Taking a somewhat different approach Smith [14] and Duffy and Moffatt [15] obtained similarity
solutions of the thin-film equations describing the steady draining of a slender non-uniform
rivulet of Newtonian fluid from a point source on an inclined plane in the cases of weak and
strong surface-tension effects respectively. Both of these similarity solutions predict a varying
contact angle at the contact line; recently Wilson, Duffy and Davis [16] showed how they
can be modified to accommodate a fixed-contact-angle condition if sufficiently strong slip at
the solid/fluid interface is incorporated into the model. Wilson and Burgess [19] generalised

Smith’s [14] similarity solution to flow of a power-law fluid.



There has been much less work on rivulets of viscoplastic material, and the work that has
been undertaken is concerned exclusively with large-scale geophysical flows (such as flows of
lavas and muds) in which surface-tension effects are insignificant. The pioneering analysis of
the steady unidirectional flow of a uniform rivulet of Bingham material down an inclined plane
in the absence of surface-tension effects was performed by Hulme [17]. His analysis predicts
that the central portion of the rivulet is bounded laterally by stationary regions of unyielded
material (which resemble the “levées” often observed in nature) that occur when the local
height of the free surface falls below the “yield height” 7y/pg sina, where 7, and p denote the
constant yield stress and density of the material, o the angle of inclination of the plane to the
horizontal and g acceleration due to gravity. Unfortunately, as Coussot and Proust [18] pointed
out, Hulme’s [17] lateral force balance is erroneous, and the correct solution to the problem he
posed has a uniform free surface in the central region of the rivulet whose height is everywhere
equal to the yield height and so the rivulet is unyielded everywhere and hence stationary.
Appreciating the shortcomings of the unidirectional-flow solution Coussot and Proust [18]
derived the thin-film equation for a slender non-uniform rivulet of a Herschel-Bulkley material.
This equation does not admit a similarity solution, but Coussot and Proust [18] did obtain
a similarity solution to an approximate version of their equation which is in qualitative (but
not quantitative) agreement with a series of their own experimental measurements made using
various muds. Subsequently Wilson and Burgess [19] found that for the two experiments
for which Coussot and Proust’s [18] equation is appropriate, quantitative agreement can be
obtained between the experimental measurements and numerically calculated solutions of the
unapproximated equation.

As far as the authors are aware there has been no previous work on the problem addressed
in the present paper, namely small-scale rivulet flow of viscoplastic materials, such as those

found in many industrial coating and printing processes, in which surface-tension effects play a



significant role. Specifically in the present paper we shall follow the approach of Duffy and Mof-
fatt [10] and use the lubrication approximation to investigate the steady locally unidirectional
gravity-driven draining of a thin rivulet of viscoplastic material, modelled as a biviscosity fluid

(or, as a special case, as a Bingham material), down a slowly varying substrate.

2 A Biviscosity Fluid

The governing equations representing conservation of mass and balance of momentum for

steady flow of an incompressible fluid with constant density p take the form
V-u=0, p(u-Viu=V- o+ pg, (1)

where u, o and g denote the fluid velocity, stress tensor and acceleration due to gravity,
respectively. In the present work we shall consider a biviscosity fluid whose constitutive law is

given by
2/1:]_9, T< Ty

—_ / -
o=-pl+o', where o {2(,“2'*‘1(19)37 >, (2)

in which p is the pressure, I is the identity tensor, e is the rate-of-deformation tensor, ¢ is the
local shear rate and 7 is a scalar measure of the local stress, given by

1 1/2

(V) + (v)T], q=[24xed)]"", 7= [- tr(a'2)] . 3)

e = 5

N =

The other four quantities in (2), namely the viscosities y; and s and the stresses 7y and Ty,
are constant material parameters related by 7, = p1gy = pagy + 70, where gy is the value of
the shear rate at which the “yield stress” 7y is attained [20]. The relation between 7 and g is
given by 7 = p1q9 when ¢ < ¢y and 7 = pgq + 79 when ¢ > gy, and is shown in Fig. 1. We
note that 7o = 7y (1 — A), where the viscosity ratio X is defined by A = pus/u1. For 7 < Ty the
fluid is “unyielded” and behaves like a Newtonian fluid with a “high” (constant) viscosity u1,
while for 7 > 7y the fluid is “yielded” and behaves like a viscous fluid with a “low” (shear-rate-

dependent) viscosity us 4+ 79/q. In the present viscoplastic context us < 1 and so 0 < \ <1l



Any surface on which 7 = 7, which separates yielded and unyielded regions is called a “yield
surface”. The familiar case of a Newtonian fluid with constant viscosity p; = us is recovered
in the case A = 1 and the Bingham model is recovered in the limit A — 0. In the special case
7y = 0 the fluid is always yieldedvand behaves like a Newtonian fluid with constant viscosity
p2, while in the limit 7, — oo it is always unyielded and behaves like a Newtonian fluid with

constant viscosity p1.

3 Problem Formulation

3.1 Flow Down a Planar Substrate

Consider initially the steady unidirectional flow of a thin symmetric rivulet of the biviscosity
fluid described in Sec. 2 with prescribed positive volume flux Q > 0 down a planar substrate
inclined at an angle o (0 < a < 7) to the horizontal, shown in Fig. 2. We choose Cartesian
axes Ozyz as indicated in Fig. 2, with the z axis in the direction of flow and the y axis
horizontal (transverse to the direction of flow) with respect to which the substrate is dendted
by z = 0. The fluid velocity and pressure are denoted by u = u(y,2)i and p = p(z,y, 2)
respectively. Provided that A # 0, the fluid adjacent to the free surface is always unyielded
(since the stress is small there) and so in general the solution comprises a region of yielded
fluid (region 2), occupying 0 < z < H for |y| < b, and a region of unyielded fluid (region
1) occupying H < z < hfor |yl < band 0 < z < h for b < |y| < a, where z = h(y) and
z = H(y) (< h) denote the positions of the free surface and of the yield surface respectively
and the constants a and b (< a) denote the semi-widths of the rivulet and the yielded region
respectively. We use the subscripts 1 and 2 on » and p to distinguish between quantities in
the two regions. Since the rivulet is thin (with, in particular, the prescribed constant contact
angle between the free surface and the substrate G satisfying 8 <« 1) employing the familiar

lubrication approximation (see, for example, Acheson [21] or Ockendon and Ockendon [22])



the governing equations in the two regions are simply

0 = —piz+pgsina+ pu; ,,,
0 = —Diy,
0 = -pi.—pgcosa,

for i = 1,2, subject to the boundary conditions of no slip at the substrate z = 0,

up=0 for b<|y|<a,

upg =0 for |y| <b,

continuity of velocity and normal and tangential stress at the yield surface z = H(y),

Ui = ug,
p1 = pa,
H1uy,z = Hau2 ; + To = Ty,
and balances of normal and tangential stress at the free surface z = h(y),

p1 — po = —yh",

ULz = 07

(12)

(13)

together with the definition of the (unknown) positions of the edges of the yielded region

y = b, ‘

H =0,

(14)

and prescribed constant contact angle at the (unknown) positions of the edges of the rivulet

y = *a,

(15)

(16)



Here py denotes the constant pressure of the surrounding atmosphere, « the constant coefficient
of surface tension, and g the acceleration due to gravity, while primes denote differentiation
with respect to argument. Note that, since the flow is unidirectional, the kinematic condition
is identically satisfied.

The present analysis is concerned with small-scale flows, such as those found in many
industrial coating and printing processes, whose transverse length scales are of the order of the
capillary length | = (v/pg)!/?, typically 1 cm or less. Yield-stress effects are significant when
the thickness of the rivulet is greater than or equal to the yield height 7, /pgsine, i.e. when
the yield stress is of the order of 102 Pa or less. This condition is satisfied for many of the
foodstuffs, paints and inks used in industrial coating and printing applications. For simplicity
we non-dimensionalise using the capillary length [ as the length scale in the y direction, I3 as
the length scale in the z direction, 732/u2 as the velocity scale, and pgl as the stress scale.
Hereafter all quantities will be non-dimensional unless stated otherwise.

When region 2 is present integrating (6) with ¢ = 1 and ¢ = 2 respectively subject to (10)

onz=H and (12) on z = h yields py =p in b < |y| < a and p; = p2 = p in |y| < b, where
p=po+ (h— 2)cosa — h". (17)
Then (5) yields a third-order ordinary differential equation for h, namely
" = K cosa, (18)

to be integrated subject to (15) and (16) at y = +a, and so

cosh ma — cosh my

if 0<
msinhma if 0sa<n/2,

2,2
hy)=4 £ ¥ if a=u/2, (19)
2a

COS MYy — COs Mma

= if 7/2<a<m,
\ msinma

where we have introduced the notation m = | cos &|'/2. From (17) we have p, = 0 and so when



b < |y| < a integrating (4) with < = 1 subject to (7) on z = 0 and (13) on z = h yields

Asina

UL = — (2hz — 2%), (20)

but when |y| < b integrating (4) with i = 1 and i = 2 subject to (8) on z =0, (9) and (11) on

z = H and (13) on z = h yields

sin a
2

(2hz — 2%) — (1 = N)7y2. (22)

Asina
2

up = (2hz — 2> — 2hH + H?) + (2hH — H?) — (1 — \)7yH, (21)

sin o

Ug =

The requirement that the stress takes its yield value 7y on the yield surface z = H means that

H is given by

H=h-— X

sina’ (23)

showing that the yield surface (when it exists) always lies below the free surface by a constant
amount equal to the “yield height” 7y/sina, as indicated in Fig. 2. The volume flux of fluid

down the substrate, @, is given by

a prh b prH b rh
Q=2/b/0u1(y,z)dzdy+2/0/0 uz(y,z)dzdy+2/0/Hul(y,z)dzdy, (24)

and so using (20), (21) and (22) together with (23) to eliminate H we obtain

2Asina @ 2(1 - A)sina [?
Q= [ hw2 oy + 2250 P,

3
b b(1— \)73
—(=N7 [P dy+ T 2
(L=X7y | hy) dy + — (25)
With (19) and (23) the value of b is determined from (14) at y = +b to be
(1
— cosh™! [cosh ma — 1Y sinhma] if 0<a<n/2,
m sina
b=1{ (a®— 20L7'y)1/2 if a=mn/2, (26)
1
—cos™! [cos ma + sinma] if 7/2<a<m.
| sina

10



The explicit expression for @ is obtained by substituting for & from (19) into (25). In general
this expression is lengthy and so will be omitted for the sake of brevity. In the special case
a =m/2 Eq. (25) (with (26)) simplifies to

4xat N 2(1 — \)b°
105 105q2

Q= (2a + 37y). (27)

When region 2 is absent (in which case the fluid is unyielded everywhere and behaves like
a Newtonian fluid with constant dimensional viscosity p;) similar arguments yield p; = p (i.e.
the pressure is given by (17) throughout the flow) and show that k once again satisfies (18)

for all y and hence is again given by (19). The velocity u,; is again given by (20) and Q is now

given by
e rh 2 sina [¢
Q=2 ["wiundray =232 [“hPay, (28)
0o Jo 0
and so using (19) we obtain
Asina
= F
Q =~ F(ma), (29)

where we have defined

15ma coth® ma — 15 coth? ma — 9macothma +4 if 0<a < /2,

F(ma) = {22 (ma)* it a=r/2, (30)
—15macot® ma + 15cot? ma — 9macotma +4  if w/2<a <m,
in agreement with the corresponding results obtained by Duffy and Moffatt [10] in the New-
tonian case. (Note that in the case & = m/2 we have m = 0 and the factors of m?* must be
cancelled before setting o = 7/2.)
For any prescribed positive value of the volume flux, Q > 0, the possible rivulet semi-widths
are the positive solutions for a of the equation Q = @, where Q is given either by (25) if region

2 is present or by (29) if region 2 is absent. Once a is known h, H and b are given by (19), (23)

and (26) respectively. From (19) the maximum thickness of the cross section of the rivulet,

11



denoted by Ay, = h(0), is given by

ita,nh(—ﬂ) if 0<a<n/2,
m 2
a .
hy = { 3 if a=mn/2, (31)
ltan(@) if 71/2<a<m,
L m 2

and from (23) the maximum thickness of the cross section of the yielded region, denoted by

H,, = H(0), is given by

-
Hy = hy — Sinya. (32)

In practice since the algebra required to calculate @ is rather lengthy we used the symbolic
algebra package MAPLE V running on a SUN ULTRA 10 to perform the analytical evaluation
of @ from (25) and (29) as well as the subsequent numerical calculation of a from the equation
Q=4

3.2 Flow Down a Slowly Varying Substrate

So far the analysis has been restricted to strictly unidirectional flow but, as Duffy and Mof-
fatt [10] describe, this solution is also the leading-order approximation to the local behaviour
of a rivulet with non-uniform width draining down a non-planar cylindrical substrate, where
« now represents the local inclination of the substrate to the horizontal, provided that « varies
sufficiently slowly, i.e. provided that both the longitudinal aspect ratio ¢ = [B/R and the re-
duced Reynolds number pyI23%/u3 R (where R is a typical radius of curvature of the substrate)
are sufficiently small. Thus we shall interpret the results given subsequently as describing a
slowly varying rivulet draining in the azimuthal direction from the top (a = 0) to the bottom
(o = ) of a large horizontal circular cylinder as sketched in Fig. 3. As Wilson and Duffy [12]
showed, in the Newtonian case there are multiple branches of solutions for a in [2<a<m,
but of these only the one that connects smoothly with the solution in 0 < a < 7 /2 is physically

realisable. We shall henceforth restrict our attention to this latter type of solution. We define

12



the term “yielded zone” to correspond to those values of o at which region 2 is present; at
other values of o (the “unyielded zone”) region 2 is absent, the flow is unyielded all the way

from y = —a to y = a, and the solution is independent of 7.

3.3 The Yield Condition

Provided that 7, # 0, for sufficiently small values of Q the unyielded zone extends all the way
from o = 0 to @ = 7 and so Q is given by (29) for all 0 < a < 7. However, for sufficiently
large values of ) a yielded zone is present. The edges of the yielded zone are where b = 0, and

from (26) we find that the corresponding values of a, denoted by ay, are given by

2
Etanh_l('r_rny) if 0<a<n/2,

sina
ay =1 27y if a=mn/2, (33)
2
—tan~! (T.nTy) if 7/2<a<m.
m sin o

Substituting a = ay into (29) yields Q = Qy, where @y is given by

Asina
Qy = ot ¥ (may). (34)

The real solutions for « of the equation Qy = Q (if they exist) are the edges of the yielded
zone. Figure 4 shows Qy /) defined by (34) plotted as a function of a/~ for a range of values of
Ty. As Fig. 4 illustrates, Qy/X is a concave function of o defined over the interval oy < o < ,

where ap = ag(1y) (0 < a9 < 7/2) is the solution for a of mr, = sinea, and so

&

(35)

(7';,1 +4)1/2 - 7'3:'
5 .

Qg = cos ! [

Note that o is a monotonically increasing function of 7, satisfying ag = 7y, + O('r)?) as 7y — 0,
and ap = w/2 — 'ry'2 + O('ry_6) as 7y — 0o. As Fig. 4 also shows, @, /X becomes unbounded
as @ = of -and as a = 77; also Q,/) is decreasing with slope —25672/945 < 0 at a = 7/2

where it takes the value 647'}‘} /105, and has a single global minimum value of Q./\ (say) at

13



a = ag, where o = a¢(7y) (7/2 < a¢ < 7) is the solution for o of
2(1 + sin® @) F(may) = (1 + cos? a)F'(may) sinmay, (36)

where F' and ay are given by (30) and (33) respectively. Local analysis of (36) reveals that as

7y — 0 we have

T 4‘Ty 64/\7')‘,1
ac = 2 277 QC ~ 105 bl (37)
and as 7, — 00 we have
365 59/4p \73
-1 Yy
~ — 2 —_ ~N —
Q¢ ~ T — tan 19572° c 96 s (38)

y

where 7 — tan™! 2 ~ 0.64757. Figure 5(a) shows ap/m given by (35) and o /7 obtained from
(36) plotted as functions of 7,. Figure 5(b) shows Q./) also plotted as a function of Ty. Figure
5 also shows the corresponding leading-order asymptotic expressions for o /7 and Q. /A in the
limits 7 — 0 and 7y — oo given by (37) and (38). In particular, Fig. 5 shows that both
ac and Q¢ are monotonically increasing functions of 7,. Thus for @ < Q. (or equivalently
Ty > Tyc, Where 7y is the value of 7, for which Q. = Q) Eq. (34) has no real roots for o
and so the unyielded zone extends all the way from o = 0 to @ = 7. On the other hand,
for @ > Q. (or equivalently 7, < Tyc) Eq. (34) has two distinct real roots denoted by oy and
az, where ap < a1 < a¢ < az < 7, and so the flow comprises a yielded zone a1 < a < o,
an “upper unyielded zone” 0 < a < o and a “lower unyielded zone” oy < a < 7. For
Qc < Q < 64A7}/105 we have 7/2 < a1 < . and the yielded zone is confined to the lower half
of the cylinder, but for Q > 64)\7';‘ /105 we have ag < a@; < 7/2 and the yielded zone extends
over a = 7/2 into the upper half of the cylinder.

Local analysis of (25) and (29) near o = ) and o = a shows that a, da/da, hy and
dhm/da are continuous at o = «; and @ = ay, and that b = O(a— ;)2 and Hy, = O(a—a)
as a = of , and b = O(a2 — @)'/2 and Hy, = O(aa — @) as & — o ; in particular |[db/dea| — oo

but |dHp,/da| remains finite in these limits.

14



Figure 6 shows typical solutions for a, b, hy, and H,, which demonstrate the features
described above. In particular, Fig. 6(a) shows a and b, the semi-widths of the rivulet and
of the yielded region, plotted as functions of a/7 in the case 7y = 1, @ = 1 and X\ = 1/2,
and Fig. 6(b) shows the corresponding values of hy and Hp, the maximum thicknesses of
the rivulet and of the yielded region, also plotted as functions of /7. Note that in this case
ap/m =~ 0.3141 and az/7 ~ 0.8155. Figure 7 shows the corresponding transverse profiles of the
free surface z = h(y) and (when present) of the yield surface z = H(y) for a range of values of
a.

Of course this analysis also applies to unidirectional flow with flux Q down a planar sub-
strate inclined at an angle o to the horizontal. If 0 < a < ap then the fluid is entirely unyielded,
while if ag < a < 7 then the fluid is entirely unyielded if Q < Qy but has a yielded region if

Q> Qy (and hence, in particular, the fluid is entirely unyielded when Q < Q).

4 Results

Before analysing the behaviour of the solution in appropriate asymptotic limits it is useful to

note the following results for future reference. If a —+ 00 in 0 < @ < 7/2 then from (19)

h ~ % [1 - e—m(a—w] . (39)

Thus in 0 < @ < min(a;, 7/2) we find from (28) that

2\ sin o
3m3

Q ~ a, (40)

and if @y < /2 then in a; < @ < 7/2 we find from (26) that b — oo with

1 mT,
— b~ —— 1— Y
a—>b log [ sina] (41)

and from (25) that

Q~ [2sina (A= + (1—)\)7'3] a (42)

3m3 m? 3sin?
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Also, if ma = 7 in 7/2 < a < 7 then from (19)

14 cosmy
h~ —.
m(m — ma) (43)
Thus in ap < o <7 and if g > /2 then in 7/2 < a < a; we find from (28) that
SmAsina
@ S — ma” 9
and in max(a1,7/2) < a < oz we find from (26) that mb — 7 and from (25) that
Smsina
Q~ (45)

3mA(m — ma)3’

4.1 The Limits a -0t and o — 7~

Provided that 7y # 0 the flow is always unyielded near & = 0 and, except in the special case

A = 0 discussed subsequently in Sec. 4.5, near o = , and so from (29) as o — 0T we have

3Q a?

(so that, in particular, the rivulet becomes infinitely wide in the transverse direction with

uniform thickness unity), and as @« — 7~ we have

Y 5 v
57!')\(71' )]1 3, hm ~ l: 24Q ):I (47)

e~ [ 30 BTA(T — @)
(so that, in particular, the rivulet becomes infinitely thick with semi-width ), in agreement
with the results of Duffy and Moffatt [10] in the Newtonian case. Note that (20) gives u; =
O(a) as a — 0% and u; = O(7 — @) as @ — ©~ so that the flow is slow and hence the flux

remains O(1) in both limits, as it should. It should, however, be noted that the lubrication

approximation breaks down as a — 7.

4.2 Varying 7,

Figure 8 shows a, b, hm, and Hy, plotted as functions of a/7 for a range of values of 7y in the
case @ = 1 and A = 1/2. In particular, Fig. 8 includes the solutions in the special case 7y, = 0
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in which the flow is yielded everywhere with a = b, hy, = Hp,, a1 = 0 and ap = 7. In this case
the fluid behaves like a Newtonian fluid with constant dimensional viscosity pg, and hence the
entirely yielded solution in this case is identical to the corresponding entirely unyielded solution
with X set to unity. In particular, this means that when 7y = 0 the asymptotic behaviours of
a =b and hy = Hy, in the limits o — 07 and a — 7~ are given by (46) and (47) with A =1
respectively. Figure 8 also illustrates that the solution in the unyielded zone is independent of
Ty. In particular, for 7y > 7y (where in this case 7y ~ 1.3763) the flow is unyielded everywhere

and the fluid behaves like a Newtonian fluid with constant dimensional viscosity ;.
4.3 Varying Q
Figure 9 shows a, b, hy, and Hy, plotted as functions of a/m for a range of values of Q in the

case Ty = 1 and A = 1/2, for which Q. ~ 0.2958 and o, /7 =~ 0.5435.

In the limit of small flux Q — 0 the flow is unyielded everywhere and we have

— 1/4 = 1/4
a~(1°5Q) , th%(l%Q) , (48)

4 sina 4 sina

in agreement with the corresponding results of Holland, Duffy and Wilson [13] in the Newtonian
case.
In the limit of large flux Q@ — co we have aq — o (where 0 < ap < 7/2) and ay — 7~

according to

4 sin o cos o 3Q cos? ag
aL~ e+ 1 + cos? oy [ 2\ sin ag (49)
and
57r)\'r;‘ 172 50
Qg ~ T o Q . (50)
In the upper unyielded zone 0 < o < a3 we find from (29) that
3Q 3/2 11
g ~ 3Qcosa) , (51)
2Xsina 6(cos a)1/2
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and so from (31)

1

hm ~ ———7,
(cos ar)1/2

(52)

while in the lower unyielded zone as < a < 7 we find from (29) and (31) that a and hp
are given by (47). The behaviour in the yielded zone o < a < a3 is different depending on

whether a < /2 or & > 7/2. In 01 < @ < 7/2 from (42)

2sina 1-Nr, 1=-Nm3]7 2

b~ — :
@ 3(cos a)3/2 Cos a 3sin® o @ (53)
with @ — b = O(1) according to (41), and so from (31) and (32)
1 1 Ty
™ (cosa)/z’ ™ (cosa)l/?2  sina’ (54)
while in 7/2 < a < ay from (45)
a T _ [57rsina] 1/3 1 (55)
| cos a|1/2 3Q | cos |7/6’
3 1/6
b~ m - %07”’-"' 1 (56)
|cosa|t/2  |3Qsin?a| |cosal?/12’
and so from (31) and (32)
~ q1/3
24
hm, Hp ~ Q | cos o '/8. (57)
5T sin o
At o = /2 the fluid is unyielded and from (26) and (27)
~\ 1/4
105
a, b~ ("TQ) , (58)
2

with @ — b ~ 7y, and so from (31) and (32)
<\ 1/4
1 (105
P i ~ (—49) . (59)

Note that a, da/de, by and dhy,/da are continuous at o = oy and a = asy.
Thus, when Q@ — 00, in 0 < & < 7/2 we have a = O(Q) and hy = O(1) (together with

b= 0(Q) and Hp, = O(1) in a1 < @ < 7/2) while in 7/2 < a < 7 we have a = 0(1)

18



and hy = O(QY3) (together with b = O(1) and Hp = O(QY/3) in T/2 < a < ag). The
adjustments between these two different types of asymptotic behaviour occur via boundary
layers of thickness O(Q~'/2) near a = /2 where a, b, hy, and Hy, are O(Q%). In the special
case A = 1 these results reduce to those of Holland, Duffy and Wilson [13] in the Newtonian

case.
4.4 Varying )

Figure 10 shows a, b, hy, and Hp, plotted as functions of o/ for a range of values of ) including
A =0 in the case 7, = 1 and Q = 1, for which there is always a yielded zone.

In the special case A = 1 we recover the results for a Newtonian fluid with constant
dimensional viscosity p; = p2. In this case the yield surface H (when present) is merely the
surface on which the stress takes the yield value 7, but across which the fluid undergoes no
material change.

In the Bingham limit A — 0 it is found that oy — o and ap — 7~ according to (49) and
(50) respectively. In the upper unyielded zone 0 < a < a; we have a = O(A™!) and hy,, = O(1)
according to (51) and (52), while in the lower unyielded zone oy < @@ < 7 we have a = O(1)
and hm = O(A71/3) according to (47). At a = 7/2 we find that a, b, hy and Hy, are O(1).

The solution in the special case A = 0 is discussed in detail in the next section.

4.5 The Special Case A =0

The solution in the special case A = 0 in which a; = ap and ay = 7 is of particular interest.
In this case the solution in the upper unyielded zone (0 < o < ) is an infinitely wide rigid
and stationary plug of uniform thickness (cosa)~'/2 and the lower unyielded zone is absent.
In the yielded zone (ap < a < 7) the flow is rather more complicated. Substituting A = 0
into (20) yields u; = 0 when b < |y| < a showing that —a <y < —band b < y < a are two

stationary “levées” of rigid unyielded material of the kind first suggested by Hulme [17] in the
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geophysical (large-scale) context. Substituting A = 0 into (21), (22) and (25) and simplifying

using (23) yields

u == H?, (60)
ug = Sl;a(ﬂiz — 2%), (61)

2sina [ b
Q=52 ["H@ -+ [ Ho (62)

when |y| < b. In particular, (60) and (61) show that whereas region 2 is “fully plastic”, region
1 is a “pseudo-plug” whose velocity u; is independent of z (but not ¥ or a) and in which
the stress is significantly below the yield stress. The geometry of the locally unidirectional
solution in the yielded zone when A = 0 is shown in Fig. 11. Again this analysis also applies to
unidirectional flow with flux Q down a planar substrate inclined at an angle « to the horizontal,
for which there is no flow for 0 < « < ag, while for og < a < 7 the flow is as shown in Fig. 11.

As Fig. 10 illustrates, some aspects of the behaviour of the solution in the special case
A = 0 are qualitatively different from those in the general case A # 0 described previously. In
particular, the asymptotic behaviours of a, b, by and Hp, in the limits @ — of = of and
o — ay =7 when A = 0 are somewhat different from those when XA # 0. Specifically we find

that as o — a(']'"

2 —
2 cos ap QTy
b ~
@ [2 cos ag + T;] (a — ap)?’ (63)
1 Ty
fim (cos ap)t/2 * o ap (o =), (64)
2cos ag + 72
Hn [W} (@) (65)

(so that, in particular, the yielded region becomes infinitely wide in the transverse direction),

and as o = 7~

2
a ~ 71— —(r—a)+

~71/5
- 3@@—] (m - )", (66)

11
STy
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~11/5
b ~ [3"@] (7 — )5, (67)

S
~011/5
o 1[22502 _
o~ w3a+§[ 81y ] S (%5)
1 [225021"° B
H, ~ 5[ 87? } (mr — ) 1/5 (69)

(so that, in particular, the yielded region becomes infinitely thick).

Figures 12 and 13 show a, b, hy, and Hp, plotted as functions of a/7 when A = 0 for a
range of values of 7, when ) = 1 and a range of values of Q when 7, = 1, respectively.

As Fig. 12 illustrates, in the limit 7, — 0 we have ap — 07 and the behaviour when A\ = 0
is the same as that when A # 0, i.e. the fluid behaves like a Newtonian fluid with constant
dimensional viscosity p2, and hence the entirely yielded solution in this case is identical to the
corresponding entirely unyielded solution with A set to unity. On the other hand, in the limit
Ty — oo we have ap — /27 and the behaviour when A = 0 is qualitatively different from that

when X # 0. Specifically as 7y — oo

. 1r 2sine  [225Q%sin® @]/’ )
|cosall/2  |cosalTy 8cost a !t ’
~ 5 1/5
b 30Q tan” « , (1)
73
y
- 1/5
Ty 1 [225Q?| cos a
fun sina+2[ 8sinaty ’ (72)
=5 1/5
He ~ 1 225Q | cos a (73)
2| 8sinary

form/2 < a<m.
As Fig. 13 illustrates, in the limit Q@ — 0 the behaviour when A = 0 is qualitatively different

from that when A # 0. Specifically as Q — 0 if ap < & < /2 then

6 G 4 gine 225Q? sinh? may 15 b 15Q) sinh? may 15 (74)
v 128m7] ’ 2m27y ’
b Ty 225Q%m /e I 225Q%m 175 75
M sina 12873 sinh may ’ m 1287’3 sinhma, ’ )
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if @ = 7/2 then

=511/5

22502 = 1/5

a2yt [—srg ] , b~ [30Qn] 7, (76)
~511/5 ~071/5
1 [225Q? 1 |225Q2
~ bl i 2 H. ~ =
while if 7/2 < o < 7 then

L sine 225Q? sin* may, 18 b 15Q sin? may 1/5 .
T, [ 225QPm /5 " 2950%m  1Y/° "
M sina 12872 sinmay ’ o 12872 sinmay ’ (79)

where ay is given by (33). On the other hand, in the limit ¢ — oo the behaviour when A = 0

is the same as that when A # 0 described in Sec. 4.3 with ) set to zero.

4.6 Solution for a Bingham Material

The flow of a rivulet of Bingham material (which behaves like a perfectly rigid solid below
the yield stress) is of special interest. The Bingham model is recovered from the biviscosity
model in the limit A — 0, but the solution for a Bingham material is not simply the solution
in the case A = 0 described in Sec. 4.5 because, as Wilson [5] pointed out, taking the Bingham
limit of the thin-film flow of a biviscosity fluid (corresponding to taking the limit e — 0,
where € is the longitudinal aspect ratio of the flow defined in Sec. 3.2, followed by the limit
A — 0) is fundamentally different from taking the thin-film limit of low of a Bingham material
(corresponding to taking the limit A — O followed by the limit € — 0). A detailed asymptotic
analysis of the thin-film flow of a Bingham material is not attempted here, but comparison with
the work of Walton and Bittleston [4], Balmforth and Craster [3], Wilson [5] and Ross, Wilson
and Duffy [6] described in Sec. 1 indicates that the solution can be obtained by interpreting
the solution for a biviscosity material in the case A = 0 described in Sec. 4.5 appropriately.

Specifically this work suggests that the yield surface z = H(y) separating region 1 and region 2
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should be interpreted as a “pseudo-yield surface” z = H*(y) separating the pseudo-plug region
H* < z < h whose velocity is independent of z (but not y or @) and in which the stress is just
(specifically O(e)) above the yield stress from the fully plastic region 0 < z < H* in which the
stress is significantly (specifically O(1)) above the yield stress. Presumably an investigation
of the distinguished limit A — 0 and € — 0 with A/e = O(1) such as that undertaken by
Wilson [5] and Ross, Wilson and Duffy [6] would again reveal the location of the true yield
surface z = H(y) within the pseudo-plug dividing it into regions in which the stress is either
significantly (specifically O(1)) below or just (specifically O(e)) above the yield stress, but since
physically this detail is of only secondary importance we do not pursue it further here.

It is important to note that, while the velocity in the pseudo-plug region present in the
unidirectional axial flow studied by Walton and Bittleston [4] varies only transversely (that is,
azimuthally), and the velocities in the pseudo-plug regions present in the non-unidirectional
two-dimensional flows studied by Balmforth and Craster [3], Wilson [5] and Ross, Wilson
and Duffy [6] vary only longitudinally, the velocity in the pseudo-plug region in the present
problem varies with both y and «. In particular, this means that (unlike in the flows studied
by Balmforth and Craster [3], Wilson [5] and Ross, Wilson and Duffy [6] but like in the flow
studied by Walton and Bittleston [4]) even in the special case of strictly unidirectional flow
down an inclined plane (i.e. the special case in which « is constant) the present solution contains

a pseudo-plug region whose velocity varies with y.
. (2
5 Conclusions

We used the lubrication approximation to investigate the steady locally unidirectional gravity-
driven draining of a thin rivulet of viscoplastic material, modelled as a biviscosity fluid (or, as
a special case, as a Bingham material), down a slowly varying substrate. In contrast to the

earlier work on viscoplastic rivulets we considered small-scale flows, such as those found in many
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industrial coating and printing processes, in which surface-tension effects play a significant role.
We interpreted our results as describing a slowly varying rivulet draining in the azimuthal
direction from the top to the bottom of a large horizontal circular cylinder. Provided that
Ty # 0 we found that the flow is always unyielded near o = 0 (where the rivulet becomes
infinitely wide in the transverse direction with uniform thickness unity) and, except in the
special case A = 0, near @ = 7 (where it becomes infinitely thick with semi-width 7). For
Q@ < Qc (or equivalently 7y, > 7yc) the flow is unyielded everywhere, but for Q > Q. (or
equivalently 7y < 7y.) there is a yielded zone o < @ < a2 (where @1 > ap and a < 7) in which
the flow near the substrate in the centre of the rivulet is yielded. For Q. < Q < 64Ar/105
the yielded zone is confined to the lower half of the cylinder, but for Q > 64)\73‘,1 /105 it extends
over @ = w/2 into the upper half of the cylinder. We obtained numerically calculated values
of a, b, hy, and Hy, for a range of parameter values, and described the asymptotic behaviour
of the solution in the limits of large and small 7y, large and small Q, and small X. In the
special cases A = 0 and of a Bingham material we have a; = oy and ay = 7, and the flow in
the unyielded zone 0 < a < g consists of an infinitely wide rigid and stationary plug with

uniform thickness (cos ) ~1/2

, while in the yielded zone ap < a < 7 it consists of two rigid
and stationary “levées” at the edges of the rivulet and a central region in which the flow near
the free surface is a pseudo-plug whose velocity is independent of z (but not y or «), separated
from the fully plastic flow near the substrate by a pseudo-yield surface. In the case A = 0 the

stress in the pseudo-plug is significantly below the yield stress, while in the case of a Bingham

material it is just above it.
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Figure Captions

FIG. 1 : The biviscosity model.
FIG. 2 : The geometry of the unidirectional flow problem.

FIG. 3 : Sketch of a slowly varying rivulet draining in the azimuthal direction from the top

(a = 0) to the bottom (a = 7) of a large horizontal cylinder.

FIG. 4 : Qy/X given by (34) plotted as a function of a/7 for 7, = 1/5, 2/5, ..., 8/5. Each
curve is defined on ap(7y) < a < 7 and has a single global minimum value of Q.(7y)/A at

a = o(Ty).

FIG. 5: (a) ag/m given by (35) and o, /n obtained from (36), and (b) Q./X plotted as functions
of 7. The corresponding leading-order asymptotic expressions for a./7 and Q¢/X in the limits

7y = 0 and 7y — oo given by (37) and (38) are marked with dashed lines.

FIG. 6 : (a) The semi-width of the rivulet a and of the yielded region b, and (b) the maximum
thickness of the rivulet hp, and of the yielded region Hp, plotted as functions of @/« in the

case 7y =1, @ = 1 and XA = 1/2. Note that in this case a;/m ~ 0.3141 and as/m ~ 0.8155.

FIG. 7 : The transverse profiles of the free surface z = h(y) and (when present) of the yield
surface z = H(y) plotted as functions of y for (a) @ = 7/10, 7/5, ..., 7/2 and (b) a = 7/2,
3n/5, ..., 9n/10 in the case , = 1, @ = 1 and XA = 1/2. For clarity parts (a) and (b) are

drawn using different horizontal scales.

FIG. 8 : (a) The semi-width of the rivulet a and of the yielded region b, and (b) the maximum
thickness of the rivulet by, and of the yielded region Hy, plotted as functions of o/7 for 7, =0

(in which case the flow is yielded everywhere), 1/4, 1/2, 3/4, 1 and 7, > 7y ~ 1.3763 (for
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which the flow is unyielded everywhere and hence independent of 7,) in the case Q@ = 1 and
A = 1/2. For clarity the curves in the special case 7, = 0 (in which a = b and hy, = Hy,) are

marked with dashed lines.

FIG. 9: (a) The semi-width of the rivulet a and of the yielded region b, and (b) the maximum
thickness of the rivulet A, and of the yielded region Hp, plotted as functions of a/m for Q = 1/5,
1/2, 1, 2, 5 and 10 in the case 7y = 1 and A = 1/2. The leading-order asymptotic values in
the limit Q — oo given by a, b ~ 7/| cosa|'/? for /2 < & < 7 and by Ay ~ 1/(cos @)'/2 and

Hp ~1/(cosa)}/? — 7, /sina for 0 < a < 7/2 are marked with dashed lines.

FIG. 10 : (a) The semi-width of the rivulet a and of the yielded region b, and (b) the maximum
thickness of the rivulet hy, and of the yielded region Hy, plotted as functions of a/7 for A = 0,
1/10, 1/4, 1/2 and 1 in the case 7y = 1 and @ = 1. For clarity the curves in the special case

A = 0 are marked with dashed lines.
FIG. 11 : The geometry of the locally unidirectional solution in the yielded zone when \ = 0.

FIG. 12 : (a) The semi-width of the rivulet a and of the yielded region b, and (b) the maximum
thickness of the rivulet A, and of the yielded region Hy, plotted as functions of o/ for 7y =0
(in which case the flow is yielded everywhere), 1/5, 1/2, 1, 2 and 5 in the case Q = 1 and
A = 0. For clarity the curves in the special case 7y = 0 (in which a = b and hy, = Hy,) together
with the leading-order asymptotic value in the limit 7, — oo given by a ~ 7/|cos a|'/? for

m/2 < a < 7 are marked with dashed lines.

FIG. 13 : (a) The semi-width of the rivulet a and of the yielded region b, and (b) the maximum
thickness of the rivulet A, and of the yielded region H, plotted as functions of o/ for Q = 1/5,

1/2, 1, 2, 5 and 10 in the case 7y, = 1 and A = 0. The leading-order asymptotic values in the
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limit @ — 0 given by a ~ ay and hpy ~ Ty/sina for ap < o < , together with the leading-
order asymptotic values in the limit Q — oo given by a, b ~ 7/|cos|/2 for 7/2 < a < 7
and by hm ~ 1/(cos a)/? and Hy, ~ 1/(cos a)'/2 — Ty/sina for 0 < a < w/2 are marked with

dashed lines. Note that in this case o/ = 0.2879.
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Figure 1 - Wilson, Duffy and Ross



z
z=nh
1
z=H
2
7L \Iw\\\\\\\\\\\l\o\\\\\m @W

Figure 2 - Wilson, Duffy and Ross



Figure 3 - Wilson, Dufty and Ross
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Region 2 (Fully Plastic)

Figure 11 - Wilson, Duffy and Ross
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