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Abstract

In this paper we investigate the linear stability of an initially symmetric two-
dimensional thin ridge of Newtonian fluid of finite width on a horizontal planar
substrate acting under the influence of a symmetric two-dimensional jet of air
normal to the substrate. Ridges both with and without a dry patch at their
centre are considered. For both problems we examine both the special case
of quasi-static motion (corresponding to zero capillary number) analytically
and the general case of non-zero capillary number numerically. In all cases
the ridge is found to be unconditionally unstable, but the nature and location
of the most unstable mode are found to depend on the details of the specific

problem considered.
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I. INTRODUCTION

Because of the numerous technological processes and natural situations in which they
play an important role, the dynamics of thin fluid films have received considerable theoretical
and experimental attention in recent years (see, for example, the recent review articles by
Oron et al.! and Myers?). However, despite its considerable technological relevance, the
situation in which the film is subject to an externally imposed force has received relatively
little attention thus far. In the present work we shall consider one practically important
example of this kind of problem, namely an initially symmetric two-dimensional ridge of
fluid of finite width subject to a jet of air.

There have been a few previous studies of problems of this kind. Moriarty et al.® con-
sidered the unsteady spreading of a two-dimensional drop of fluid under the action of a jet
of air blowing either vertically downwards onto the substrate or parallel to it. In the first
case, the jet was modelled as a parabolic pressure distribution in the air, and the shear
stress at the free surface of the fluid caused by the air flow was neglected, while in the
second case the jet was modelled as a constant shear stress distribution at the free surface
of the fluid while the variations in the air pressure were neglected. In both cases unsteady
solutions were obtained both numerically and analytically in the asymptotic limit of weak
surface tension. King et al.? studied steady two-dimensional periodic waves on a fluid film
on an inclined plane caused by a jet of air flowing upwards over it. Their model allowed
the external pressure gradient to depend on the shape of the free surface of the film, but
assumed that the shear stress at the free surface was constant. King and Tuck® studied the
corresponding problem for a ridge of fluid of finite width on an inclined plane and found that
steady solutions are possible only if the angle of inclination of the plane to the horizontal
is sufficiently small and that below this critical value two steady solutions exist for each
inclination angle. Recently, McKinley et al.® studied the unsteady spreading of a drop due
to a jet of air acting normally to the substrate. The jet of air was modelled as a parabolic

pressure distribution, and sessile, pendent and zero-gravity situations were all considered.



Both symmetric two-dimensional and axisymmetric three-dimensional problems were solved
in the quasi-static limit of small capillary number for both an “annular” drop with a dry
patch at its centre and a “non-annular” drop without a dry patch.

Much of the other work that has been done on problems of this kind is motivated by the
so-called “jet-stripping” or “air-knife” industrial coating process in which the thickness of a
fluid film on a moving substrate is controlled by blowing a jet of air onto the film. For exam-
ple, the pioneering steady two-dimensional analysis of Thornton and Graff” (subsequently
extended and clarified by Tuck®) was generalised by Ellen and Tu® to include a non-zero
shear stress at the free surface and by Tuck and Vanden-Broeck!? to include surface tension.
Recently Kriegsmann et al.' investigated the effect of a steadily-moving exponential pres-
sure distribution on a fluid film on an inclined plane and found that there is a finite range
of values of the capillary number in which no steady solution exists and unsteady solutions
develop shock-like free-surface profiles.

The general issue of the stability of thin fluid films has received considerable attention
in recent years, much of it motivated by the well-known “fingering” instability that often
develops at the leading edge of a thin film draining down an inclined plane. The linear
stability of the initially two-dimensional “capillary ridge” that can develop near the leading
edge in this situation was first studied theoretically by Troian et al.'> who showed that the
ridge is always unstable to sufficiently long-wavelength transverse perturbations. Troian et
al.'? also showed that their theoretical prediction for the (finite) most unstable wavelength is
in good agreement with their experimental results. This pioneering analysis has subsequently
been re-examined and generalised by several authors, including Spaid and Homsy!3, Bertozzi
and Brenner'*, Lépez et al.'®16 and Kataoka and Troian'"'®. The linear stability and non-
linear evolution of an initially two-dimensional ridge of finite width on an inclined plane
was analysed by Hocking'® and Hocking and Miksis?®. In particular, this work shows that
while a linear stability analysis of quasi-static motion with prescribed contact-angle variation
predicts that the ridge is most unstable to long-wavelength transverse perturbations, relaxing

these assumptions means that the most unstable wavelength is finite for all but unreasonably
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small values of the slip length at the solid/fluid interface. Aspects of the linear stability and
non-linear evolution of a hole in a thin fluid layer have been investigated by Moriarty and
Schwartz?!, Wilson and Terrill?? and Lépez et al.?3.

In this paper we investigate the linear stability of an initially symmetric two-dimensional
thin ridge of Newtonian fluid of finite width on a horizontal planar substrate acting under
the influence of a symmetric two-dimensional jet of air normal to the substrate. Both
“annular” (with a dry patch at its center) and “non-annular” (without a dry patch) ridges
are considered. For both problems we confirm and extend the analytical results of McKinley
et al.® in the special case of quasi-static motion (corresponding to zero capillary number)
and investigate numerically the general case of non-zero capillary number. Finally, we offer

a physical interpretation of our results.

II. PROBLEM FORMULATION

Consider an initially two-dimensional ridge of incompressible Newtonian fluid of finite
width with constant viscosity u, density p and surface tension 7 on a solid horizontal planar
substrate in the presence of a symmetric two-dimensional jet of air. We employ Cartesian
coordinates (z,y, z) chosen so that the substrate is given by z = 0 and the 2,y plane is the
symmetry plane of the jet. With respect to these coordinates the thickness of the fluid film
is denoted by z = h(x, y,t) and the velocity and pressure of the fluid by u = u(z, vy, z, t) and
p = p(,y, 2,t) respectively. In this paper we shall consider only ridges that are initially
symmetric with respect to the symmetry plane of the jet. For a “non-annular” ridge without
a dry patch at its center the positions of the contact lines are denoted by z = R;(y,t) at
which the contact angle is ¢ = ¢(¢) and z = Rs(y,t) > R; at which the contact angle is
6 = 6(t), where t denotes time. For an “annular” ridge with a dry patch at its centre we
can without loss of generality restrict our attention to the part of the ridge lying in z > 0,
and so we need only consider the case R; > 0. We model the jet with a parabolic pressure

distribution in the air given by p = py — kz?/2, where p denotes the pressure, p, is the



maximum value of the air pressure at z = 0 and & is a positive constant. The shear stress
at the free surface caused by the jet is neglected. The geometry of the non-annular problem
is shown in Fig. 1.

We follow the approach pioneered by Greenspan?4, Ehrhard and Davis?®®, and Anderson
and Davis®® and assume that the speeds of the contact lines are related to their contact

angles by the “Tanner Laws”

(R1)e = K(65 — &™), (1)
(Ra)e = w(60™ — 67"), (2)

where ¢y and 6, are the equilibrium contact angles and k is an empirically-determined
positive constant with dimensions of velocity. More general Tanner Laws have been used
by McKinley et al.%. It should, however, be noted that this is not the only possible way
of modelling the behaviour near the contact line. For example, Hocking?"?® proposes an
alternative formulation in which the microscopic contact angle always takes its constant
static value and from which the observed variation of the macroscopic contact angle can
be predicted. In the case m = 3 the two approaches yield the same qualitative results and
Hocking® finds that the alternative approach is in better quantitative agreement with the
experimental data of Anderson and Davis® for a droplet of water. When ¢o # 6, the static
contact angles at the two contact lines are different, a somewhat artificial situation which
(as McKinley et al.® pointed out) could, however, occur if the substrate is inhomogeneous
with an appropriate change of physical properties somewhere in R; < z < R,.

Provided that inertia effects are negligible (i.e. provided that the appropriate Reynolds
number is sufficiently small) and that the ridge is sufficiently thin in the direction normal
to the substrate, the familiar lubrication approximation to the governing Navier-Stokes and

mass conservation equations yield

HUzz = Dz, (4)



HUzz = Dy, (5)

Ug + Uy +w, =0, (6)

where g denotes acceleration due to gravity, subject to the boundary conditions

u=Au,, v=M, on z=0, (7)
pu, =0, puv,=0 on z=Ah, (8)
p:po—%ﬁ—TVQh on z=nh, (9)
w = hy + uhy +vh, on z=h, (10)

where the fluid velocity has been written u=(u, v, w). Equation (7) is the slip condition with
slip length A = A(h) that mitigates the stress singularity at the contact line. Equation (8)
represents zero tangential stress at the free surface and Eq. (9) is the normal stress condition
which includes both the effects of surface tension and the non-uniform external pressure
loading caused by the jet of air. Equation (10) is the kinematic free-surface condition which

can be re-written in the form

he+ V- (Q1,Q2) =0, (11)

where (J; and ()2 denote the fluxes in the z and y directions respectively defined by

le/ohudz and ng/oh'udz. (12)

Solving Egs. (3) — (10) for u and v allows @Q; and Q- to be evaluated explicitly, and substi-
tuting these expressions into Eq. (11) gives the governing equation for A.

We non-dimensionalise the problem using a characteristic horizontal length scale L (to be
defined subsequently) and x as the characteristic horizontal velocity scale. The correspond-
ing non-dimensional variables are defined by x = Lz, y = Ly', h = 6,Lh', Ry = 0'LR},
Ry =00'LR;, t = Lt' [k, ¢ = 60¢', po = 0oy and 6 = 6,0’". Dropping the primes at once for
simplicity we obtain the non-dimensional version of the governing equation for h, namely

5 (B ) o,  JT?



together with the non-dimensional versions of Egs. (1) and (2), namely,

(R1)e = o7 — @™, (14)

(R2)t =" —1, (15)

where the constant J = kL®/76, is a non-dimensional measure of the jet strength, C' =
kp/T03 is the (mobility) capillary number and G* = pgL?/7 is the Bond number. The

appropriate boundary conditions for Eq. (13) are

h(R1,y,t) =0, (16)
h(Rg, y, 1) =0, (17)
(he = (Ra)yhy) (1 + (R1)7) ™2 |o=r, = &, (18)
(ha + (Ra)yhy) (1 + (B2)y) ™" |o=p, = —, (19)

which must be satisfied together with appropriate initial conditions for h, R; and R,. Equa-
tions (16) and (17) require the free surface to have zero height at the contact lines while
Egs. (18) and (19) ensure that the contact angles take the correct values. The volume of a

non-annular ridge or the semi-volume of an annular ridge in a width 2d is given by
d rR»
2av = [ [ hdady. (20)
—d JRy

Without loss of generality we can choose L = (76,/k)'/? (corresponding to setting J = 1).
For clarity we shall retain J explicitly in all of our analytical calculations but set J = 1 in
all of our numerical calculations.

For simplicity we shall hereafter restrict our attention to the special case of sufficiently
narrow ridges in which gravity effects are negligible, and hence set G = 0. In principle, all
the subsequent calculations could be repeated with gravity effects included (just as McKinley
et al.% did in their quasi-static analysis), but since our preliminary calculations revealed no
qualitatively new phenomena for non-zero values of G* we do not pursue this point further

in the present study.



Haley and Miksis?® undertook a detailed study of droplet spreading for various combi-
nations of slip law and contact-line condition and found that, while there are significant
differences between the different cases (for example, in the spreading rates and the details of
the behaviour of A near the contact line), the qualitative features of the droplet motion are
the same in all the cases they considered. In the absence of any general agreement about the
correct form of the slip law or Tanner law, we adopt the simple Navier slip model in which
A is a constant (as used, for example, by Hocking!®), and the linear Tanner Laws obtained

by setting m = 1 in Eqs. (14) and (15) (as used, for example, by Greenspan??).

A. Basic State

In equilibrium h(z,y,t) = ho(z), Ri(y,t) = RY, Ra(y,t) = R), 6 = 1 and ¢ = ¢,.
Substituting these expressions into Eqgs. (13), (16), (17) and (19) with G = 0 yields the

governing equation for the basic-state profile, namely
hy + Jz =0, (21)

where the prime denotes differentiation with respect to z, subject to the boundary conditions

ho(R3) =0, (22)
hO(RS) = Oa (23)
Bo(RY) = —1. (24)
The solution for hg is given by
J 1
ho = (R = z)(z = RY) { 55[o” + (B + R))w — Ry2Ry + R+ —o——5 ¢ (25)
24 Ry — Ry

From Eq. (20) the volume of the ridge is given by

1 J
V= g(Rg — RY))? - %(RS — R))*(2R] + 3R)), (26)

while from the remaining boundary condition Eq. (18) we obtain the relationship between

¢o, RY and RY, namely



bo=1— é(RO + RY)(R) — ROY2. (27)

B. Linear Stability Problem

In order to analyse the linear stability of the ridge to small transverse perturbations with
wavenumber g we write b = ho(z) + hi(x) exp(iqy + ot), Ry = R? + R} exp(iqy + ot) and
Ry = R)+ Rj exp(iqy+ot), where hy (z) is the perturbation to the basic-state profile, R! and
R; are the perturbations to the positions of the contact lines and o is the unknown (complex)
growth coefficient. Substituting these expressions into Egs. (13) — (19) and retaining only

first-order terms in the perturbations yields the governing equation for h;:
3Coh, + [hg(hg +3X)(h] — q2h1)’] — ¢*h3(ho + 3N) (R} — ¢*hy) =0, (28)

which is subject to the boundary conditions

Rl = —;j—hl(R‘f), (29)

— hy(RY), (30)

L(RY) + i (RO R} = —o R}, (31)
B (RS) + W (RE)R) = —o R}, (32)

Eliminating R} and R} from Egs. (29) - (32) and using Eq. (25) yields

where the functions f;(J, RY, RY) and fo(J, RY, RY) are given by

J 2

f1( B, 1) = 15 (R — RY)(5R2 +383) — pp e, (35)
J 2

120 B, B) = 15 (R — B) (R + 3R)) — 0. (36)

As Hocking and Miksis® point out, in the special case ¢ = 0 (but not otherwise) it is also

necessary to impose in addition the volume condition
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R}
hidz = 0. (37)
RO

1

III. THE NON-ANNULAR RIDGE (¢ = 1)
A. Basic State

Seeking an initially symmetric non-annular solution by setting By = —R} = R) in
Eq. (27) yields ¢ = 1 (so that the two basic-state contact angles are equal). From Eq. (25)

we obtain the basic-state profile

1

o = 24R,

(=* - R}) [JRo(RE — &%) —12], (38)
and from Eq. (26) the volume of the ridge is given by
2
V= ER%;(u—') — JRY). (39)

Figure 2 plots basic-state profiles for Ry = 0.6, 1, 1.4, 1.8 and 2.2. These solutions are
exactly the two-dimensional non-annular solutions described by McKinley et al.®. Note that
“physical” solutions (i.e. solutions for which hy > 0 over the entire interval —Ry < z < Ry)
exist only when Ry lies in the range 0 < Ry < (12/J)/3. When Ry > (12/J)Y/3 Eq. (38)

predicts that ~ < 0 at # = 0, motivating the study of an annular ridge in section IV.

B. Linear Stability Problem

The governing equation for h; is given by Eq. (28) subject to the boundary conditions

JR}+3
hi(—Ro) + : h1(—Ro) = ohi(—Ry), (40)
3Ry
, JR3 +3
By (Rg) — 0 h1(Ro) = —chi(Ry). (41)
3Ry
As we have already seen, in the special case ¢ = 0 it is also necessary to impose the volume
condition
Ry
_RO
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C. Quasi-Static Motion C =0

We can make considerable analytical progress in the special case C = 0. In this case
the bulk of the ridge instantaneously adopts a quasi-static shape whose subsequent motion
is entirely determined by the Tanner laws given in Egs. (14) and (15) (see, for example,
Oron et al.l). Note that all the analytical results presented here have been confirmed by

numerical calculations of the kind described in the next section.

1. Two-Dimensional Perturbations ¢ =0

Substituting C' = 0 and ¢ = 0 into Eq. (28) and integrating once yields
hy(ho + 3N)RY = Q, (43)
where Q* is a constant. The general solution of Eq. (43) can be written in the form
hy = Q*f(x,J, Ro) + az® + Bz + 7, (44)

where «, § and - are constants and the function f(z, J, Rp) is not given here explicitly for
brevity. As z — Ry, f(z,J,Ro) ~ (Ry — z)In(Ry — x)/3) and so solutions for h; that do
not have a singularity at = R are possible only if Q* = 0. Thus the appropriate solution

for hy is simply
hi = ax® + Bz + 7, (45)

and imposing the volume condition (42) on Eq. (45) yields @ = —3y/R2. Evidently the
solutions for k; can be either symmetric or antisymmetric. For symmetric solutions (3 = 0)
applying the boundary condition (41) to Eq. (45) yields o = o9, where

_ JR3 -6

Og0 = W, (46)

recovering the expression for the growth rate of the symmetric mode first obtained by McKin-
ley et al.5. For antisymmetric solutions (o = v = 0) applying the boundary condition (41)

to Eq. (45) yields o = 049, where
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2
Ogo = % > 0. (47)

Figure 3 plots o5 and o, as functions of Ry. Since 049 > 04 and o4 > 0 the condition-
ally stable symmetric mode considered by McKinley et al.® is always more stable than the
unconditionally unstable antisymmetric mode obtained here for the first time. Note that in
the special case when the air jet is absent (J = 0) the symmetric mode is always stable, while
the antisymmetric mode (which simply corresponds to a translation of the initial profile) is

neutrally stable.

2. Three-Dimensional Perturbations ¢ > 0

In the general case ¢ > 0 a solution of Eq. (28) for h; with C' = 0 that does not have a

singularity at £ = Ry is given by
hy = a.cosh(gz) + B sinh(gz), (48)

where o and [ are constants. Again, the solutions for h; can be either symmetric or

antisymmetric. The growth rate of symmetric modes (3 = 0) is given by

o5 = % — gtanh(gqRy). (49)
Note that o, — 5 as ¢ — 0, where 65 = (JR3 + 3) /3Ry # 040, i.e. because these solutions
do not satisfy the volume condition (42) for ¢ > 0 we do not recover the solution obtained
previously in the case ¢ = 0 in the limit ¢ — 0. The growth rate of antisymmetric modes

(o = 0) is given by

JR} +3

s = —— — qcoth(gRy). 50
70 = T2 qooth(gRo) (50)
Note that o, — G40 as ¢ — 0, where 649 = JR2/3 = 04, i.e. because these solutions do
satisfy the volume condition (42) for all ¢ > 0 we recover the solution obtained previously

in the case ¢ = 0 in the limit ¢ — 0. The neutral stability curves for ¢ > 0 obtained by

setting o, = 0 and 0, = 0 in Eqgs. (49) and (50) respectively are plotted in Fig. 4.
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Figures 5(a) and (b) plot the growth rates o; and o, as functions of ¢ > 0 for By = 1
and 2.2 respectively. Symmetric modes are denoted by solid lines and antisymmetric modes
by dashed lines. At ¢ = 0, a filled circle denotes a solution, an empty circle no solution.
Note that the lower filled circle corresponds to o4, i.e. to the symmetric mode obtained by
McKinley et al.®. Since o5, > o, for ¢ > 0, both o, and o, are monotonically decreasing
functions of ¢ for all ¢ > 0, 650 > G40 = Ta0 > 05 and G5 > 0, we deduce that long-
wavelength symmetric modes with growth rate approaching &, in the limit ¢ — 0 are always
the most unstable when C = 0. Note that in the special case J = 0 all anti-symmetric and
sufficiently short-wavelength symmetric modes are stable, but sufficiently long-wavelength

symmetric modes are unstable.

D. The General Case C #0

In the general case C' # 0 the bulk of the ridge responds on a timescale of C' and so
the motion is always retarded relative to the case C = 0. To obtain the neutral stability
curves for C # 0 we set 0 = 0 in Eq. (28) and the boundary conditions (40) and (41). This
procedure yields the same neutral stability curves as those calculated previously in the case

C = 0 as shown in Fig. 4. When ¢ # 0 we must proceed numerically.

1. Numerical Procedure

A FORTRAN code was written to solve the eigenvalue problem given by Eq. (28) and
the boundary conditions (40) and (41) numerically using finite differences. The details of
this numerical procedure are summarised below; further details are given by McKinley®.

An uneven grid of N + 1 points, z; for = 0,..., N, is used in the calculations and is
chosen so that the grid points are clustered towards the contact lines. This is achieved using
the weighting function described by Vinokur3!, where an even grid u; for s = 0,..., N, is

transformed to an uneven grid z; for 2 = 0, ..., N, by the relation
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B tanh[(u; — 1/2)c] .
z; = Ry ( tanh(c/2) ) for i=0,...,N, (51)

where the user is free to choose the value of the stretching parameter c¢. Calculating the finite
difference weights is carried out automatically using a very efficient algorithm developed by
Fornberg3?. For a given (not necessarily regular) set of grid points z; for i = 0,..., N, the
point at which approximations are desired z = ¢ (not necessarily a grid point) and highest
order of derivative of interest K, Fornberg’s® algorithm calculates weights d¥; such that the

approximations

ok f L .
Bk deijf(xj), k=0,...,K, i=k,...,N,
T |z=¢  j=0

are all optimal in the sense that they permit the maximum order of approximation possible
for a stencil consisting of ¢+ 1 points. In the present application we require approximations
at the grid points only and we will only apply the algorithm to a subset of the domain, the
number of nodes in a particular stencil depending on the required order of approximation
to the derivative, I, and on the order of the derivative to be approximated, k. Specifically,

the number of nodes in a one-sided stencil, N? 4+ 1, and the number of nodes in a centred

stencil, N¢ + 1, are given by

N=1+k—1,

I+k—-1, ifkisodd,
N¢ =

I+k—2, ifkiseven.

In order to solve the eigenvalue problem it is necessary to generate the differentiation

k)

;) associated with the problem

matrices D) (square matrices of size N +1 with elements D,(

which approximate the derivatives of the unknown variables, i.e. which satisfy
h{) ~ D®n,

where hy = (h10, h11,- .., h1x)T in which h;; represents our approximation to A, (z;) and & is
the order of the derivative. The ith row of the matrix D*) corresponds to the approximation
of the kth derivative at x; for i = 0,..., N. The entries for the first N¢/2 rows use one-sided

differences and are given by

14



k
Déw)+1) G+1) = CHu (52)

for j =0,...,Ny and w = 0,...,NZ/2 — 1. The entries for the next N + 1 — N¢ rows use

centred differences and are given by

k _k
Dy (j+w+1-Ng/2) = C(+w—Ng/2)ws (53)

for j =0,...,N; and w = N{/2,...,N — N¢/2. The entries for the remaining N¢/2 rows

again use one-sided differences and are given by

k
D(w+1) (N+j+1-N2o) — C?N—Ng—{-j)qm (54)

for j =0,...,N? and w = N+1— N¢/2,...,N. All other elements of the matrices D
are set to zero.

The code is therefore capable of adopting arbitrary-order approximations of the deriva-
tives appearing in the governing equation and boundary conditions. The resulting system is
an algebraic eigenvalue problem of the form Ah; = 0Bh;, where A and B are (N +1)-order
square matrices and o is the corresponding eigenvalue. The system is solved by the QZ al-
gorithm implemented using NAG routine FO2GJF to determine the largest eigenvalues and
(if required) the corresponding eigenvectors. In all the calculations that follow the number
of grid points is set to N = 200 and the slip coefficient is set to A = 0.01. The code was
initially tested on several test problems with known analytical or numerical solutions and
was found to give excellent agreement; again McKinley3® gives further details. A similar nu-
merical procedure (although an entirely different FORTRAN code) was employed by Wall
and Wilson®* to study the stability of certain flows of fluids with temperature-dependent

viscosity.

2. Results

Figures 6(a) — (c) plot the largest eigenvalues as functions of ¢ > 0 for Ry = 0.6, 1.4

and 2.2 respectively in the case C' = 1. Symmetric modes are denoted by solid lines and
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antisymmetric modes by dashed lines. In all the numerical computations we found that only
the two largest eigenvalues ever take positive values, and that one of these eigenvalues always
corresponds to symmetric modes and the other always corresponds to antisymmetric modes.
Typically both modes are unstable in certain ranges of ¢, but the nature and location of
the most unstable mode (with 0 = o* at ¢ = ¢*) changes as Ry is varied. When R, = 0.6
the most unstable mode is symmetric with o* = 0.0171 at ¢* ~ 1.41 (Fig. 6(a)), but when
Ry increased to 1.4 the most unstable mode is antisymmetric with o* ~ 0.0357 at ¢* = 0
(Fig. 6(b)). However, as Ry is increased still further to 2.2 the symmetric mode once again
becomes the most unstable with ¢* ~ 0.0279 at ¢* ~ 1.08 (Fig. 6(c)). This “switching”
between symmetric and antisymmetric modes as Ry is increased is summarised in Figs. 7
and 8 which plot ¢* and ¢* as functions of R, for a range of values of C. For completeness
Fig. 7 also shows the curve for o* = G4 in the case C' = 0 which is achieved in the limit
g — 0. Note that in both Figs. 7 and 8 there is a small region near Ry = 2.2 on the
curves for C' = 1 and C = 0.1 that corresponds to symmetric modes, but that this region
is absent from the curves for C' = 0.01 and C' = 0.001. Fig. 7 clearly shows that the effect
of increasing C from zero is always to reduce the growth rate of the most unstable mode,
and to decrease the value of R, at which mode switching first occurs. Figure 9 plots the
largest eigenvalues when ¢ = 0 as functions of Ry for a range of values of C together with
the solutions 0,0 = JRZ/3 and o5 = (JR3 — 6)/3R, appropriate in the case C = 0. In
particular, Fig. 9 shows how the numerically calculated values of ¢ when ¢ = 0 approach

O and o, in the limit C' — 0.

IV. THE ANNULAR RIDGE (0 < ¢p < 1)
A. Basic State

Since for an annular ridge R, > R; > 0 Eq. (27) implies that 0 < ¢y < 1, and so the

basic-state contact angles at the “inner” and “outer” contact lines are always different. The
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basic-state solution is given by Eq. (25) and the semi-volume of the ridge by Eq. (26). Figure
10 plots basic-state profiles for RS = 2, 2.4, 2.8 and 3.2 in the case ¢y = 0.6. These solutions
are exactly the two-dimensional annular solutions described by McKinley et al.®. Note that
for a given value of ¢y (0 < ¢ < 1), solutions exist only for values of RY greater than a

critical value corresponding to the limiting case in which R? = 0.

B. Linear Stability Problem

The governing equation for h; is given by Eq. (28) subject to the boundary conditions
(33) and (34). Again in the special case ¢ = 0 it is also necessary to impose the volume

condition (37).

C. Quasi-Static Motion C =0

As before, we can make considerable analytical progress in the special case of quasi-
static motion (C = 0). Again all the analytical results presented here have been confirmed

by numerical calculations.

1. Two-Dimensional Perturbations ¢ = 0

From Sec. IITC1 the solution for A; when C' = 0 and ¢ = 0 is given by Eq. (45). Applying
boundary conditions (33) and (34) and the volume condition (37) yields the expressions for

the growth rates first obtained by McKinley et al.®, namely 0 = 0, and ¢ = o_g where

J
oo = E(Rg — R})* >0, (55)
J 4
oo = E(Rg ~ R})(R] + 3R9) — - (56)

Figure 11 plots o4 and o_g as functions of RJ for ¢y = 0.2, 0.4, 0.6 and 0.8. Since o9 > 0
the ridge is always unstable when C = 0 and ¢ = 0. Note that, unlike in the non-annular

case, the analysis of McKinley et al.% includes both of the possible modes in this case.

17



2. Three-Dimensional Perturbations g > 0

From Sec. IITC2 the solution for h; in this case is given by Eq. (48) subject to the
boundary conditions (33) and (34). Solving this system yields two expressions for o, namely

o4+ and o_, given by

o _ (12 — (*JRY) sinh(q() — 129¢*(¢o + 1) cosh(g¢) =+ 3¢2X3
+ — )

24¢2sinh(q¢) (57)
where we have written R = R? + ¢ and X is defined to be
X =8¢*(¢y + 660 + 1) — 2J°C*(( + 2R])* + 2[4¢*(do — 1)? +
J2C3(C + 2RY)?] cosh(2g() + 8¢ (¢ + 2RY) (o — 1) sinh(2¢(). (58)
In particular, as ¢ — 0 we have o+ — d1q where
. 6(3—¢o) —2JRIU2£3Y?
040 = ( %) 12¢ 16 ) (59)
where Y is defined to be
Y = 4(1 4+ ¢0)® +4JC(¢ + 2RY) (g0 — 1) + J2CH(C + 2RY)2. (60)

Note that 69 # 040 and 6_g # 0_o, i.e. because neither of these solutions satisfy the volume
condition (37) for ¢ > 0 we do not recover the expressions obtained previously in the case
¢ = 0 in the limit ¢ — 0. The neutral stability curves for ¢ > 0 obtained by setting o, = 0
in Eq. (57) are plotted in Fig. 12 for ¢y = 0.2, 0.4, 0.6 and 0.8. In particular, Fig. 12 shows
that the region of instability widens as ¢y is increased from zero.

Figure 13 plots the growth rates o, and o_ as functions of ¢ > 0 for Ry = 2.5, 3, 3.5
and 4 for ¢o = 0.2. Note that the filled circles at ¢ = 0 correspond to o, i.e. to the modes
obtained by McKinley et al.®. Since o, > o_ for ¢ > 0, both o, and o_ are monotonically
decreasing functions of ¢ for all ¢ > 0, 649 > 049 > 6_¢ > 0_¢ and 649 > 0, we deduce that
the long-wavelength modes with growth rate approaching 6. in the limit ¢ — 0 are always

the most unstable when C = 0.
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D. The General Case C # 0

The neutral stability curves when C' # 0 (obtained by setting o = 0 in Eqgs (28), (33) and
(34)) are the same as those calculated previously in the case C = 0 and shown in Fig. 12.
Again, when ¢ # 0 we must proceed numerically.

Figure 14 plots the largest eigenvalues as functions of ¢ > 0 for R = 2.5, 3, 3.5 and 4
for ¢9 = 0.2 in the case C = 1. As Fig. 14 shows, as R, is increased the values of ¢* > 0
and ¢* increase and so the ridge is again unconditionally unstable. However, the switching
between modes seen in the non-annular case does not occur in this case. This behaviour is
summarised in Figs. 15 and 16 which plot ¢* and ¢* as functions of RJ for a range of values
of C. For completeness Fig. 15 also shows the curve for ¢* = 6, in the case C = 0 which
is achieved when ¢ = 0. Fig. 15 clearly shows that, as in the non-annular case, the effect
of increasing C from zero is always to reduce the growth rate of the most unstable mode.
Figure 17 plots the largest eigenvalues when ¢ = 0 as functions of RJ for a range of values
of C together with the solutions 0,9 and o_y appropriate in the case C' = 0. In particular,
Fig. 17 shows how the numerically calculated values of o when ¢ = 0 approach oy and o_,

in the limit C — 0.

V. CONCLUSIONS

In this paper we investigated the linear stability of an initially symmetric two-dimensional
thin ridge of Newtonian fluid of finite width on a horizontal planar substrate acting under
the influence of a jet of air normal to the substrate. Both annular and non-annular ridges
were considered. For both problems we examined both the special case of quasi-static
motion (corresponding to zero capillary number) analytically and the general case of non-
zero capillary number numerically. In all cases the ridge was found to be unconditionally
unstable, but the nature and location of the most unstable mode were found to depend on

the details of the specific problem considered.
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For a non-annular ridge we found that for two-dimensional quasi-static motion the con-
ditionally stable symmetric mode described by McKinley et al.® is always more stable than
the unconditionally unstable antisymmetric mode. For general quasi-static motion the ridge
is always most unstable to a long-wavelength symmetric mode. When C' # 0 the growth
rate of the most unstable mode is reduced relative to the case C = 0 and the nature and
location of the most unstable mode switches between long-wavelength and finite-wavelength
modes as Ry is varied.

A similar analysis was performed for an annular ridge. For two-dimensional quasi-static
motion we recovered the results of McKinley et al.%, while for general quasi-static motion
the ridge is always unstable to a long-wavelength mode. When C # 0 the growth rate of
the most unstable mode is again reduced relative to the case C' = 0, the ridge is always
most unstable to a mode with finite wavelength and the switching between different types
of modes and values of ¢ found in the non-annular case does not occur.

The basic destabilising effect of the air jet can be understood physically as follows. When
C = 0 the pressure within the ridge is spatially uniform and the quasi-static shapes of both
annular and non-annular ridges are determined by a balance between capillary forces (which
tend to minimise the surface area of the ridge) and the force due to the air jet, with the
result that the effect of the air jet is always to tend to increase the contact angle at an
advancing contact line and to decrease it at a retreating one. However, the forms of the
Tanner laws mean that these situations are self-reinforcing and so the effect of the air jet is
always a destabilising one. It should, however, be emphasised that even in the absence of
the air jet, the interplay between capillary forces and the Tanner laws can be sufficient to
make the non-annular ridge unstable. (An annular ridge cannot occur in the absence of the
air jet.) Specifically, while all anti-symmetric and sufficiently short-wavelength symmetric
transverse perturbations decrease the contact angle at an advancing contact line and increase
the contact angle at a retreating contact line and are therefore stable, sufficiently long-
wavelength symmetric transverse perturbations have the opposite effect and are therefore

unstable. Thus modes that are unstable in the absence of the air jet become more unstable
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in its presence, while modes that are stable in the absence of the air jet become less stable
and can be made unstable for sufficiently large J (i.e. for sufficiently strong jets, large ridges,
small surface tension or small static contact angle). In the case C = 0 the bulk of the ridge
instantaneously adopts a quasi-static shape whose subsequent motion is entirely determined
by the motion of the contact lines on a timescale of L/x. When C # 0 the bulk of the ridge
responds on a timescale of uL /763 (which differs from the contact-line timescale by a factor
of C) and so the motion is always retarded relative to the case C = 0.

Natural extensions of the present work would be to investigate the effect of gravity on
the above results and, perhaps more interestingly, to tackle the initially asymmetric version
of the present two-dimensional problem or the corresponding initially axisymmetric three-
dimensional problem. It would, of course, also be of considerable interest to compare the

predictions of the present theoretical calculations with experimental results.
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FIGURES

FIG. 1. Geometry of the non-annular problem.

FIG. 2. Basic-state profiles of the non-annular ridge for Ry = 0.6, 1, 1.4, 1.8 and 2.2.

FIG. 3. Plot of the growth rates of symmetric (o59) and antisymmetric (o4) modes as functions

of Ry for the non-annular ridge in the case ¢ = 0 and C = 0.

FIG. 4. Neutral stability curves for symmetric (o = 0) and antisymmetric (o, = 0) modes
in the (¢,Rg) plane for the non-annular ridge in the case ¢ > 0 and C = 0. Here (S) denotes

symmetric modes and (A) antisymmetric modes.

FIG. 5. (a) — (b): Plot of the growth rates of symmetric (o) and antisymmetric (o) modes
as functions of ¢ > 0 for the non-annular ridge for Ry = 1 and 2.2 respectively in the case C = 0.
Symmetric modes are denoted by solid lines and antisymmetric modes by dashed lines. At ¢ =0,

a filled circle denotes a solution, an empty circle no solution.

FIG. 6. (a) — (c): Plot of the largest eigenvalues as functions of ¢ > 0 for the non-annular ridge
for Ry = 0.6, 1.4 and 2.2 respectively in the case C' = 1. Symmetric modes are denoted by solid
lines and antisymmetric modes by dashed lines. At ¢ = 0, a filled circle denotes a solution, an

empty circle no solution.

FIG. 7. Plot of o* as a function of Ry for the non-annular ridge for C = 1, 0.1, 0.01, 0.001 and

C = 0. Symmetric modes are denoted by solid lines and antisymmetric modes by dashed lines.

FIG. 8. Plot of ¢* as a function of Ry for the non-annular ridge for C = 1, 0.1, 0.01 and 0.001.

Symmetric modes are denoted by solid lines and antisymmetric modes by dashed lines.
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FIG. 9. Plot of the largest eigenvalues when g = 0 as functions of Ry for the non-annular ridge
for C =1, 0.1, 0.01 and 0.001. Symmetric modes are denoted by solid lines and antisymmetric
modes by dashed lines. The thin curves denote the eigenvalues obtained numerically when C # 0
and the thick curves denote the solutions o59 = (JR§ — 6)/3Ry and 049 = JR% /3 appropriate in

the case C' = 0.

FIG. 10. Basic-state profiles of the annular ridge for R = 2, 2.4, 2.8 and 3.2 in the case

$o = 0.6.

FIG. 11. Plot of the growth rates oo and o_q as functions of RY for the annular ridge for

¢o = 0.2, 0.4, 0.6 and 0.8 in the case ¢ =0 and C = 0.

FIG. 12. Neutral stability curves in the (q,RJ) plane corresponding to o, = 0 for the annular

ridge for ¢9 = 0.2, 0.4, 0.6 and 0.8 in the case ¢ > 0 and C = 0.

FIG. 13. Plot of the growth rates o and o_ as functions of ¢ > 0 for the annular ridge for
R} =25, 3, 3.5 and 4 for ¢g = 0.2 in the case C = 0. At ¢ = 0, a filled circle denotes a solution,

an empty circle no solution.

FIG. 14. Plot of the largest eigenvalues as functions of ¢ > 0 for the annular ridge for R = 2.5,
3, 3.5 and 4 for ¢y = 0.2 in the case C' = 1. At ¢ = 0, a filled circle denotes a solution, an empty

circle no solution.

FIG. 15. Plot of o* as a function of R} for the annular ridge for C' = 1, 0.1, 0.01, 0.001 and

C =0 in the case ¢¢ = 0.6.

FIG. 16. Plot of ¢* as a function of R) for the annular ridge for C = 1, 0.1, 0.01 and 0.001 in

the case ¢g = 0.6.
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FIG. 17. Plot of the largest eigenvalues when g = 0 as functions of R for the annular ridge for
C =1, 0.1, 0.01 and 0.001 in the case ¢p = 0.6. The thin curves denote the eigenvalues obtained
numerically when C # 0 and the thick curves denote the eigenvalues o1 appropriate in the case

C=0.
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