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Abstract

In this paper we consider the steady two-dimensional thin-film flow of a vis-
coplastic material, modelled as a biviscosity fluid with a yield stress, round the
outside of a large horizontal stationary or rotating cylinder. In both cases we
determine the leading-order solution both when the ratio of the viscosities in the
‘yielded’ and ‘unyielded’ regions is of order unity and when this ratio approaches
zero in the appropriate distinguished limit. When the viscosity ratio is of order
unity the flow consists, in general, of a region of yielded fluid adjacent to the
cylinder and a region of unyielded fluid adjacent to the free surface, separated
by the yield surface. In the distinguished limit the flow consists, in general, of
a region of yielded fluid adjacent to the cylinder whose stress is significantly
above the yield stress and a pseudo-plug region adjacent to the free surface, in
which the leading-order azimuthal component of velocity is independent of the
radial coordinate but varies azimuthally, separated by the pseudo-yield surface;
the pseudo-plug region is itself, in general, divided by the yield surface into a
region of yielded fluid whose stress is only just above the yield stress and an un-
yielded region adjacent to the free surface. The solution for a stationary cylinder
represents a curtain of fluid with prescribed volume flux falling onto the top
of and off at the bottom of the cylinder. If the flux is sufficiently small then
the flow is unyielded everywhere, but when it exceeds a critical value there is a
yielded region. In the distinguished limit the yielded region always extends all
the way round the cylinder, but the unyielded region does so only when the flux
is sufficiently small. For a rotating cylinder a solution representing a film with
finite thickness everywhere is possible only when the flux is sufficiently small.

Depending on the value of the flux and the speed of rotation the flow may be



unyielded everywhere, have a yielded region on the right of the cylinder only,
or have yielded regions on both the right and left of the cylinder. At the crit-
ical maximum flux the maximum supportable weight of fluid on the cylinder is
attained and the pseudo-yield, yield and free surfaces all have a corner. In the
distinguished limit there are rigid plugs (absent in the stationary case) near the

top and bottom of the cylinder.

1 Introduction

A great number of materials, ranging from many of the paints and inks used in indus-
trial coating applications to numerous muds and lavas found in geophysical contexts,
are ‘viscoplastic’, that is to say they behave essentially like rigid solids when subjected
to a small stress but flow readily (‘yield’) when subjected to a large stress. Various
constitutive equations have been proposed to model these viscoplastic materials; for an
overview of such models and the types of flow problems that have been considered see
the comprehensive review articles by Bird, Dai & Yarusso (1983) and Barnes (1999).
Much of the literature involving flow of viscoplastics has concentrated on the ide-
alised case of a ‘Bingham’ material, that is, a material that behaves like a perfectly
rigid solid ‘plug’ unless the stress exceeds the yield stress, but otherwise behaves like a
viscous fluid. For example, Bird et al. (1983) considered rectilinear flow of a Bingham
material with rigid plugs in various geometries, Lipscomb & Denn (1984) and Tichy
(1991) considered thin-film flow in various confined geometries, while Liu & Mei (1989,
1994), Huang & Garcia (1997) and Balmforth & Craster (1999) investigated thin-film
flow down an inclined plane. A generalisation of the Bingham model is the Herschel-

Bulkley model, and thin-film flow of a Herschel-Bulkley material down an inclined
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plane has recently been investigated by Coussot (1994), Coussot & Proust (1996), Di
Federico (1998), Huang & Garcia (1998) and Balmforth & Craster (1999).

Recent advances in experimental techniques (see, for example, Barnes 1999) have
revealed that the concept of a well-defined yield stress below which no flow occurs
enshrined in the Bingham model is rather idealised, and that typically materials flow
very slowly even at very low stresses, that is, there is in reality no well-defined yield
stress. Nevertheless, the Bingham model has proved to be a very useful one in a wide
range of practical applications. However, even in steady two-dimensional flow, the use
of the Bingham model for thin-film flows is not without its complications. As many
authors have pointed out, a naive treatment of non-rectilinear flows gives rise to the so-
called ‘Bingham paradox’, namely that regions of material that appear to have a stress
below the yield stress (and which are therefore supposed to behave like a rigid plug) are
found to be deforming. Evidently, as Lipscomb & Denn (1984) pointed out, perfectly
rigid plugs are possible only in strictly rectilinear flow. An additional complication of
using the Bingham model is that by assuming that any unyielded regions are perfectly
rigid we deprive ourselves of any means of determining the stresses within them.

In an important recent paper Balmforth & Craster (1999) demonstrated that the
earlier work by Walton & Bittleston (1991) on rectilinear axial flow of a Bingham
material through a narrow eccentric annulus contained the essence of the resolution of
the Bingham paradox. Balmforth & Craster (1999) showed that, when interpreted cor-
rectly, the Bingham model does in fact lead to a consistent description of non-rectilinear
thin-film flow. In particular, Balmforth & Craster’s (1999) careful asymptotic analysis
of non-rectilinear thin-film flow of a Bingham material down an inclined plane in the

limit € — 0, where € (defined in §3) is the aspect ratio of the film, reveals that the solu-



tion consists of two regions, namely a region of yielded fluid adjacent to the substrate
(called the ‘fully plastic’ region by Balmforth & Craster 1999) in which the stress is
significantly (specifically O(1)) above the yield stress, and a region of yielded fluid ad-
jacent to the free surface (called the ‘pseudo-plug’ region by Walton & Bittleston 1991
and Balmforth & Craster 1999) in which the leading-order longitudinal component of
velocity is independent of the transverse coordinate but varies with the longitudinal
coordinate and in which the stress is only just (specifically O(¢)) above the yield stress;
these two regions are separated by an apparent yield surface (called the ‘pseudo-yield
surface’ by Walton & Bittleston 1991 and the ‘fake yield surface’ by Balmforth & Cras-
ter 1999). Since in the non-rectilinear flow considered by Balmforth & Craster (1999)
the stress in the fluid is everywhere above the yield stress the entire flow is yielded
and hence the apparent paradox disappears. Moreover, this analysis also reveals that
the pseudo-yield surface is precisely the same as the ‘yield surface’ calculated from
the naive approach, and so the apparently paradoxical solutions obtained by earlier
authors can in fact be justified by identifying the ‘unyielded regions’ as pseudo-plug re-
gions and the ‘yield surfaces’ as pseudo-yield surfaces. Pseudo-plug regions of this kind
were also obtained by O’Donovan & Tanner (1984) in their numerical investigation of
axisymmetric squeeze flow, as well as by Walton & Bittleston (1991) and Beverly &
Tanner (1992) in their analytical and numerical studies of rectilinear axial flow in a
narrow eccentric annulus.

At the same time as Balmforth & Craster (1999) were undertaking their analysis
Wilson (1999) independently performed a more general version of the same calcula-
tion using the more realistic biviscosity model (which permits flow below the ‘yield

stress’ and in which the stresses within any unyielded regions are determined) instead



of the idealised Bingham model. Wilson’s (1999) study of pressure-driven flow in
a non-parallel-sided symmetric channel resolves the difficulties in the earlier (incom-
plete) analyses by Liu & Mei (1990), Wilson (1993) and Burgess & Wilson (1996)
of, respectively, flow down an inclined plane, axisymmetric squeeze-film flow between
parallel discs and axisymmetric spin coating. Specifically, Wilson (1999) adopted a
biviscosity model with a yield stress from which the familiar Newtonian model is re-
covered in the case A = 1 and the Bingham model is recovered in the limit A — 0,
where )\ (defined in §2) is a ratio of viscosities in the ‘yielded’ and ‘unyielded’ regions,
which are separated by the ‘yield surface’ on which the stress is equal to the yield
stress. In particular, Wilson (1999) investigated the distinguished limit A — 0 (the
Bingham limit) and € — 0 (the thin-film limit) in which & = ¢/\ = O(1). In this
limit the solution again has, in general, a yielded region adjacent to the substrate in
which the stress is significantly (specifically O(1)) above the yield stress separated by
a pseudo-yield surface from a pseudo-plug region adjacent to the free surface in which
the leading-order longitudinal component of velocity is independent of the transverse
coordinate but varies with the longitudinal coordinate. However, unlike in the case of
a Bingham material, the pseudo-plug is now, in general, divided into a yielded region
adjacent to the pseudo-yield surface in which the stress is just (specifically O(e)) above
the yield stress, and an unyielded region adjacent to the free surface in which the
stress is significantly (specifically O(1)) below the yield stress, these two regions being
separated by the yield surface. The location of the yield surface (but not that of the
pseudo-yield surface) depends on k. In the limit £ — 0 (corresponding to taking the
thin-film limit ¢ — 0 and then the Bingham limit A — 0) the yield surface coincides

with the pseudo-yield surface and so the yielded part of the pseudo-plug is absent,



while in the limit ¥ — oo (corresponding to taking the Bingham limit A — 0 and
then the thin-film limit ¢ — 0) the unyielded part of the pseudo-plug is absent and
the results of Balmforth & Craster (1999) for a Bingham material are recovered. It is,
however, important to realise that Balmforth & Craster’s (1999) work shows that it is
not necessary to ‘relax’ the Bingham model in this or any other way in order to resolve
the Bingham paradox.

We remark that Balmforth & Craster’s (1999) and Wilson’s (1999) analyses also
provide the correct solution to the problem of thin-film flow of a Bingham material
in a symmetric contraction treated in the recent paper by Gans (1999) (who used an
inconsistent assumption about the velocity of the rigid plug he believed to be present
in the contraction and hence obtained an erroneous solution there).

In this paper we consider the steady two-dimensional thin-film flow of a viscoplastic
material, modelled as a biviscosity fluid with a yield stress (described in §2), round a
large horizontal stationary or rotating cylinder. The corresponding Newtonian prob-
lems were investigated by Nusselt (1916a,b), Moffatt (1977) and Duffy & Wilson (1999).
The biviscosity model used by Wilson (1999) is preferred to the idealised Bingham
model used by Walton & Bittleston (1991) and Balmforth & Craster (1999) firstly be-
cause it is a more realistic model for real viscoplastic materials and secondly because
it allows the stresses within any unyielded regions to be determined without making
any additional ad hoc assumptions. In §3 we obtain the leading-order solutions in the
case A = O(1) as ¢ — 0 and in the distinguished limit A — 0 and ¢ — 0 in which
k =¢/A = O(1). We then employ these solutions to describe flow round a stationary
cylinder in §4 and §5, and round a rotating cylinder in §6 and §7. We summarise our

results in §8.



2 A biviscosity fluid

The governing equations representing conservation of mass and balance of momentum

for steady slow flow of an incompressible fluid with constant density p take the form
V-u=0, V.o+pg=0, (1)

where u, o and g denote the fluid velocity, stress tensor and acceleration due to gravity,
respectively. In the present work we shall consider a biviscosity fluid with a yield stress

whose constitutive law is given by

2“161 T S Ty,
T

2(u2+—0)e, T > Ty,
q

in which p is the pressure, I is the identity tensor, e is the rate-of-deformation tensor,

(2)

o=-pl+o', where o' =

g is the local shear rate and 7 is a scalar measure of the local stress, given by

e==[(Vu) + (VuT], q¢=1]2 tr(ez)]% , T= [% tr(cr’2)] : (3)

N

The other five quantities in (2), namely pi, pe, 7, 7y and gy, are constant material
parameters related by

Ty = Mgy = Py + To (4)
(so that only three of the five are independent). The parameters p; and ps are viscosi-
ties, and 79 and 7, are measures of stress; 7y is the yield stress, corresponding to the

shear rate ¢,. The relation between 7 and ¢ is given by

H1g, qg<gq
T= " (5)
Haq + 70, q > qy7

and this is illustrated in figure 1; 7 is a continuous piecewise-linear function of ¢ with

a discontinuity in slope at ¢ = q,. We note that 70 = 7y (1 — A), where the viscosity
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ratio A is defined by A = po/py. For 7 < 7, the fluid is ‘unyielded’ and behaves like
a Newtonian fluid with a ‘high’ (constant) viscosity u;, while for 7 > 7, the fluid is
‘yielded’ and behaves like a viscous fluid with a ‘low’ (shear-rate dependent) viscosity
p2+170/q. In the present viscoplastic context ps < p; and so 0 < A < 1. Any surface on
which 7 = 7, which separates yielded and unyielded regions is called a ‘yield surface’.
The familiar case of a Newtonian fluid with constant viscosity is recovered in the case

A =1 and the Bingham model is recovered in the limit A — 0.

3 Problem formulation

Consider the steady two-dimensional flow of the viscoplastic material described in §2
round the outside of a large horizontal cylinder of radius R. We shall consider both
the case when the cylinder is stationary and the case when it is rotating in a counter-
clockwise sense about its horizontal axis with constant angular speed €2 (so that the
circumferential speed is U = R?). Hereafter all quantities will be made dimensionless
using the radial length scale hy, = 7y, /pg, the azimuthal length scale R, the azimuthal
velocity scale pghf,/ 2 and the stress scale 7. Provided that the fluid film is sufficiently
slender, that is, provided that the aspect ratio of the film € = h,/R is sufficiently small,
the leading-order approximation to the local behaviour is simply that of rectilinear flow
(see, for example, Nusselt 1916a,b and Moffatt 1977) with volume flux @ on a locally
planar substrate inclined at an angle o = 7/2 — 6 to the horizontal and moving parallel
to itself with constant speed U, where 6 is the conventional polar angle measured anti-
clockwise from the horizontal, as shown in figure 2. Referred to the local Cartesian

co-ordinate system Ozyz shown in figure 2, the substrate has velocity U > 0 in the



direction Oz and the local components of the fluid velocity in the directions Oz and

Oz are denoted by u and w respectively.

3.1 The solution in the case A = O(1)

When the viscosity ratio A is of order unity as the aspect ratio e approaches zero
equations (2) and (3) give 7 = |0,,| and ¢ = |du/dz| at leading order. In general, the
solution in this case comprises a region 0 < z < H of yielded fluid (region 2) and a
region H < z < h of unyielded fluid (region 1), where the leading-order locations of the
yield surface and the free surface are denoted by z = H(6) and z = h(f), respectively.
The geometry of the local problem in this case is shown in figure 2(a). We define the
term ‘yielded zone’ to correspond to those values of # at which region 2 is present; at
other values of 6 (the ‘unyielded zone’) region 2 is absent and the fluid is unyielded
across the entire thickness of the film.

At leading order in the yielded zone the governing equations (1) with the constitu-

tive equation (2) reduce to simply

Uty +wy, =0, (6)
A g, = cos b, (7
P, = —sinf (8)
in region 1 and to
Uz + W, = 0, 9)
U, = COSH, (10)
P2, = —sind (11)
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in region 2. Equations (6)—(11) are subject to the boundary conditions

m = 0 on z=h (12)

i, = 0 on z=h, (13)

up = U on 2z=0, (14)

u; = uy on z=H, (15)

p1 = pp on z=H, (16)

Aug, = ug,—(1—X)S on z=H, (17)

where S = —sgn(us ;); these represent continuity of normal stress and tangential stress

on the free surface, no slip on the cylinder, and continuity of velocity, normal stress

and tangential stress at the yield surface respectively. The yield condition, 7 = 1 on

z = H, gives

|u1,.] = |uz] =A on z=H.
Thus we obtain the hydrostatic pressure distribution
p=(h—2z)sinf

throughout the fluid, and the velocity distributions

U = U—)\C;)SH(Zh—z)z—@[(WL—H)COSH—ZS]H,
uy = U—COSG(2h—z)z+S(1—)\)z, 0<z<H,

2

in regions 1 and 2 respectively. The volume flux of fluid, given by

H h
QZ/ U2 dz-!—/ (751 dZ,
0 H

is therefore

cos @

S(1—)\)
2

Q=Uh- 2\ (h— HY +1° - (h— H)'] -

11

(18)

(19)

H < z < h,(20)

(21)

(22)

(H—2n)H.  (23)



The yield condition (18) gives
1= (h— H)|cosb)|. (24)

The streamfunctions ¥; = ¥;(2) for ¢« = 1,2, defined by u; = 94;/0z and satisfying

¥2(0) =0, ¢1 (H) = ¢2(H) and 9, (h) = @, are given by

hi(z) = Uz— ’\Cgse(sh — )2 — (1%)‘) [(2h — H) cos§ — 28] Hz
+ % [(3h — 2H) cosf — 3S|H?, H <z <h, (25)
0 1-A
Po(2) = Uz — cog (3h — 2)2° + %zz, 0<z<H. (26)
From (2) the stress throughout the fluid is given by
T = |0g:| = (h — 2)| cos b, (27)

from which it can be shown that S = —sgn(u;,) = sgn(cosf), so that the velocity
gradient across the entire thickness of the film takes the opposite sign from cos 6.
At leading order in the unyielded zone we recover the appropriately non-dimensionalised

version of the familiar solution for a Newtonian fluid with viscosity u;, namely

Acos@

K3 = —
, v=Uz 5

u=U~-—

Acos@ Acosf
3

5 (2h—2)z, Q=Uh~- (8h —2) 2%, (28)

as given, for example, by Moffatt (1977).

3.2 The solution in the distinguished limit & = ¢/\ = O(1)

In the distinguished asymptotic limit in which both the viscosity ratio A and the aspect
ratio € approach zero with k = €¢/A = O(1) the situation is somewhat more complicated.

As Wilson (1999) describes, in general the solution in this limit has three regions rather
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than the two regions present in the case A = O(1). In 0 < z < H* (region 2) the fluid
is yielded with u, = O(1), in H* < z < H (region 3) the fluid is yielded with u, = O(e)
and in H < z < h (region 1) the fluid is unyielded with u, = O(€), where z = H(6) and
z = h(f) are the yield surface and free surface encountered previously, and z = H*(0)
is the ‘pseudo-yield surface’ at which u, changes from O(¢) to O(1). The geometry of
the local problem in this case is shown in figure 2(b). As we shall see, the stress in
region 3 is only O(e) above the yield stress. We will refer to regions 1 and 3, in which
the leading-order solution for u is independent of z but varies with 6, as a ‘pseudo plug’
in order to distinguish them from a rigid plug in which the velocity is constant. The
definitions of the yielded and unyielded zones are as before; however, in this case the
yielded zone will comprise, in general, both ‘partially yielded zones’ (in which regions
1, 2 and 3 are present) and ‘fully yielded zones’ (in which only regions 2 and 3 are
present). The details of the solution are given in the Appendix, and show that in the

yielded zone H*, H and h satisfy

cos @

Q=Uh-— 5 (3h — H*)H*?, (29)
(h— H*)|cosb| =1, (30)
2
(h — H)?cos? 0 + k? [% {H*?cos 0}] =1 (31)

Equations (29), (30) and (31) are the volume flux, pseudo-yield and yield conditions, re-
spectively, and are equivalent to the corresponding equations derived by Wilson (1999)
(namely, his equation (9), his condition Gy, = 1 and his equation (7), respectively) for
pressure-driven thin-film flow of a biviscosity fluid in a non-parallel-sided symmetric
channel.

In the special case k = 0 (corresponding to taking the thin-film limit ¢ — 0 and

13



then the Bingham limit A — 0) we have H* = H so that region 3 is absent and the
problem reduces to that when A = O(1) in the special case A = 0, while in the special
case k = oo (corresponding to taking the Bingham limit A — 0 and then the thin-film
limit € — 0) only regions 2 and 3 are present.

Both H* and h are independent of k. Moreover, equations (23) and (24) in the
special case A = 0 are equivalent to (29) and (30) when H is replaced by H*, and so
the solutions for the free surface h and the pseudo-yield surface H* in the distinguished
limit are identical to those for the free surface h and the yield surface H that are
obtained by setting A = 0 in the solution for A = O(1). In particular, setting A = 0
in (28) confirms that in this case the solution in the unyielded zone is simply a rigid

plug; we shall subsequently find that these occur only for flow on a rotating cylinder

(U #0).

4 Stationary cylinder (U = 0) when A = O(1)

In this section we consider the solution when A = O(1) as € — 0 in the special
case U = 0 corresponding to thin-film flow with prescribed volume flux @ round a
stationary cylinder. For ease of comparison with the earlier work on this problem
(and to distinguish between the present results and those for a rotating cylinder which
follow) we present all the results for a stationary cylinder in terms of the local angle to
the horizontal o (defined in §3) instead of the polar angle 6. To obtain the appropriate
equations from the general ones given in §3 we set U = 0 and 6 = 7/2 — « and replace
v and @ with —u and —@ respectively. In this case, just as Nusselt (1916a,b) found in

the Newtonian case, the only physically acceptable solution corresponds to a curtain
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of fluid falling onto the top (& = 0) of and falling off at the bottom (o = 7) of the
cylinder. When a flux @) of fluid is supplied from above the cylinder a portion @ will
flow round the right-hand side (0 < @ < 7) and the remainder Qs — @ will flow round
the left-hand side (—7 < o < 0) of the cylinder. As Duffy & Wilson (1999) point out
in their recent study of thin-film and curtain flow of a Newtonian fluid on a horizontal
cylinder, the fluxes @) and Qs — @ need not be equal, and so the overall low need
not have left-to-right symmetry. However, without loss of generality we restrict our
attention to flow round the right side of the cylinder in what follows; the corresponding
flow on the left side can then be calculated in the same way with @ replaced by Qs — Q.

Eliminating H between (23) and (24) gives a cubic polynomial equation for A in

the yielded zone, namely

3(1— ) 1-x  3Q
hd — h? - =0.
2sin o + 2sina  sina 0 (32)
If we define
2 120 sin®
K—1 n Qsin” o (33)

IR I
then from (32) the only physically acceptable solution for the free surface h is

1—-A
- [1+2cos (lcos_1K>], -1<K<1,
_ 2sin o 3
=1 122 1 (34)
- [1+2cosh (—cosh_lK)] , K>1.
2sin o 3
The yield surface H is then given by (24), so that
1
H=h— —. (35)
sin o

Note that H and h depend on « only through sina and so the solution has a top-to-

bottom symmetry. From (32) and (35) we have

cosa [A¥sin® a — (1 — \)]

W=
3hsin® a[hsina — (1 — A)]

(36)
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and
cos a [A3sin® o — 3A?sin® a4+ 3(1 — A)hsina — (1 — A)]
3hsin® a[hsina — (1 — )]

H =— , (37)

where the dash denotes d/da.
The edges of the yielded zone are where the yield surface H meets the cylinder,
that is, where H = 0 and (from (35)) A = 1/sina. Thus from (32) the yielded zone is

Qe < @ < T — @, Where a, (0 < 0 < 7/2) is given by

Qe = sin™? l:(i)
3Q

h(ae) = (?) . (39)

Thus from (38) a yielded zone is present only if

N[

} ) (38)

and so

A

that is, only if ) is sufficiently large.
In the unyielded zone we have from (28)

Asin a
U=
2

@h—2)z, h= (Agﬁa)s W= AS.gla(%—z)z?, (41)

as given, for example, by Nusselt (1916a,b).

From (36) and (41) it can be shown that A takes its minimum value at o = 7/2 and
increases monotonically away from o = 7/2, becoming infinite at & = 0 and o = .
From (37) we find that H may have either a local maximum or a local minimum at
a = /2. The flow is always unyielded when « is near 0 and 7 and thus from (41) we

have
_ 3Q 3 5
h = (_Aa) + O(a3) (42)
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as oo — 0, with the corresponding behaviour near o = 7.
In the limit Q — 0 the fluid is unyielded everywhere and the flow is described by

(41). In the limit @ — oo we have

o = (i)% +o@h (43)

3Q
and
C(3Q\% 142 o
i = (sina) " Zsina 0@™), (44)
O /3Q )\ 1-2 o
h = (sina) * 2sina +O@7). (45)

The latter two expansions are non-uniform when o = O(Q~%/2), that is, when « is
of the same order as .. These non-uniformities are resolved by appropriate inner
solutions in which H increases from zero at a = a, to the O(Q/?) value given in (44)
and h decreases from the O(Q'?) value given in (39) at @ = a, to the O(Q/?) value
given in (45).

There are two distinct flow topologies in this case. If @ < A/3 then the flow is
unyielded everywhere (type I), while if @ > A/3 then there is a yielded zone (type
IT); typical examples of these two different flows (with streamlines included) are shown
in figure 3. In particular, figure 3(b) shows that some streamlines lie entirely in the
unyielded region whereas others enter and exit the yielded region, confirming that the
yield surface is not a material surface.

Figures 4 and 5 show H and h plotted as functions of a;/7 for a range of values of \
and (@, respectively. Figures 4 and 5 illustrate that both H and h at each station around
the cylinder and the extent of the yielded zone increase both when X is decreased for

fixed () and when @ is increased for fixed A\. Note that only in the special case A = 0
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(included in figure 4) does the yielded zone extend all the way around the cylinder. In
the special case A = 1 (also included in figure 4) the ‘yield surface’ H merely represents
a surface in the fluid on which the stress takes the yield value of unity and the fluid
undergoes no material change there since the viscosity is the same in the yielded and
unyielded regions in this special case.

Evidently A is continuous at & = a,. Furthermore, (36) and (41) show that A’ is

also continuous at a = «, and is given by

H(ae) = -2 —=, (46)
while from (37)
H'(o) = m (47)

Note from (46) and (47) that h'(c.) < 0 and H'(ae) > 0 with H'(a,) increasing and
h'(ce) decreasing as @ is increased or ) is decreased, in agreement with the results
shown in figures 4 and 5. In contrast, A” is, in general, discontinuous at a = oa.
Specifically, Ah"(a.) = h"(at) — h"(a] ) is given by

1
4 (3Q)\:?
"
e)] = "o | v - - 4
Awa) =~ (32) =N - (13

and is plotted as a function of A for a range of values of @ in figure 6; in particular,
figure 6 illustrates that Ah”(a,) is an increasing function of A and a decreasing function
of Q. This discontinuity in A" accounts for the lack of smoothness of the free surface
at o = o, just evident in figure 3(b) and in figure 4 in the case A = 1/10.

Near oo = 7/2 we find that H and h are given by

H = H0+H2(a—%)2+0(a—g)4, (49)
h o= h0+h2(a—g)2+0(a—g)4, (50)
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where from (35) we have Hy = ho — 1 and Hy = hy — 1/2, with hy given by (34)
evaluated at « = 7/2, and

1= NR-1)+2Q
ho == dho(1 =X —ho) (51)

In particular, if Hy, = 0 then @ = Qu, where Qy = Qu () is given parametrically by

~ (ho—1)?

\— _ h3(hg —1)(ho — 1)
3hg—1"’

Qu = 238k —1) (52)

with 1 < hg < 3 in order that 0 < A < 1. Thus if A\/3 < Q@ < @ then H has a local
maximum, while if @) > Qv then H has a local minimum at a = 7/2. Figure 7 shows
how the curves @ = A/3 and Q = Qy divide the (),Q) parameter plane into regions
in which the flow is of type I, the flow is of type II with a maximum in H (labelled
Il nax) and the flow is of type II with a minimum in H (labelled I1,,;,). This behaviour
is illustrated by the results shown in figures 4 and 5.

Also of interest is the (finite) weight of fluid on the cylinder. To leading order the

weight on the right-hand side of the cylinder is given by

W, Q) = /0 " h(a) do. (53)

Figure 8 shows a plot of W as a function of @ for a range of values of X\. Note that W

can be made arbitrarily large by making A sufficiently small or @ sufficiently large.

The special case A =0

The solution in the special case A = 0 is of particular interest. With (35) equations

(20), (21) and (23) reduce to

2 .
u, = H;mo‘, H<z<h, (54)
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sin o

u = — (2H — 2)2, 0<z2< H, (55)
3 2
Q = H :;moz -I-%—, (56)

where H and h are given by setting A = 0 in (35) and (34). In this case the velocity
in region 1 is independent of z (but not ) and o, = 0, that is, the unyielded zone is

absent. We note that

2
H = Q) - —Qa+0(a2), (57)
1 1-4
as a — 0,
1 2sina 5\/_s1n o 32sin® o 5
H = (2@)5 -——Q+ QF - = —Q*+0@), (59)
2sin 5v2sin’a s 32sin’« 9 5
ho= ——+ Q) - 250+ 20 - 250202 1 00 (60)
as @ — 0 (we shall need to know these latter expansions to the given accuracy in §5.3),
and
1
3Q \?3 1 1
" = (sina)  2sino +0@7), (61)
1
_ 3Q \3 1 1
ho= (sina) + 2sina +0@7) (62)

as @ — oo. Evidently (61) and (62) are non-uniform when o = O(Q'/?). These

non-uniformities are resolved by the inner solutions

H2a3 1 3
H = HQ:+—9" Q2 T2
o+ i ma @ oY, (63)
Hja & 1 3
= |H, —_— T2 T2 4
b= i) et [t et ro@h, 6
where we have written o = &Q~2? and H, is the appropriate solution of the cubic
equation
H3&a H?
— =1.
3 + 5 (65)
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5 Stationary cylinder (U =0) when k£ = O(1)

In this section we consider the solution in the distinguished limit A — 0 and ¢ — 0
in which & = ¢/A = O(1) in the special case U = 0, corresponding to thin-film flow
with prescribed volume flux () round a stationary cylinder. The calculations in the

Appendix show that in the yielded zone H*, H and h satisfy

sin o

Q=——0h- H*)H*, (66)
(h— H*)sina =1, (67)
2
(h— H)?sin® o + k? [% {H**sin a}] =1 (68)

Both H* and h are independent of k. Using (67) to eliminate h from (66) yields

H*3sina N H*?
3 2

Q= (69)

Since equations (67) and (69) are identical to (35) and (56) with H replaced by H*
the solutions for h and H* in this case are identical to those for h and H in the case
A = 0, respectively. The edges of the yielded zone are where the pseudo-yield surface
H* meets the cylinder, and are at @ = o and oo = 7™ — «, where @} is identical to a.
in the case A = 0. Hence all the results for H, h and (= 0) in the case A = 0 given
in §4 apply directly to H*, h and (= 0) in the present problem. Of course, this does
not mean that other quantities (such as, for example, the stress) are the same. Solving

(68) yields

[

sin o

H=h- L 1- ki {H*”sina} 2 (70)
B da ’
where, from (69),

d ) (3+ H*sina)H*2 cos o
. H*Z —
do {Hsina} 3(1+ H*sina)

(71)
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Combining (70) and (71) shows that H*, H and h depend on « only through sin«
and so, as in the case A = O(1) considered in §4, they always have top-to-bottom
symmetry. Note that A* = H when a = /2, and so region 3 is always absent at this
special value of a.

Although H* and h always extend from o = 0 to & = 7, the same is not necessarily
true for H; specifically, we find that if @ > 1/2k then the yield surface H meets the
free surface h, at @ = o, and o = ™ — @, where ae (0 < ae < 7/2) is the (unique)
solution of

d o
k@ {H*”sina} =1. (72)

If Q < 1/2k then

1 . . 16k2Q? 1

— 11— (1 —4k2Q%2 2Q)z {1 — O(a), < =
o a[ ( Q)z]+(Q)[ 3(1_4k2Q2)%}+ (@), @<gp,

- 1
1 1 /8\2 1 L 1
it (a) rEroed =g
(73)
as a — 0, while if @ > 1/2k then
H=h( )—(O‘"”‘e)% _op & {H2si }% +O0(a — ) (74)
= h(a. — doz Ino . o — Qe

as a — aF . All three surfaces always have a global minimum at a = 7/2.

There are two distinct flow topologies in this case. If @ < 1/2k then there is only
a partially yielded zone (type II;), while if @ > 1/2k then there are a partially yielded
zone and two fully yielded zones (type Ily); typical examples of these two different
flows are shown in figure 9. In particular, figure 9(a) shows that fluid particles start
(at o = 0) and finish (at @ = ) in the pseudo-plug (regions 1 and 3), but may pass
through the yielded region (region 2), whilst figure 9(b) shows that all particles start

and finish in region 3, but must, in general, pass through either region 1 or region 2.
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Figures 10, 11 and 12 show H*, H and A plotted as functions of a/7 for various values

of @ and k.

5.1 The limit £ — 0

In the limit £ — 0 we have

H = Hy+ k*H, + O(k*), (75)
where Hy = H* and
H=— (L {H*”sina} 2 (76)
>~ 2sina \da )
In particular,
202 5\1
Hy = g - 16(2:? Lo (77)

as o — 0, and comparing (57) and (77) shows that (75) is non-uniform when o = O(k?).

This non-uniformity is resolved by the inner solution

H=(2Q)% + 267 + -?)—2(3@3 —8V2Qza — 62)k* + O(kY), (78)

&

where we have written a = k24.

5.2 The limit £ — o

In the limit £ — oo we have

Cr 31+H) 1 1
%= T eGrH)E O (kZ) ) (79)

where H; = H*(w/2), and the behaviour of H*, H and h in the partially yielded zone

is given by
* * 1
H* = H;+O0 (-155) , (80)
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5 ° 1
H o= 1+H - |1- |2 +0(—2), (81)
3 *

. 1
h o= 1+H0+O(ﬁ). (82)

Figure 13 shows a sketch of the leading-order solution in the partially yielded zone in
which h and H* are constant (independent of o) whereas H has a semi-elliptical shape

with width O(k~!) and unit height.

5.3 The limit @ — 0

In the limit @ — 0 we find that H* and h are given by (59) and (60) respectively and

that

i in2 2 2 .. 3
H:(2Q)%_2sma +5\/§s1n an__l_(% cos“a 32sin°

— 2 3

3 @ 9 sin o 27 )Q +0(Q7). (83)
Comparison of (83) with (59) shows that H* and H differ at O(Q?) in this limit. The
solution for H (but not that for H* or h) is not uniformly valid when a = O(QY?).

This non-uniformity is resolved by an appropriate inner solution near ac = 0, but, since

it appears first only at O(Q%/?), we do not pursue the details here.

5.4 The limit @ — oo

In the limit @ — oo we find that H* and h are given by (61) and (62) respectively.
Furthermore,
T

335 _1
ae=§~—k—Q 3+ 0(Q2), (84)

and the behaviour of H*, H and h in the partially yielded zone is given by
|
H' = (3Q)3-5;+0@Q), (85)
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11 %_a _1
H = (8Q¢+5-(1-|7 +0(Q73), (86)
PR
ho= (BQ)}+2+0@Qb). (87)

Figure 14 shows a sketch of the first-order-accurate solution in the partially yielded
zone in which H* and h are constant (independent of ) whereas H has a semi-elliptical

shape with width O(Q~%/3) and unit height.

6 Rotating cylinder (U # 0) when A = O(1)

In this section we consider the solution when A = O(1) as € — 0 in the general case
U # 0 corresponding to thin-film flow with volume flux @) round a rotating cylinder.
In this case, just as Duffy & Wilson (1999) found in the Newtonian case, there are two
physically acceptable solutions, one corresponding to a film of finite non-zero thickness
everywhere (the solution studied in the Newtonian case by Moffatt 1977) and another
corresponding to a curtain of fluid falling onto the top of and off at the bottom of
the cylinder (studied in the Newtonian case by Duffy & Wilson 1999). In this work
we shall be concerned exclusively with the former solution. Note that this solution is
absent in the special case U = 0 treated earlier, and so the following results do not, in
general, reduce to those given in §4 and §5 in the limit U — 0.

Eliminating H from (23) by using (24) gives a cubic polynomial equation for A in

the yielded zone, namely

2| cos 4| cosf®  2|cosf]® ' cosf
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If we define

1
ik

K [(1=X)°—2(1—A)(1—3Ucosh) — 125Q cos* 0], (89)

where

M = (1 - ))?+4U cos¥, (90)

then from (88) the appropriate solution for the free surface h is

1
1-X M2 o 1,
= —_— - —-1< <
7050 + cosBCOS ( 3 3cos K), 1<K, (91)

on the right (S =1), and

1
1-2A |M|2

2|cos@| = |cosf

h={ 1=A + M COS lcos_lK, M>0 and —-1<K<1, (92)

2| cos@| | cos¥| 3

1-A M

+
( 2|cosf| |cosb|

1
| sinh (gsinh_l K) , M<o,

D=

(S

cosh (%cosh_lK), M>0 and K >1,

on left (S = —1). The yield surface H is given by (24). Note that H and h have
top-to-bottom symmetry as in the case U = 0, but now they do not have left-to-right
symmetry, and so hereafter the subscripts R and L will be used to denote quantities on
the right (S = 1) and left (S = —1), respectively, when necessary. The solution (91)
is physically sensible only if K > —1 throughout the yielded zone, and in particular if

K > —1 at 8 =0, that is, if Q < Q¢, where
Qo = % (=02 20 - N -30) + [ - A2 +40]]. (93)

From (88) and (24) we have

__ sinf[h¥cos’d — S(1 - N)]
3cos30[U + S(1— A)h — h?cos]

b =
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and

_sin@[h®cos® § — 3Sh?cos® @ + 3(1 — A)hcosf + 3SU cos § — S(1 — A)]

I_
i = 3cos30[U + S(1 — A)h — h?cosf|

(95)

(where the dash denotes d/df) except at § = 0 in the case @ = Q¢; this special case is
considered later. From (94) it can be shown that ' < 0 on the top half of the cylinder
and A’ > 0 on the bottom half of the cylinder. Hence 7 takes its maximum value of
h(0) at z = 0, # = 0 and so there can be a region of yielded fluid only if A(0) > 1.
From (91) it is clear that A(0) is maximised when @ = Q¢ (corresponding to K = —1),

and a necessary condition for yielded zones to exist is therefore
U> A (96)

For U < ) the flow is unyielded everywhere.

As before, the edges of the yielded zone are where the yield surface H meets the
cylinder, that is, where H = 0 and (from (24)) h = 1/|cos@|. Thus from (88) the
yielded zones on the right and left are given by |0| < Oer and |7 — 0] < 7 — O,

respectively, where f.r (0 < Or < 7/2) and b1, (7/2 < O, < ) are given by

(e -] o

h(B,) = 3;9_/\(] (1 - {1 _ 45229}5) , (98)

with the appropriate choice for S. Thus from (97) a yielded zone is present on the

0, = cos™?

and so

right only if

where



Similarly, from (97) a yielded zone is present on the left only if Q > Qr,, where
A
Qu=U+z20Cr (101)

From (97) we find that fg > 7 — 6o, (with equality when A = 0) and so the extent of
the yielded zone is always greater on the right than on the left when A # 0.

From (28) h in the unyielded zone satisfies

3U 3Q
3 _ —
Acos 9h + Acosf 0 (102)
If we define
35Q (A cos|\?
= — 1
Ky =22 (A (103)
then from (102) the appropriate solution for h is
U \* (v 1 _,
— = ~1< Ky <
h 2(Acos€) cos(3 5 Cos KN), 1< Ky <0, (104)
on the right (S =1), and
h=2 v %sinh L sinh! K Ky >0 (105)
~ "\ \|cosd 3 Nj» N2

on the left (S = —1). If the fluid is unyielded everywhere then (104) is physically

sensible only if Q) < Qn, where
=2 (106)
YT s
in agreement with the result obtained by Moffatt (1977) in the Newtonian case, and

from (102) we have

Ah3sin 0
| ——
W= 3(U — Ah? cos6)’ (107)

except at @ = 0 in the case @ = Qn.
From (94) and (107) it can be shown that h takes its maximum value at 6 = 0

and decreases monotonically away from 6 = 0 to its minimum value at § = 7. From
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(95) we find that H always has a local maximum at 8 = 0 but may have either a local
maximum or a local minimum at # = 7. The flow is always unyielded near 6 = +7/2,

and thus from (102) we have

Q¢ T T\ 2
=g (0-3)+0(0-3) (108)
as 8 — /2, with the corresponding behaviour near § = —m/2.

As we have seen, yielded zones can exist only for U > ) and in this case the
strongest restrictions on @) are Q > Qgr, @ < Q¢ and Q > Q. For U > A we have
Qr < Q¢ < @n, with Qr = Qc = Qn = 2)/3 when U = A. There are therefore three
distinct flow topologies. If U < A and Q < @y or U > X and @ < Qg then the flow is
unyielded everywhere (type I), if U > A and Qr < Q < min(Q¢, Q1) then there is a
yielded zone on the right but not on the left (type II), while if U > A and Q1 < @ < Q¢
then there are yielded zones on both the right and left (type III); typical examples of
these three different flows (with streamlines included) are shown in figure 15. Note
that these definitions differ from those in §4. Figure 16 shows a plot of a typical (U, Q)
parameter plane for a fixed value of A (in this case A\ = 1/2); in particular it shows
how the curves @ = Qn, @ = @Qr, @ = QL and @ = Q¢ divide the parameter plane
into a region where no solution exists and regions in which the three different types of
flow occur.

Figures 17, 18 and 19 show H and h plotted as functions of §/7 for a range of
values of A, U and @, respectively. Figure 17 illustrates that both H and h at each
station round the cylinder and the extent of the yielded zone on the right increase and
on the left decrease when A is increased for fixed U and (). Figure 18 illustrates that

both H and h at each station round the cylinder and the extent of the yielded zone on
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both the right and left decrease when U is increased for fixed A and @, while figure 19
illustrates the same behaviour when @) is decreased for fixed A and U.
Evidently h is continuous at 6 = .. Furthermore, (94) and (107) show that A’ is

also continuous at = . and is given by

SAsiné
’ _ e
W (0e) = 3cos?0, (Ucosb — N)’ (109)
while from (95)
H'(6,) = S'sin 0¢(3U cos B, — 2)) (110)

" 3cos26, (Ucosf — N)

As in the case U = 0 discussed in §4, h” is, in general, discontinuous at 6 = 6.
Also of interest is the local behaviour of H and A near @ = 0, and in particular,

the formation of corners in both surfaces at § = 0 when @ = Q¢, as shown in figures

17-19. When Qg < Q < Q¢ we find that near # = 0 H and h are given by

H = Hy+ H,0>+0(6Y), (111)

h = h() + h202 + 0(04), (112)

where from (24) we have Hy = hy — 1 and H, = hy — 1/2, with ho given by (91)

evaluated at 8 = 0, and

(1= A)(h2 — 1) + 2Uho — 2Q

e = = U+ (= Nho — B2)

(113)

Since hy < 0 and Hs < 0 both h and H always have a local maximum at @ = 0. In the

special case @) = Q¢ we find that near § =0 H and h are given by

H = HyF A0+ H.0* + O(6%), (114)
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where

3 _ 3 2 942
I R SR U T S (116)
3(2ho + A —1) 6(2ho + A — 1)
and where from (24) and (91) we have Hy = hy — 1, Hy = hy — 1/2 and
1 9 1
ho =35 [1=A+ (-2 +40)%], (117)

showing that the profiles for both H and A have a corner at § = 0 with internal angle
7 — 2A in this case. As U — AT we have 6.g — 0T, so that the extent of the yielded
zone on the right decreases to zero. Both A and h'(6cr) take the value [U/3(1 + U)]V/?
at U = A. When U < ) and @ = Qy (in which case the flow is unyielded everywhere) h
has a corner at § = 0 with A = (U/6))"/2, in agreement with the result for a Newtonian
fluid (see, for example, Duffy & Wilson 1999). Hence for A # 1 there is a finite jump in
the value of 4 from 672 to [U/3(1 + U)]/? at U = \. Figure 20 shows A and ' (6er)
plotted as functions of U for a range of values of A and, in particular, shows this jump.
The special case A = 0 is discussed later.

When @, < Q < Q¢ we find that near § = 7 H and h are given by

H = Hy+ Hy(0—7)*+0( —n)*, (118)

h = ho+h2(9-ﬂ')2+0(9—7{')4, (119)

where from (24) we have Hy = hy — 1 and H, = hy — 1/2, with hq given by (92)

evaluated at § = m, and

(1= N(hE 1) - 2Uho +2Q

e = U = A = Nho + 1) (120)

Since hy > 0 then h always has a local minimum at § = 7. Defining Qy such that

H; = 0 when @Q = Qv we find that if QL < @ < min(Qm, Qc) then H has a local
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maximum, whereas if Qy < @ < Q¢ then H has a local minimum at § = 7. Figure 21
shows a plot of the (U, Q) parameter plane for a fixed value of A (in this case A = 1/2)
on a larger scale than figure 16, showing how the curve @ = @y divides the region
in which flows of type III occur into regions where H has a local maximum (labelled
IIax) or a local minimum (labelled ITT,;,).

One property of considerable practical interest is the maximum weight of fluid that
can be supported on the rotating cylinder (first considered by Moffatt 1977 in the

Newtonian case). To leading order the weight of fluid on the cylinder is given by

WU, Q) = /0 1) o, (121)

and figure 22 shows a plot of W as a function of @) for several values of U in the case A =
1/2. As figure 22 shows, W increases monotonically (almost, but not exactly, linearly)
with @ until it reaches the maximum supportable weight Wy,,,. This maximum weight
is given by Wnax = W(A, U, Qn) when U < X and Wy = W(A, U, Qc) when U > ).
Figure 23 shows a plot of Wi,.x as a function of U for a range of values of A; in particular,
for U > A we have Wiy, > 4.44272 whilst for U < A we have Wi, < 4.44272, and
in the special case U = A we have Wy, = 4.44272, the (corrected) value obtained by
Moffatt (1977) in the Newtonian case (see, for example, Duffy & Wilson 1999). The

special case A = 0 is discussed next.

The special case A =0

The special case A = 0 is again of particular interest. In the yielded zone, using (24)
n (20), (21) and (23) we have

2
u1=U—H;080, H<z<h, (122)
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cos @

H3cos® H?2S SU
3 + 5 —UH——_COSG+Q_O’ (124)

with H and h given by setting A = 0 in (24), (91) and (92). From (97) we have simply

SU] , (125)

6, = cos™* [—

Q

and thus .g = ™ — 01, and so the extents of the yielded zones on the right and the

left are the same. From (93), (100) and (101) we obtain
1 3
chﬁ[ﬁU—1+(1+4U)2], Qr=QL="U. (126)
In the unyielded zone we have simply
, (127)

that is, a rigid plug of uniform thickness /U moving with constant speed U. Since
Qr = @ flows of type II do not occur in this case. Figure 24 shows how the curves
Q = Qr = Qr and @ = Q¢ divide the (U, Q) parameter plane in this case into a region
where no solution exists and regions in which flows of type I and III occur. From (109),

(110) and (124) we have h'(6,) = 0,

Ssinf, S 1
m(6) = -2 = -2 - v, (126)
and
H"(0,) = % (U* = SQU? —2Q°U* + SQ°) . (129)

Figure 20 includes a plot of A as a function of U when A = 0. Figure 23 includes a plot
of Whax as a function of U when A = 0; in particular, as U — 0 the solution approaches

a rigid plug of thickness unity all the way round the cylinder and so Wiy, — 27.
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7 Rotating cylinder (U # 0) when k£ = O(1)

In this section we consider the solution in the distinguished limit A — 0 and € — 0 in
which k£ = e¢/A = O(1), in the general case U # 0 corresponding to thin-film flow with
volume flux @) round a rotating cylinder. The calculations in the Appendix show that

in the yielded zone H*, H and h satisfy

Q=Uh-— ?(3}» — HY)H?, (130)
(h— H")|cosf| =1, (131)
2
(h— H)?cos® 0 + k? [;—9 {H** cos 0}] =1 (132)

Both H* and h are independent of k. Using (131) to eliminate A from (130) yields

H*3cosf H*S . SU
T+ e —UH' - 25 10 =0 (133)

Since equations (131) and (133) are identical to (24) and (124) with H replaced by
H* the solutions for A and H* in this case are again identical to those for h and H in
the case A = 0, respectively. The edges of the yielded zone are where the pseudo-yield
surface H* meets the cylinder, and are given by || = 0%z and |7 — 0| = 7 — 6%, where
;g and 6% are identical to g and O, in the case A = 0. Hence all the results for H,
h and 6 in the case A = 0 given in §6 apply directly to H*, h and 6 in the present

problem. Solving (132) yields

[V

H=h- — [1 — (kd% {H*?cos 0})2J , (134)

" |cosd]
where, from (133),

H*sin (H*® cos? 0 + 3SH*2 cos§ — 3UH* cos§ — 6SU)

d
— {H*cosf} =
cos 0} 3cosf (U — SH* — H*2cos §) ’

dé

(135)
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except at @ = 0 in the case Q = Qc. Combining (134) and (135) shows that, as in
the case A = O(1) considered in §6, H*, H and h always have top-to-bottom but not
left-to-right symmetry. Note that H* = H at § = 0 for @ # Qc¢, at § = 7 and at the
edges of the yielded zones, and so region 3 is always absent at these special values of
6.

When Qr < @ < Q¢ there are two critical values of k, denoted by k.ir and
keitt, (> Keritr), such that if & > keyr then H meets h at § = +0,r and 6 = +0,5
(0 € Be1r < Oeor < 7/2) on the right, and if ¥ > k4, then H meets h at = +0,;;, and
0 = 201, (7/2 < Beor, < be11, < 7) on the left, where 6,; and 0, are the appropriate

solutions of

d *2 _
k@ {H*?cosf} = 1. (136)

As 6 — 6 from below and above on the right and left respectively we have
H=H(0-6)+Hy(0-6)+0(0—6)3, (137)

where Hy; = Hf = H*'(6%) is given by (128) and

2032

Hy = H; + T(Q2 - U?)?, (138)

where Hy = H*"(6})/2 is given by (129). If k > ke then
1
d? :
[2Sk@ {H* cos 9}] + O(6 — 041) (139)
0:091

S (~S(0 - 6.1))*

H = h(6a) - cos Gq1

as @ — 0 from below and above on the right and left respectively, and

2 3
_osk L {H** cos6} +0(0—0)  (140)
daz 0=032

S (S(8 — 62))?

H = h{fez) — €08 Bco

as @ — 0 from above and below on the right and left respectively.
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There are four distinct flow topologies in this case. If Q < Qg then the flow is
of type I (a rigid plug of thickness Q/U), if Qr < @ < Q¢ and k < keyr then the
flow is of type III with only partially yielded zones on both the right and left (type
I), if Qr < Q@ < Q¢ and kgir < k < kerier, then the flow is of type III with both
partially and fully yielded zones on the right but only a partially yielded zone on the
left (type III,), while if Qr < @ < Q¢ and k > keyy1, then the flow is of type III with
both partially and fully yielded zones on both the right and left (type III3); typical
examples of these different flows of type III are shown in figure 25. Figure 26 shows H*,
H and h plotted as functions of 8/ for various values of & for a value of Q satisfying
@r < Q < Qc-

For Qr < @ < Q¢ we find that near # = 0 H is given by

H = Hy + H.6% + 0(8%), (141)

where Hy = H} = H*(0) and

H2 (H3® + 3H:2 — 3UH} — 6U)° k2

H, = Hy +
2o 18 (U — Hf — H?)?

; (142)

where H} = H*"(0)/2. Thus H can have either a local maximum or a local minimum

at @ = 0. In the special case Q = Q¢ we have
d *2 *
0 {H*?cos0} = 2H; A+ O(9) (143)

near § = 0, from which we find that if k¥ > keir(= 1/2HFA when @ = Q¢) then H
meets h at 0 = +0cr (0 < O1r < /2) on the right, where 0 is the (unique) solution
of (136); the behaviour on the left is as before. Note that, unlike when k > kg for

Qr < @ < Qc¢, H meets h only twice (as opposed to four times) when k > kg for
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Q = Q¢. For k < ki near § = 0 H is given by
1
H=H;+1- [1- (2H;Ak)®]® + BO + O(6?), (144)

where

2H}AK? (Hy? — 2A? — 4H} H3)
1 ;
[1 - H; AK)"]?
showing that the profile for H has a corner at § = 0 with internal angle 7 — 2B in this

B=A- (145)

case. Furthermore, unlike when k < keir for Qr < @ < Q¢ (in which case H = H*
at 0 = 0), H # H* at § = 0 when k < kuir for @ = Q¢. Figure 27 shows H*, H
and h plotted as functions of 8/ for various values of k in the case Q = Q¢. Figure
28 shows a plot of B as a function of & for a range of values of U, and, in particular,
shows that B — oo as k — k_;.r, that is, the corner becomes a cusp as it approaches
the free surface.

When Qr < @ < Q¢ we find that near § = 7 H is given by
H=H0+H2(0—7r)2—|—0(9—7r)4, (146)

where Hy = H} = H*(n) and

H3? (HP + 3H? + 3UH; + 6U)° k?
18 (U + Hy + H2)?

where Hy = H*"'(r)/2. Thus, if Qr < Q@ < min(Qy, Qc) then H has either a local

HQZH;'l'

) (147)

maximum or a local minimum at 6§ = 7, whereas if Qy < Q < Q¢ then H always has

a local minimum at 8 = .

7.1 The limit £ — 0
In the limit £ — 0 we have

H = Hy+ k*Hy + O(kY), (148)
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where Hy = H* and

1 d 2
Hy=——— (= {H®cosb}) .
» = Scosd] (d@ {H** cos }) (149)

In contrast to the corresponding small-£ solution in the case U = 0 described in §5.1

this solution is uniformly valid.

7.2 The limit £ — o0

In the limit £ — co when Qr < Q < Q¢ we have

3(U — Hy — H) 1 1
elR — 7 O\ )
Yo = g (g + 38 —3UH; 60 kT O\ (150)

where Hj = H*(0), and the behaviour of H*, H and h in the partially yielded zone

0] < Be1r is given by

* * 1
H = H0+O(E5>, (151)
o= 1sm- 1 (2] 1oL (152)
B 0 eelR k2 ’
. 1
h o= 1+H: +O(ﬁ), (153)

analogous to the corresponding large-k solution in the case U = 0 described in §5.2.

Similarly when Qr < @ < Q¢ we also have

0e1L =T — (154)

3(U + Hp + H?) 1oo(L
Hi (H3® +3H2 + 3UH; + 6U) k k)’

where H} = H*(r), and the behaviour of H*, H and h in the partially yielded zone

|m — 0] < 7 — Be11, is given by

* * ]'
H* = H:+0 (F) , (155)
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eI
+
Qe
S
x|
N———

r—80 \2|?
= 14+ H¥ — — 1
H + H; [1 (W__ 9e1L) (156)

h o= 1+Hg+0(i), (157)

k2
again analogous to the corresponding large-k solution in the case U = 0 described in

§5.2. Moreover,

cos30r 1 1
O = 60 — £ _+0|(=]), 1
2 =% T YenZark (k2) (158)

and the behaviour of H*, H and h in the partially yielded zones for < 6 < 6%; and

"L < 0 < Beor,, is given by

« _ Scosfl 1
H = 2sin0;k+0(k2)’ (159)
1
S 0r—0 1%\’ 1
H = cose [1—(1—{9:_62})]+0<E), (160)
S 1
h - Sovo(L). o1

Figure 29 shows a sketch of the leading-order solution in these partially yielded zones
in which h and H* are constant (independent of §) whereas H has a semi-elliptical
shape with width O(k~!) and height 1/| cos8|. The solution for H (but not for H* or
h) is not uniformly valid when 6 — 6 = O(1/k?). This non-uniformity is resolved by

an appropriate inner solution near 6 = 6* satisfying H'(6%) = H*'(6}).

8 Conclusions

In this paper we considered the steady two-dimensional thin-film flow of a viscoplastic
material, modelled as a biviscosity fluid with a yield stress, round the outside of a large
horizontal stationary or rotating cylinder. In both cases we determined the leading-

order solution both when A = O(1) as ¢ — 0 and in the distinguished limit A — 0
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and € — 0 in which k£ = ¢/A = O(1). When A = O(1) the flow consists, in general, of
a region of yielded fluid (region 2) adjacent to the cylinder and a region of unyielded
fluid (region 1) adjacent to the free surface, separated by z = H. In the distinguished
limit the flow consists, in general, of a region of yielded fluid (region 2) adjacent to the
cylinder whose stress is O(1) above the yield stress and a pseudo-plug region adjacent
to the free surface, in which the leading-order azimuthal component of velocity is
independent of the radial coordinate but varies azimuthally, separated by z = H*; the
pseudo-plug region is itself, in general, divided by z = H into a region of yielded fluid
(region 3) whose stress is O(e) above the yield stress and an unyielded region (region
1) adjacent to the free surface.

The solution for a stationary cylinder represents a curtain of fluid with prescribed
volume flux @ falling onto the top of and off at the bottom of the cylinder. If @ < A/3
then the flow is unyielded everywhere (type I), but when @ > A/3 there is a yielded
zone (type II). In the distinguished limit region 2 always extends all the way round the
cylinder, but region 1 does so only when Q < 1/2k.

For a rotating cylinder a solution representing a film with finite thickness every-
where is possible only when the flux is sufficiently small. If U < X and < Qn or
U > X and Q@ < Qg then the flow is unyielded everywhere (type I), if U > A and
Qr < Q < min(Qc, Q) then there is a yielded zone on the right but not on the left
(type II), while if U > X and @, < @ < Q¢ then there are yielded zones on both
the right and left (type III). At the critical maximum flux (Q = Qn when U < )\ and
Q = Qc when U > )) the maximum supportable weight of fluid on the cylinder is
attained and H*, H and h all have a corner at # = 0. In the distinguished limit we

have Qr = Qv (so that flows of type II do not occur) and there are rigid plugs (absent
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in the stationary case) near the top and bottom of the cylinder.
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Appendix - Derivation of the Governing Equations
in the Distinguished Limit £ =¢/A = O(1)

In this appendix we follow the approach outlined in the recent paper by Wilson (1999)
to obtain the leading-order equations describing the present problems in the distin-
guished limit A — 0 and € — 0 with £ = ¢/\ = O(1). As Wilson (1999) describes, in

general the solution in this limit has three regions (in which the dependent variables are
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hereafter denoted by the subscript 1, 2 or 3 as appropriate). In region 2 (0 < z < H*)
the fluid is yielded with w, = O(1), in region 3 (H* < z < H) the fluid is yielded
with u, = O(e) and in region 1 (H < z < h) the fluid is unyielded with u, = O(e),
where z = H*(z), 2 = H(z) and z = h(z) are the unknown pseudo-yield surface, yield
surface and free surface respectively.

In this Appendix we consider the general case of flow driven by body forces G =
G(z) and F = F(z) in the z and z directions respectively. Non-dimensionalising

appropriately in the unyielded region the governing equations are

Uz +w, =0, (162)
€pr = AUy + u,,) + G, (163)
Pz = CA_I (62wxm + wzz) + F, (164)

and the normal and tangential stresses on any surface z = f(z) are given by

P+ a5 [ezfzzum +w, — fo(Ewy + uz)] , (165)
#_G:JQ [(1 = €12 (Ews + u,) + 26 fo(w, — ug)], (166)

respectively, while in the yielded regions the governing equations are

Uy +w, =0, (167)
11— 1-AX

€py = [1 + T] (Eugg + Usy) — ( 7 ) [26%usqs + (u; + €w,)g.] + G, (168)
11— 1-—-X

P, = [1 + ] (€ Wy + Wy,) — ( Z )e [(e2wm +u,)g, + szqz] + F, (169)

and the normal and tangential stresses on any surface z = f(z) are given by equations
(165) and (166) with A~* replaced by 1+ (1 — )\)/g, respectively. The local shear rate
q is given by

g = [4®u? + (u, + w,)?]? (170)
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and the yield condition is

g=X (171)
on the yield surface z = H.
In region 1 (unyielded fluid with u, = O(e))
ur = ui(z) + euri(z, 2) + O(€2), (172)
@1 = qo+eq +O(), (173)
where from (170) we obtain g;0 = 0 and
qu = [dudy, +ul )7 (174)
From (162)—-(164) we obtain the leading-order governing equations
U0 + Wi, = O, (175)
kv .. +G = 0, (176)
po. —F = 0. (177)
In region 2 (yielded fluid with u, = O(1))
uy = ug(x,2) + eun (z, 2) + O(€2), (178)
@2 = gao+egn + O(e%), (179)
where from (170) we obtain g0 = —Sug, and g1 = —Sug;,, where S = —sgn(ug,).
From (167)-(169) we obtain the leading-order governing equations
U0,z + Woo,, = O, (180)
U +G = 0, (181)
poz—F = 0. (182)
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In region 3 (yielded fluid with u, = O(e))
us = ugo(z) + eus (x, 2) + O(€?), (183)
g = gso+eg+ O(ed), (184)
where from (170) we obtain g3, = 0 and
g1 = [4udy, +u3,]2. (185)

From (167)—(169) we obtain the leading-order governing equations

U3oe + W30 = 0, (186)
(y—?’l—) +G = 0, (187)
qs1 /,
p30,z+2w30,22q31,z —F = 0. (188)
a3

At the solid substrate z = 0 there is no slip and so at leading order
up = U, | (189)
wy = 0. (190)
The pseudo-yield surface z = H*(x) is the surface at which
ugo,, = 0 (191)

(or, equivalently, us;, — o0) and separates region 3 (yielded fluid with u, = O(e))
from region 2 (yielded fluid with u, = O(1)). At the pseudo-yield surface the velocity,

normal and tangential stress components are continuous and so at leading order

u20 = Ugzp, (192)
Wz = Wsp, (193)
W30,z
—pn = —pao+2—2, (194)
g31
5 = Bz (195)
q31
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The yield surface z = H(z) separates region 1 (unyielded fluid with u, = O())
from region 3 (yielded fluid with u, = O(e)). At leading order the yield condition (171)
gives g3; = 1/k, that is

(196)

2 2
duzg, + Uz, = %2
At the yield surface the velocity, normal and tangential stress components are contin-

uous and so at leading order

Uy = Usg, (197)
wyp = Wsg, (198)
—Pi0 = —DP30, (199)
U1, = Usle (200)

At the free surface z = h(z) the normal and tangential stress components are

continuous and so at leading order

—p1o + 2kwy, = 0, (201)

kui, = 0. (202)
Solving (181) for ugy subject to (189) at z = 0 and (191) at z = H* yields
G ope
uge =U + 5(2H — 2)z. (203)

Thus from (192) and (197)

G
U190 = U3g = U+ EH*2 (204)

and so at leading order the volume flux is given by

H*
Q:/ UgodZ+(H—H*)U30+(h—H)U10ZUh+%(3h—H*)H*2. (205)
0
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If required, the corresponding solutions for wqg, wy and w3 can then be calculated by
solving equations (175), (180) and (186) subject to (190) at z = 0, (193) at z = H*

and (198) at z = H. Solving (177) for pyy subject to (201) at z = h yields
Pio = —(h - Z)F — 2I€U10,$, (206)
so solving (188) for psy subject to (199) at z = H yields
U30,x
P30 = —(h— 2)F — 2—=, (207)
431
and then solving (182) for pyg subject to (194) at z = H* yields
Py = —(h — 2)F. (208)
Solving (176) for u;; , subject to (202) at z = h yields
1
U1,z = E(h = Z)G, (209)
so solving (187) for us; , subject to (200) at z = H yields
U31, = 431 (h — Z)G (210)
Using these solutions the tangential stress condition (195) at z = H* yields
(h— HY|G| =1, (211)

and the yield condition (196) at z = H gives

2
(h— H)*G? + k* [c—% {H*QG}] =1. (212)

The stress is given by
T = kqu + 0(6) (213)
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in region 1, by

T =14 go0 + O(e) (214)

in region 2 and by

et Y eso@ o1

in region 3. In particular, (215) shows that the stress is only O(¢) above the yield value
of unity throughout region 3.

Equations (205), (211) and (212) (the volume-flux, pseudo-yield and yield condi-
tions respectively) are three equations for the three unknown surfaces H*, H and h.
The case of gravity-driven flow round a stationary cylinder discussed in §5 is recovered
by identifying z with o and taking G = sina, F = —cosa and S = —1, while the
corresponding case for flow round a rotating cylinder discussed in §7 is recovered by
identifying = with 6 and taking G = —cosf, FF = —sinf and S = sgn(cosd). The
case of pressure-driven flow in a channel considered by Wilson (1999) corresponds to
setting ' = 0, G = 0 and rescaling the pressure p (with, of course, different boundary
conditions); a rather more direct but ad hoc procedure is simply to set F = 0 and

G = —dp/dz in the leading-order equations.
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Figure Captions

FIGURE 1. The biviscosity model.

FIGURE 2. Locally rectilinear flow on a locally planar substrate inclined at an angle
a = m/2—0 to the horizontal moving parallel to itself with speed U when (a) A = O(1),

and (b) in the distinguished limit A — 0 and € — 0 with k£ = ¢/X = O(1).

FIGURE 3. Leading-order solutions for flow round a large stationary cylinder (includ-
ing typical streamlines) illustrating (a) a flow of type I when @@ = 2/25 and A = 1/4,

and (b) a flow of type IT when @ =1 and A = 1/4.

FIGURE 4. Plots of H (lower curves) and h (upper curves) as functions of a/7 when
@ =1 for A =0, 1/100, 1/10, 1/2 and 1. Note that the solutions for % in the cases

A =0and A =1/100 are virtually indistinguishable at this scale.
FIGURE 5. Plots of H (lower curves) and h (upper curves) as functions of a/w

when A = 1/4 for @ = 1/40, 1/12, 1/4, 1 and 2. Note that H is present only when
Q> A/3=1/12.

FIGURE 6. Plot of Ah"(a,) as a function of A for @ = 1/12,1/6,1/3, 1, 5 and 10.
FIGURE 7. Plots of the curves @ = A/3 and @ = Qv (given parametrically by (52))
as functions of A showing how they divide the (), @) parameter plane into regions in

which the flow is of type I, the flow is of type II with a maximum in H at o = 7/2

(labelled IIax), and the flow is of type II with a minimum in H at a = 7/2 (labelled
Iin)-

FIGURE 8. Plot of the weight on the right-hand side of the cylinder W as a function

of Q for a range of values of A.
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FIGURE 9. Leading-order solutions for flow round a large stationary cylinder in the
distinguished limit described in §5 illustrating (a) a flow of type II; when @ = 1 and

k =9/20, and (b) a flow of type II, when @ =1 and k = 2.

FIGURE 10. Plots of H*, H and h as functions of a/m when @ =1/10 for k =1, 5/2,

5, 15/2, 10, 20, 50 and 100. Note that H* and h are independent of .

FIGURE 11. Plots of H*, H and h as functions of a/m when @ =1 for £ = 1/10, 1/4,

1/2,3/4,1, 5/2, 10 and 50. Note that H* and h are independent of k.

FIGURE 12. Plots of H*, H and h as functions of /7 when @ = 10 for £ = 1/100,

1/40, 1/20, 1/10, 1/4, 1/2, 1 and 10. Note that H* and h are independent of k.

FIGURE 13. Sketch of the leading-order solutions for H*, H and h near @ = 7/2 in

the limit £ — oo.

FIGURE 14. Sketch of the first-order-accurate solutions for H*, H and h near oo = /2

in the limit @ — oo.

FIGURE 15. Leading-order solutions for flow round a large rotating cylinder (including
streamlines) illustrating (a) a flow of type I when @ = 9/10, A =1/2and U =1, (b) a
flow of type II when @ = 7/4, A =1/2 and U = 8/5, and (c) a flow of type III when

Q=21/5,A=1/2and U = 3.

FIGURE 16. Plot of the (U, Q) parameter plane for the case A = 1/2 showing how
the curves Q@ = Qn, Q@ = Qr, @ = QL and Q = Q¢ divide the parameter plane into

regions in which either there is no solution or the flow is of type I, II or III.

FIGURE 17. Plots of H (lower curves) and h (upper curves) as functions of §/7 when

U =19/10 and Q = 2 for A =0, 1/10, 3/10 (@ = Q), 1/2 and 0.714225 (Q = Qc).
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FIGURE 18. Plots of H (lower curves) and h (upper curves) as functions of §/7 when
A=1/2and Q =3 for U = 2.34296 (@ = Qc), 5/2,17/6 (Q = @), 3, 19/6 (Q = Qr)
and 7/2.

FIGURE 19. Plots of H (lower curves) and h (upper curves) as functions of /7 when
A=1/2and U = 3 for Q@ = 5/2, 17/6 (= Qr), 3, 19/6 (= Qvr), 7/2, 4 and 17/4
(= Qc).

FIGURE 20. Plots of A and h'(feg) as functions of U for a range of values of A. The

curve [U/3(1 + U)]*/? and the constant value 6-1/2 are shown with dashed lines.

FIGURE 21. Plot of the (U, Q) parameter plane for the case A = 1/2 showing how
the curve @ = @y divides the region of the parameter plane in which the flow is of
type III into regions in which the flow is of type III with a maximum in H at § = 7
(labelled IIlyax) and the flow is of type III with a minimum in H at 6 = 7 (labelled
IImin). Note that on this scale the curves @ = Qr and Q = @y, are indistinguishable

from one another and the curve @ = Qy is not visible.

FIGURE 22. Plot of the weight on the cylinder W as a function of @ for a range of

values of U in the case A =1/2.

FIGURE 23. Plot of the maximum supportable weight on the cylinder Wy, as a
function of U for a range of values of A. The constant value 4.44272 is shown with a

dashed line.

FIGURE 24. Plot of the (U, Q) parameter plane for the case A = 0 showing how the
curves ) = Qr = @1 and Q = Q¢ divide the parameter plane into regions in which

either there is no solution or the flow is of type I or III.
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FIGURE 25. Leading-order solutions for flow round a large rotating cylinder in the
distinguished limit described in §7 illustrating (a) a flow of type III; when U = 2,
Q@ =3 and k = 5/4, (b) a flow of type III, when U =2, @ = 3 and k = 3/2, and (c) a

flow of type I1I3 when U =2, Q =3 and k = 3.

FIGURE 26. Plots of H*, H and h as functions of 8/7 when U = 2 and @ = 3 for
k=2/5,7/10, 1, 5/4, 13/10, 27/20, 3/2, 2, 5/2, 11/4, 3 and 7/2. Note that H* and
h are independent of k.

FIGURE 27. Plots of H*, H and h as functions of §/7 when U = 2 and Q = 19/6
(= Qc) for k = 3/10, 2/5, 1/2, 0.566947 (= kcritr), 13/20, 5/4, 7/4, 2, 9/4, 5/2 and 3.
Note that H* and A are independent of k.

FIGURE 28. Plot of B as a function of & for a range of values of U. The corresponding

asymptotes k = k. are denoted with dashed lines.

FIGURE 29. Sketch of the leading-order solutions for H*, H and h near § = 67 in the

limit & — oo.
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