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Abstract

In this paper we investigate the linear stability of an initially axisymmetric
thin drop of Newtonian fluid either on a uniformly rotating substrate (the
simplest model for spin coating) or on a stationary substrate under the influ-
ence of a jet of air directed normally towards the substrate. Drops both with
and without a dry patch at their centre are considered. For each problem we
examine both the special case of quasi-static motion (corresponding to zero
capillary number) analytically and the general case of non-zero capillary num-
ber numerically. In all cases the drop is found to be unconditionally unstable,
but the growth rate and wavenumber of the most unstable mode depend on

the details of the specific problem considered.
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I. INTRODUCTION

The importance of coating processes in many industrial situations has motivated con-
siderable theoretical and experimental work on the spreading of a thin fluid film on a solid
substrate (see, for example, the review articles by Oron et al.l, Myers? and Davis?). Much of
this work involves examining the spreading of a fluid subject to an external force. Examples
of such forces include gravitational, electrostatic, magnetic and centrifugal forces as well as
a non-uniform pressure loading caused by a fluid overlying the thin film. In the present
work we shall consider two problems of this type, namely a thin drop of fluid on a uniformly
rotating substrate (the simplest model for spin coating) or on a stationary substrate under
the influence of a jet of air directed normally towards the substrate. A detailed discussion
of the earlier work on both of these problems is given in the recent papers by McKinley et
al.* (hereafter referred to as ‘I’) and McKinley and Wilson® (hereafter referred to as ‘ID)
and hence is not repeated here for brevity. Further discussion of spin coating is given by
Larson and Rehg® and in the recent paper by Wilson et al.”.

In I McKinley et al. considered the unsteady spreading of a thin drop of Newtonian
fluid on a horizontal substrate due to a jet of air directed normally towards the substrate.
Both planar two-dimensional and axisymmetric three-dimensional problems were solved in
the quasi-static limit of small capillary number. Both “annular” drops (i.e. drops with a
dry patch at their centre) and “non-annular” drops (i.e. drops without a dry patch) were
considered. As in the present work, their results for the axisymmetric case also apply
directly to the spin-coating problem with an appropriate redefinition of parameters. In II
McKinley and Wilson extended this work to investigate the linear stability of an initially
two-dimensional thin ridge of Newtonian fluid of finite width on a planar substrate under
the influence of a symmetric two-dimensional jet of air. Again both annular and non-
annular ridges were considered. For both problems the special case of quasi-static motion
(corresponding to zero capillary number) was examined analytically and the general case of

non-zero capillary number was examined numerically. In all cases the ridge was found to



be unconditionally unstable, but the nature and location of the most unstable mode were
found to depend on the specific problem considered. In particular, they found that the
quasi-static analysis of the non-annular case in I was incomplete. They also found that in
the non-annular case (but not in the annular case) the wavenumber of the most unstable
mode can jump discontinuously between zero and non-zero values as the size of the ridge
is varied. The present work complements I by providing the corresponding analysis of the
linear stability of an initially axisymmetric thin drop of Newtonian fluid either on a uniformly
rotating substrate or on a stationary substrate under the influence of an axisymmetric jet
of air directed normally towards the substrate. Both annular and non-annular drops are
considered. For both problems we confirm and extend the analytical results of I in the
special case of axisymmetric quasi-static motion (zero capillary number) and investigate

numerically the general case of non-zero capillary number.

II. NON-ANNULAR DROPS
A. Problem Formulation

Consider a non-annular drop of incompressible Newtonian fluid with constant viscosity
#, density p and surface tension 7 on a solid horizontal planar substrate in the presence of a
jet of air. We employ cylindrical polar coordinates (r, ¢, z), chosen so that the substrate is
given by z = 0, the thickness of the drop is denoted by z = h(r, ¢, t) and the velocity of the
fluid is denoted by u = u(r, ¢, z,t), where t denotes time. The position of the contact line
is denoted by r = R(wp,t) at which the contact angle is § = 0(y,t). We model the jet with
a parabolic pressure distribution in the air given by p = py — kr2/2, where p denotes the
pressure, po is the maximum value of the air pressure at » = 0 and & is a positive constant.
The shear stress at the free surface caused by the jet is neglected. Acceleration due to
gravity is denoted by g. The geometry of the non-annular problem is shown in Fig. 1.

We follow the approach adopted in I and I and assume that the speed of the contact



line is related to the contact angle by the “Tanner law” R, = k(0™ — 67), where 6, is
the equilibrium contact angle and x is an empirically determined positive constant with
dimensions of velocity. More general Tanner laws were used in L.

Hereafter all quantities are non-dimensionalised as in I and II using a characteristic radial
length scale L (to be defined subsequently) and & as the characteristic horizontal velocity
scale.

Provided that inertia effects are negligible and that the drop is sufficiently thin, the
familiar lubrication approximation to the governing Navier-Stokes and mass conservation
equations together with the appropriate boundary conditions representing continuity of nor-
mal and tangential stress and the kinematic condition at the free surface together with Navier
slip with (small) positive slip coefficient \ at the substrate yield the governing equation for

h, namely
Chy+V - {hz (g—l-)\)V(Vzh—Gzh—i—JTﬂ)J = 0. (1)

Equation (1) must be solved together with the Tanner law
R, =0 —1. (2)

The constant J = kL? /76, is a non-dimensional measure of the jet strength, C = ku /763 is
the capillary number and G? = pgL?/7 is the Bond number. Without loss of generality we
can choose L = (76y/k)'/? (corresponding to setting J = 1). For clarity we shall retain
J explicitly in all of our analytical calculations but set J = 1 in all of our numerical
calculations.

The appropriate boundary conditions for Eq. (1) are that the free surface has zero height

and prescribed contact angle at the contact line,

h(R,¢,t) =0, (3)

1 R2 -1/2
(h, - ER*"h“’) (1 + R—g)

together with the regularity conditions

= -0, (4)

r=R



h (0, ,t) = 0, (5)

Q(0,¢,t) =0, (6)
where

Qz/ohudz (7)

is the flux in the r direction, which must be satisfied together with appropriate initial

conditions for » and R. The volume of the drop is given by

2V = /Uzw /OR hr drde. (8)

Note that if we identify the dimensional jet strength & with pw? then Eq. (1) is identical
to the equation describing the spin coating of a thin drop on a horizontal substrate rotating
with constant angular speed w (see Moriarty et al.® and I). Hence all the results presented
here apply to both spin-coating and air-jet-blowing problems.

For simplicity we shall hereafter restrict our attention to the special case of sufficiently
small drops in which gravity effects are negligible, and hence set G = 0. In addition, we

follow II and adopt the linear Tanner law obtained by setting m = 1 in Eq. (2).

B. Basic State

In equilibrium A(r, ¢, t) = ho(r), R(p,t) = Ry and 0 = 1. Substituting these expressions
into Eqs (1) and (3) — (5) and using Eq. (6) with G = 0 yields the governing equation for

the basic-state profile, namely
RV R S M (9)
r 72 ’

where the prime denotes differentiation with respect to r, subject to the boundary conditions

ho(Ro) = 0, hy(Ro) = —1 and hy(0) = 0. The solution for hq is given by

ho = %(rz — R}) [JRo(R} — %) — 16], (10)



and from Eq. (8) the volume of the drop is given by

V= 230(24 JRY). (11)

Figure 2 plots the basic-state profiles for Ry = 1, 1.5, 2 and 2.5. These solutions are exactly
the axisymmetric non-annular solutions described in I. Note that “physical” solutions (i.e.
solutions for which hy > 0 over the entire interval 0 < r < Ry) exist only when Ry lies in

the range 0 < Ry < (16/J)/3.

C. Linear Stability Problem

We analyse the linear stability of the drop to small perturbations with azimuthal
wavenumber g > 0 by seeking solutions in the form h = hg(r) + hi(r) exp(iqp + ot) and
R = Ry + R; exp(igp + ot), where hy(r) is the perturbation to the basic-state profile, R; is
the perturbation to the position of the contact line and o is the unknown (complex) growth
coefficient. Note that the wavenumber ¢ must be an integer to ensure physically sensible
solutions. Substituting these expressions into Egs (1) — (6) and retaining only first-order

terms in the perturbations yields the governing equation for A;:

Cohy + = [th (ﬁ'—q -+ )\) (h” + -h] — ) ]

h X 1 (12)
——2h (°+/\>(h”+ “hy - h) 0,
T 3
which is subject to the boundary conditions
Ry = hi(£Ry), (13)
Ri(£Rp) £ hj(£Ro)R; = FoR;. (14)

Eliminating R, from Eqgs (13) and (14) and using Eq. (10) yields

JR3 + 4
4R,

Ri(FRo) + ( ) hi(FRo) = ohi(FRy). (15)

As Hocking and Miksis® point out, in the special case ¢ = 0 (but not otherwise) it is also

necessary to impose the volume condition



Ry
/ hyr dr = 0. (16)
0

D. Quasi-static Motion C =0

We can make considerable analytical progress in the special case C' = 0. In this case the
bulk of the drop instantaneously adopts a quasi-static profile whose subsequent motion is

entirely determined by the Tanner law given in Eq. (2).

1. Azisymmetric Perturbations ¢ =0

The solution of Eq. (12) for h; when C = 0 and ¢ = 0 that does not have a singularity

atr =Ry is
hi=or’+B+~lnr, (17)

where o, 8 and 7 are constants. For solutions that are bounded at the origin we require
7 = 0. Using the boundary condition (15) and the volume condition (16) yields ¢ = oy,

where

_ JR3-12

Jo 4 RO )

(18)

recovering the conditionally stable growth rate first obtained in I.

2. Non-azisymmetric Perturbations q > 1

A solution of Eq. (12) for h; when C' = 0 and ¢ > 1 that does not have a singularity at
r= Ry is

g

hl = ar? + —,
rd

(19)

where o and 3 are constants. For solutions that are bounded at the origin we require § = 0,

and using the boundary condition (15) yields ¢ = o, where

7



oo JR} 4 4(1 - q)
¢ 4R, ’

(20)

for ¢ = 1,2,3,.... Note that, because these solutions do not satisfy the volume condition
(16), substituting ¢ = 0 into Eq. (20) does not recover the expression obtained previously

for op. The neutral stability curves are obtained by setting o4 = 0in Eq. (20) and are given

by
= 1)
forg=1,2,3,....
3. General Perturbations g > 0
Figure 3 plots the growth rate o, as a function of Ry for ¢ =0, 1, 2, ..., 7. Since the

largest eigenvalue is 0, = JR3/4 > 0 the drop is unconditionally unstable via the g=1
mode. Note that from Egs (18) and (20) we have oy = 04, and so both ¢ = 0 and ¢ = 4
modes correspond to exactly the same curve in Fig. 3. Furthermore, the neutral stability
curve for ¢ = 5 is identical to the curve where the basic-state solutions become unphysical,
namely Ry = (16/J)"/%. For ¢ > 5 Fig. 3 shows that o, < 0 for all values of Ry corresponding

to physical solutions, and hence that these modes are always stable.

E. The General Case C # 0

In the general case C # 0 the bulk of the drop responds on a time scale of C' and so the
motion is always retarded relative to the case C' = 0. To obtain the neutral stability curves
for C # 0 we set 0 = 0 in Eq. (12) and the boundary conditions (15). This procedure yields

the same neutral stability curves as those calculated previously in the case C' = 0.



1. Numerical Procedure

A FORTRAN code was written to solve the eigenvalue problem given by Eq. ( 12) and the
boundary conditions (15) numerically using finite differences. The details of this numerical
procedure are given by McKinley!® and in II. In all the calculations that follow we set
N =201, where N +1 is the number of grid points, and the slip coefficient is set to A = 0.01.
The value of A was chosen to be reasonably small, but not so small as to cause numerical
difficulties. The work of Hocking & Miksis® suggests that the results will be qualitatively
similar for other (small) values of A\. Choosing N to be an odd number ensures that r — 0

is not a grid point.

2. Results

Figure 4 plots the largest eigenvalue o as a function of Ry forg=0,1,2,..., 6 in the
case ' = 1. The neutral stability points are given by Ry = (12/J)Y/3 for the g = 0 mode,
and by Eq. (21) for the ¢ > 1 modes. For Ry in the range 0 < Ry < 2.12 the most unstable
mode corresponds to ¢ = 1, while for 2.12 < Ry, < 2.46 it corresponds to ¢ = 2 and for
2.46 < Ry < (16/J)Y/3 ~ 2.52 to ¢ = 3. Note that, unlike in the case C = 0 in which they
are identical, for C' # 0 the curves corresponding to the ¢ = 0 and ¢ = 4 modes coincide
only at o = 0.

Figures 5(a) and (b) plot the largest eigenvalue o as a function of Ry for ¢ =0, 1, 2,
...y 7 for C' = 0.1 and 0.001 respectively. The thick curves correspond to the solutions in
the special case C'= 0 given by o, for g =0, 1, 2, ..., 7. For C = 0.1 (Fig. 5(a)) the most
unstable mode corresponds to ¢ = 1 for 0 < Ry < 2.19 and to g =2 for 2.19 < Ry < 2.52.
For C' = 0.01 (not shown) the same qualitative behaviour occurs; however the value of R, at
which the most unstable mode changes from the ¢ = 1 mode to the ¢ = 2 mode is Ry ~ 2.38.
For C = 0.001 (Fig. 5(b)) the most unstable mode corresponds to ¢ = 1 for all values of R,

corresponding to physical solutions. Figure 5 shows that the effect of decreasing C' towards



zero is to increase the growth rate of the most unstable mode. In particular, Fig. 5 shows

how the numerically calculated values of ¢ approach o, in the limit C — 0.

ITI. ANNULAR DROPS
A. Problem Formulation

Clearly, the major difference between the annular drops discussed in this section and
the non-annular drops discussed in the previous section is that the former have two contact
lines and hence two contact angles. The (dimensional) positions of the “inner” and “outer”
contact lines are denoted by r = R;(¢,t) at which the contact angle is ¢ = ¢(p,t) and
r = Ry(p,t)(> Ry) at which the contact angle is § = 0(p, 1), respectively. The geometry of
the annular problem is shown in Fig. 6.

Since there are now two moving contact lines, we need two Tanner laws relating the
speed of each contact line to its contact angle. These are given (in dimensional variables)
by (R1): = k(¢5" — ¢™) and (R,); = k(0™ — O7), where ¢ and 6, are the (possibly different)
equilibrium values of the inner and outer contact angles respectively.

Non-dimensionalising as in the non-annular case the governing equation for A is again

given by Eq. (1) which must be solved together with the Tanner laws

(R1): = o5 — 9™, (22)
(Ry)y = 6™ — 1. (23)

The appropriate boundary conditions for Eq. (1) in this case are

h(Ry, 0,1) = 0, (24)
h(Rz, ¢,t) =0, (25)
(1= gpon,) (1+ ) _1/2 =4 (26)
(hr - Ri%(Rg)whw) (1 + (—};227)5) o ) (27)

10



which must be satisfied together with appropriate initial conditions for », R; and R,. The

volume of the annular drop is given by
27 rRo
oV = / hr drdp. (28)
0 R1

As in the non-annular case, we shall restrict our attention to the special case G = 0 and

set m =1 in Eqgs (22) and (23).

B. Basic State

In equilibrium A(r,p,t) = ho(r), Ri(p,t) = RY, Ra(p,t) = RY, 6 = 1 and ¢ = .
Substituting these expressions into Egs (1), (24), (25) and (27) with G = 0 reveals that the
governing equation for the basic-state profile is Eq. (9) subject to the boundary conditions

ho(RY) =0, ho(R)) = 0 and hy(R3) = —1. The solution for kg is given by
ho = f(r, R, Ry) + Jg(r, R}, Ry), (29)
and from Eq. (28) the volume of the drop is given by
V = S(R},R)) + JT(R?, RY), (30)

where the functions f(r, R}, RY), g(r, R}, RY), S = S(R}, R9) and T = T(R?, RY) are given
by Egs (47), (48), (51) and (52) in I respectively and hence are not reproduced here for
brevity. The remaining boundary condition (26) yields the relationship between éo, RY and
Rj, which is given explicitly by Eq. (54) in I. Figure 7 plots the basic-state profiles for
R} =2, 2.3, 2.6 and 2.9 in the case ¢y = 1. These solutions are exactly the axisymmetric
annular solutions described in I. For ¢, < 1 solutions exist only for values of R) greater
than a critical value, while for ¢y > 1 solutions exist only for values of R? less than a critical
value. This behaviour is shown in Fig. 8 which plots R? against the corresponding value for

R) in the cases ¢p = 0.7, 1 and 1.3.

11



C. Linear Stability Problem

To analyse the linear stability of the drop we perturb A as before and seek solutions in

the form R, = R} + Rj exp(igp + ot) and Ry = R)+ R} exp(iqp + ot), where R} and R} are

the perturbations to the positions of the contact lines. Substituting these expressions into

Egs (1) and (22) — (27) reveals that the governing equation for & is Eq. (12) subject to the

boundary conditions

1
Po
R; = hi(R)),

i (RY) + hg(R) R} = —o Ry,

R = hi(RY),

h(R3) + hg(R§) Ry = —o R},
Eliminating R} and Rj from Egs (31) ~ (34) and using Eq. (29) yields

ol (RS) — f1(J, R, B (RY) = o (BS),
Py (BS) + falJ, B, RS () = —oh (R3),
where the functions f(J, R?, R3) and f,(J, RY, RY) are given by
1 B, R) = {4(R)?RYBIRY((RY)? — (R)?) + 8] In( B/ RY)
~(RY)? ~ (RE)")l5(R)" — 20 (R (B)? + T(R)* — 16R3]}
{16 (RY: - (R — 2Ry m(BY/ Y]}

P, B, ) = {4(RYPI(RY + 4| m(RY/RS) + [(RY)? — (BY)

XTRS((RY)? ~ (F3)?) +8] H{BRSI(RY? — (RY? - 2(RY* n(RY/RY))}

Again in the special case ¢ = 0 it is also necessary to impose the volume condition

RJ
. hirdr = 0.
Rl

12

(31)
(32)
(33)

(34)

(35)

(36)

(37)

(38)

(39)



D. Quasi-static Motion C =0
1. Azisymmetric Perturbations q =0

From Sec. IID1 the solution for #; when C = 0 and ¢ = 0 is given by Eq. (1n.
Applying the boundary conditions (35) and (36) and the volume condition (39) recovers the
unconditionally unstable results first obtained in I, namely o0 = 0¢,. > 0 and 0 = 0y < 00+
The expressions for og+ are not repeated here for brevity. Figure 9 plots oy, as a function
of R for ¢y = 0.7, 1 and 1.3. Recall that R) is not constant on each of these curves, but

varies with RJ as shown in Fig. 8.

2. Non-azisymmetric Perturbations ¢ > 1

From Sec. IID 2 the solution for ; when C = 0 and ¢ > 1 is given by Eq. (19) subject
to the boundary conditions (35) and (36). Solving this system yields two expressions for o,
namely 0 = 044 > 0 and 0 = 0, < 044. The expressions for o, are not given here for
brevity. As before note that, because these solutions do not satisfy the volume condition

39), substituting ¢ = 0 into 0,4+ does not recover the expressions obtained previously for
g q

00+-

3. General Perturbations ¢ > 0

Figures 10(a) — (c) plot the growth rate o, as a function of RJ for ¢ =0, 1, 2, 3 and 4
in the cases ¢ = 0.7, 1 and 1.3 respectively. Again recall that R? is not constant on each
of these curves, but varies with R as shown in Fig. 8.

For ¢9 = 0.7 (Fig. 10(a)) the most unstable mode corresponds to ¢ = 0 for 0 < R? < 0.19
and ¢ = 1 for R} > 0.19. For ¢y = 1 (Fig. 10(b)) the same qualitative behaviour occurs
with the most unstable mode corresponding to ¢ = 0 for 0 < RY < 026 and ¢ = 1 for

R} > 0.26. For ¢ = 1.3 (Fig. 10(c)), however, the most unstable mode corresponds to g=1

13



for 0 < R} < 1.86 and to ¢ = 0 for 1.86 < R} < 2.52. These results are summarised in Fig.
11, which shows the wavenumber of the most unstable mode for ¢y = 0.7, 1 and 1.3. The
dots on Fig. 11 denote the values of R} and R at which the most unstable mode jumps

between ¢ =0 and ¢ = 1.

E. The General Case C # 0

Figures 12(a) and (b) plot the largest eigenvalue o as a function of RY for ¢ = 0, 1, 2,
.-+, 9 in the case ¢g = 0.7 for C' = 1 and 0.001 respectively. For C' = 1 (Fig. 12(a)) the
most unstable mode corresponds to ¢ = 0 for small values of R?. As R? increases the most
unstable mode jumps from ¢ = 0 to ¢ = 2 then to ¢ = 3, ¢ = 4 and so on. The same
qualitative behaviour occurs for C' = 0.1 and C' = 0.01 (not shown). For C' = 0.001 (Fig.
12(b)) the most unstable mode corresponds to g = 0 for small values of RY. As R? increases
the most unstable mode jumps from ¢ = 0 to ¢ = 1 then to ¢ = 2, ¢ = 3 and so on.

Figures 13(a) and (b) plot the largest eigenvalue o as a function of R} for ¢ = 0, 1,
2, ..., 9 in the case ¢ = 1 for C' = 1 and 0.001 respectively. For C = 1 (Fig. 13(a))
the most unstable mode corresponds to ¢ = 0 for small values of R). As R? increases the
most unstable mode jumps from ¢ = 0 to ¢ = 2 then to ¢ = 3, ¢ = 4 and so on. The
same qualitative behaviour occurs for C = 0.1 (not shown). For C' = 0.001 (Fig. 13(b))
the most unstable mode corresponds to ¢ = 0 for small values of R}. As R increases the
most unstable mode jumps from ¢ = 0 to ¢ = 1 then to ¢ = 2, ¢ = 3 and so on. The same
qualitative behaviour occurs for C = 0.01 (not shown).

Figures 14(a) and (b) plot the largest eigenvalue o as a function of RY for ¢ = 0, 1, 2,
.-+, 9 in the case ¢ = 1.3 for C = 1 and 0.001 respectively. For C = 1 (Fig. 14(a)) the
most unstable mode corresponds to ¢ = 2 for small values of RJ. As RY increases the most
unstable mode jumps from ¢ = 2 to ¢ = 0. For C' = 0.1 (not shown) the most unstable mode
jumps from ¢ = 1 to ¢ = 2 followed by ¢ = 0 as R increases from zero. For C = 0.01 (not

shown) the most unstable mode jumps from ¢ = 1 to ¢ = 2, then to g = 1 again followed by

14



g = 0 as Rj increases from zero. For C = 0.001 (Fig. 14(b)) the most unstable mode jumps
from g = 1 for small values of R to ¢ = 0 as RY increases from zero.

Figures 12 — 14 show that the effect of decreasing C' towards zero is to increase the
growth rate of the most unstable mode.

These results are summarised in Figs 15(a) — (d) which show the wavenumber of the
most unstable mode corresponding to ¢y = 0.7, 1 and 1.3 for C = 1, 0.1, 0.01 and 0.001.
The dots on Fig. 15 denote the values of R? and RJ at which the most unstable mode jumps

between two different values of q.

IV. CONCLUSIONS

In this paper we investigated the linear stability to both axisymmetric (¢ = 0) and non-
axisymmetric (¢ # 0) perturbations of an initially axisymmetric thin drop of Newtonian
fluid either on a rotating substrate or on a stationary substrate under the influence of a
jet of air directed normally towards the substrate. Both annular and non-annular drops
were considered. For each problem we examined both the special case of quasi-static motion
(C = 0) analytically and the general case C' # 0 numerically. In all cases the drop was found
to be unconditionally unstable, but the growth rate and wavenumber of the most unstable
mode depend on the details of the specific problem considered.

First we analysed a non-annular drop. For axisymmetric quasi-static motion the condi-
tionally unstable mode obtained in I was recovered. For general quasi-static motion the drop
is always unstable via the ¢ = 1 mode. When C # 0 the drop is always unstable and the
growth rate and wavenumber of the most unstable mode depend on the values of R, and C.
In particular, the most unstable wavenumber increases as R, increases and the quasi-static
results are recovered in the limit C' — 0.

A similar analysis was performed for an annular drop. For axisymmetric quasi-static
motion the unconditionally unstable results obtained in I were again recovered. For general

quasi-static motion the drop is always unstable via either the ¢ = 0 mode or the g = 1 mode

15



depending on the values of R?, R and ¢;. When C # 0 the drop is always unstable and, as
in the non-annular case, the growth rate and wavenumber of the most unstable mode depend
on the values of R?, RY, ¢y and C. For ¢y < 1 the most unstable wavenumber increases as
RY increases, while for ¢y > 1 the most unstable wavenumber always corresponds to ¢ = 0
for large enough R). Again the quasi-static results are recovered in the limit C' — 0.

There are, as far as the authors are aware, no experimental results for either spin coating
or air-jet blowing which are directly comparable with the present work. In particular,
comparison between experimental measurements of the most unstable wavenumber (and
its growth rate) with the predictions of the present theoretical calculations would be of

considerable interest.
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FIGURE CAPTIONS

FIG. 1: Geometry of the non-annular problem.

FIG. 2: Basic-state profiles of a non-annular drop for Ry = 1, 1.5, 2 and 2.5.

FIG. 3: Plot of the growth rates o.forqg=0,1,2,...,7as a function of R, for a non-annular

drop in the case C = 0.

FIG. 4: Plot of the largest eigenvalue ¢ as a function of R, for a non-annular drop for ¢ = 0,

1,2, ..., 6 in the case C = 1.

FIG. 5: Plot of the largest eigenvalue o as a function of R, for a non-annular drop for
¢g=20,1,2 ..., 7for (a) C = 0.1 and (b) C = 0.001. The thick curves correspond to
the solutions in the special case C' = 0 given by 0y = (JR? — 12)/4R,y for ¢ = 0 and
o= (JR}+4(1—q))/4Ry forq=1,2,3,..., 1.

FIG. 6: Geometry of the annular problem.

FIG. 7: Basic-state profiles of an annular drop for R) = 2, 2.3, 2.6 and 2.9 in the case

$o = 1.

FIG. 8: Plot of R} against R for annular solutions in the cases ¢ = 0.7, 1 and 1.3.

FIG. 9: Plot of the growth rate oy, as a function of R} for an annular drop for ¢ =0.7,1

and 1.3 in the case ¢ = 0 and C = 0.
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FIG. 10: Plot of the growth rates o,y for ¢ = 0, 1, 2, 3 and 4 as a function of R) for an
annular drop in the cases (a) ¢o = 0.7, (b) ¢ =1 and (c) ¢ = 1.3 for C' = 0.

FIG. 11: Plot of RY against R for annular solutions corresponding to ¢y = 0.7, 1 and 1.3
showing the most unstable wavenumber for C = 0. The dots correspond to the values of R?

and R) at which the most unstable mode jumps between ¢ = 0 and g=1.

FIG. 12: Plot of the largest eigenvalue ¢ as a function of RS for an annular drop for ¢ = 0,

1,2,...,9in the case ¢y = 0.7 for (a) C' =1 and (b) C = 0.001.

FIG. 13: Plot of the largest eigenvalue ¢ as a function of R for an annular drop for q =0,

1,2,...,9in the case ¢y =1 for (a) C =1 and (b) C = 0.001.

FIG. 14: Plot of the largest eigenvalue o as a function of R for an annular drop for ¢ = 0,

1,2, ..., 9in the case ¢ = 1.3 for (a) C =1 and (b) C = 0.001.

FIG. 15 (a) — (d): Plot of R? against RS for annular solutions corresponding to ¢y = 0.7, 1
and 1.3 showing the most unstable wavenumber for (a) C =1, (b) C = 0.1, (c¢) C = 0.01
and (d) C = 0.001. The dots correspond to the values of RY and RY at which the most

unstable mode jumps between two different values of g.
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