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Thermocapillary effects on a thin viscous
rivulet draining steadily down a uniformly
heated or cooled slowly varying substrate

By D. HOLLAND, B. R. DUFFY! AND S. K. WILSON?

Department of Mathematics, University of Strathclyde, Livingstone Tower,

26 Richmond Street, Glasgow G1 1XH, UK

Abstract

We use the lubrication approximation to investigate the steady flow of a thin rivulet
of viscous fluid with prescribed volume flux draining down a planar or slowly varying
substrate that is either uniformly hotter or uniformly colder than the surrounding
atmosphere, when the surface tension of the fluid varies linearly with temperature.
Utilizing the (implicit) solution of the governing ordinary differential equation that
emerges, we undertake a comprehensive asymptotic and numerical analysis of the flow.
In particular it is shown that the variation in surface tension drives a transverse flow
that causes the fluid particles to spiral down fhe rivulet in helical vortices (which are
absent in the corresponding isothermal problem). We find that a single continuous
rivulet can run from the top to the bottom of a large horizontal circular cylinder
provided that the cylinder is either warmer or significantly cooler than the surrounding
atmosphere, but if it is only slightly cooler then a continuous rivulet is possible only
for a sufficiently small flux (though a rivulet with a discontinuity in the free surface
is possible for larger values of the flux). Moreover, near the top of the cylinder the
rivulet has finite depth but infinite width, whereas near the bottom of the cylinder it
has finite width and infinite depth if the cylinder is heated or slightly cooled, but has
infinite width and finite depth if the cylinder is significantly cooled.
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2Tel 0141 548 3820, fax 0141 552 8657, email s.k.wilson@strath.ac.uk



1 Introduction

The gravity-driven draining of a rivulet of a viscous fluid down an inclined substrate is
a fundamental model problem for a number of practical situations including a variety of
geophysical flows and industrial devices such as condensers and heat exchangers, and has
been the subject of considerable theoretical and experimental interest both in its own right

and as a prototype problem for a much wider class of flows with contact lines.

The steady unidirectional flow of a uniform rivulet of Newtonian fluid down an inclined
plane was studied by Towell & Rothfeld (1966), who calculated the profile of the rivulet nu-
merically and found excellent agreement with their own experimental results. More recently
Alekseenko, Geshev & Kuibin (1997) extended Towell & Rothfeld’s (1966) approach in a

numerical study of the flow of a uniform rivulet along the underside of an inclined cylinder.

Allen & Biggin (1974) and Duffy & Moffatt (1995) used the lubrication approximation to
obtain an analytical solution for the flow of a uniform rivulet down an inclined plane in the
case when the cross-sectional profile of the rivulet transverse to the direction of flow is slender.
In particular, Duffy & Moffatt (1995) calculated the profile of the rivulet as a function of
the angle of inclination of the plane to the horizontal and used this locally unidirectional
solution to investigate the flow of a nonuniform rivulet down a slowly varying substrate,
specifically flow in the azimuthal direction round a large horizontal cylinder. Kuibin (1996)
studied the flow of a thin uniform rivulet along the underside of an inclined cylinder. Wilson
& Duffy (1998) studied the flow of a nonuniform rivulet down a slowly varying substrate with
variation transverse to the direction of flow, specifically flow in the azimuthal direction round
a large horizontal cylinder with a ridge or trough in the azimuthal direction. Rosenblat (1983)
investigated the flow of a uniform rivulet of viscoelastic fluid down an inclined plane and
found that one effect of the elasticity is to drive a transverse flow (absent in the Newtonian
case) which causes the fluid particles to spiral down the rivulet in two counter-rotating helical

vortices.

Various aspects of the stability of rivulet flow have been investigated by, for example,
Davis (1980), Weiland & Davis (1981), Young & Davis (1987), Schmuki & Laso (1990), and
Wilson & Duffy (1998).



Taking a slightly different approach Smith (1973) obtained a similarity solution of the
thin-film equations describing the steady gravity-driven draining of a slender nonuniform
rivulet from a point source on an inclined plane in the absence of surface-tension effects. In
particular, Smith’s (1973) solution predicts that the width of the rivulet increases according
to the 3/7th power of the distance measured down the plane from the source, and is in
excellent agreement with his own experimental results. Subsequently Duffy & Moffatt (1997)
obtained the corresponding solution when surface-tension effects are dominant (as they are,
for example, when the plane is vertical) and found that Smith’s (1973) exponent is modified
to a 3/13th power. Both of these similarity solutions predict a varying contact angle at the
contact line; Wilson, Duffy & Davis (2001) showed how they can be modified to accommodate
a fixed-contact-angle condition at the contact line if sufficiently strong slip at the solid /fluid

interface is incorporated into the model.

There has also been considerable work on the closely related problem of the formation
and stability of a dry patch in a thin film draining under gravity down an inclined plane
(see, for example, Hartley & Murgatroyd 1964, Ponter et al. 1967, Wilson 1974, Podgorski,
Flesselles & Limat 1999 and Wilson et al. 2001).

All of the work on rivulets described thus far has concentrated on the simplest case
of isothermal flow. However, in many practical and industrial contexts heating or cooling
effects are not negligible, and so there is considerable interest in investigating the flow of non-
isothermal rivulets. The pioneering work on non-isothermal thin-film flow was performed
by Burelbach, Bankoff & Davis (1988) who formulated and analysed the general evolution
equation for a two-dimensional thin film of fluid on a uniformly heated or cooled horizontal
plane, including the effects of mass loss or gain, vapour recoil, thermocapillarity, surface
tension, gravity and long-range intermolecular attraction. Ehrhard & Davis (1991) used
a special case of this equation (and the corresponding equation for axisymmetric flow) to
study the non-isothermal quasi-static spreading of both two-dimensional and axisymmetric
droplets on a uniformly heated or cooled horizontal plane subject to thermocapillary effects.
In the absence of exact solutions of the relevant governing equations for the profiles of the
droplets their analytical (as opposed to numerical) analysis of the non-isothermal problem

was largely restricted to the case of weak thermocapillary effects. Subsequently Ehrhard



(1993) conducted a series of experiments on both isothermal and non-isothermal spreading,
and found good agreement with the theoretical predictions of Ehrhard & Davis (1991). Also
of relevance to the present work are other studies of non-isothermal thin-film flows with
thermocapillary effects, notably the papers by Tan, Bankoff & Davis (1990) and Burelbach,
Bankoff & Davis (1990) on the steady thermocapillary-driven flow on a nonuniformly heated
horizontal plane, by Reisfeld & Bankoff (1992) on the flow round a heated or cooled horizontal
cylinder, by Jensen & Grotberg (1993) on the surface-tension-gradient-driven spreading of
heat or soluble surfactant along a thin film, by Anderson & Davis (1995) on the spreading of
a volatile droplet on a heated horizontal plane, by Braun et al. (1995) on the spreading of a
reacting droplet on a heated horizontal plane, by Smith (1995) on the thermocapillary-driven
motion of a droplet on a nonuniformly heated horizontal plane, by Joo, Davis & Bankoff
(1996) on the mechanism for rivulet formation in a thin film draining down a heated inclined
plane, by Lépez, Bankoff & Miksis (1996) on the advancing contact line at the leading edge of
a film draining down a heated inclined plane, and by Kataoka & Troian (1997, 1998) on the
advancing contact line at the leading edge of a thermocapillary-driven film on a nonuniformly
heated vertical plane. The review article by Oron, Davis & Bankoff (1997) gives an excellent
overview of recent work on both isothermal and non-isothermal thin-film flows. There has
also been considerable work on the onset of thermocapillary-driven (Marangoni) convection

in thin fluid films. Davis (1987) reviews the early work in this area.

In this paper we shall employ the approach adopted by Duffy & Moffatt (1995) for the
isothermal problem and use the lubrication approximation to investigate the steady flow of
a thin rivulet of viscous fluid with prescribed volume flux draining down a planar or slowly
varying substrate that is either uniformly hotter or uniformly colder than the surrounding
atmosphere, when the surface tension of the fluid varies linearly with temperature. In the
course of this work we shall obtain the (implicit) solution of the ordinary differential equation
for the free-surface profile of the rivulet that arises, and as a result we are able to analyse

the behaviour of the rivulet for arbitrarily strong thermocapillary effects.



2 Formulation

Consider the steady flow of a symmetric rivulet (of uniform width 2a and prescribed flux
@) of an incompressible Newtonian liquid with uniform density p, viscosity p, specific heat
¢ and thermal conductivity ky, down a planar substrate inclined at an angle o (0 < a < 7)

to the horizontal. The velocity u = (u, v, w), pressure p, and temperature 7 of the fluid are

V.u=0, (1)
plu-V)u= —-Vp+ uVu+ pg, (2)
pc(u-VT) = ky, V2T, (3)

where g = g(sina, 0, — cosa) is the acceleration due to gravity, referred to the Cartesian
coordinates Ozyz indicated in figure 1. At the solid substrate z = 0 the fluid velocity is zero

and the uniform temperature is prescribed:
u =0, T ="1Ty; (4)

on the free surface z = h(z, y) the appropriate boundary conditions are normal and tangential

stress balances, an energy balance and the kinematic condition, which take the form

n-T -n=-yk, (5)
t-T-n=t-Vy, (6)
—kn (VT 1) = (T — Tw), (7)
uhg + vhy = w. (8)

Here T denotes the stress tensor of the liquid, n and t are unit normal and tangential vectors
to the free surface, T} is the prescribed uniform temperature of the plate, T, is the prescribed
uniform temperature of the passive atmosphere above the rivulet,  is the surface tension,
oy 1s the unit surface thermal conductance, « is the mean curvature of the free surface, and
suffixes z and y denote derivatives. We take u, p, ¢, ky and oy, to be constants, but we

assume that the surface tension vy depends linearly on temperature:

YT) =7 = MT = Ty), (9)
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where A\ = —dvy/dT is a positive constant and -y, is the constant surface tension at 7' = 7.

The kinematic condition (8) may conveniently be rewritten in the form
Ug + 7y =0, (10)

where the local fluxes & and 7 are defined as

h h
= / udz, U =/ vdz. (11)
Jo 0

At the edges of the rivulet y = 4a where h = 0 we assume that the contact angle takes the

prescribed constant value 3, as shown in figure 1. The prescribed volume flux of fluid down

the substrate is given by
a rh
Q= / / udz dy. (12)
-a J0

Unlike the corresponding isothermal problem studied by Duffy & Moffatt (1995), the
present problem has no rectilinear-flow solution, since the imposed temperature difference
between the substrate and the surrounding atmosphere leads to a surface-tension variation at
the free surface of the fluid that inevitably drives a transverse flow (in addition to the gravity-
driven longitudinal flow down the substrate), and so the flow is fully three dimensional. We
continue by considering a solution in which all quantities are independent of z, so that, in
particular, A = h(y). Moreover we shall consider only solutions that are symmetric about

y = 0 and smooth at y = 0, so that they satisfy
hy =0, hyy =0 (13)
at y = 0; therefore hereafter we need consider the solution in 0 < y < a only (with the

behaviour in —a < y < 0 given by symmetry).

Equations (1)-(13) constitute a formidable problem on which little progress can be made
analytically in general; however, considerable progress can be made in the case of a rivulet

whose cross section is slender (with, in particular, § < 1), and it is this case that we consider



from now on. We scale the system as follows:

y=1y*, z=p8lz", a=la*, h=plh"

pg B2, pgB°l . pgBl? .
= p u, ’U:TU, w:T’w, p = pgpBlp*, (14)
pg Bl

ZTQ*, =77 T=Tw+ (To—Tx)T",

where [ = (vo/pg)'/? is the capillary length. Then with superscript stars dropped, the scaled

governing equations at leading order in /3 are

vy +w, =0, (15)
0=sina+ u,,, (16)
0= —py + V., (17)
0= —p, —cosa, (18)
T,, =0, (19)
v, =0, (20)
with ’rhe boundary conditions

u=v=w=0 T=1 (21)

on z = 0,
—p = hyy, (22)
u, = 0, (23)
v, = -—Z%(Ty +h,T,), (24)
T,+ BT =0 (25)

on z = h,
h=0, h,=-1 (26)

at y = a, and (13) at y = 0, where the non-dimensional thermocapillary number AC" and
Biot number B are defined as

B2 pgl? g _ Blam

AC = ———"——, .
MTy — Tw) Kin

(27)
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Solving (18) subject to (22) on z = h we obtain
p=(h—2)cosa — hy,, (28)

and solving (19) subject to the thermal boundary conditions (21) on z = 0 and (25) on z = h

gives
Bz
T'=1- .
1+ Bh (29)
The velocity is then found from (15)—(17), (21) on z = 0, and (23) and (24) on z = h to be
1
U= §z(2h — z)sina, (30)
Dy Mhyz
= Duon gy 4 WE :
v 5 ( z) + A+ B (31)
Pyy o Dy, M2z? 2Bh?
=Pworgp gy p oy 2 E (2T
w="g# Bh=2) 5 = sre e = g ) (32)
where M is an appropriate Marangoni number defined by
B Aoy (T — Too
AL C k), (33)
AC Boglks,

so that M > 0 (< 0) when the substrate is hotter (colder) than the surrounding atmosphere.

Substituting (30) into (12) gives the volume flux

Q=% [ sy (34)

. J—-Q

From the kinematic condition (20) we obtain

g, MIh, } 0
3 2(1+ Bh)l,

(35)

and substituting for p from (28), integrating once with respect to y and then using the

conditions (13) we obtain a third-order ordinary differential equation for h, namely

7 3Mh,
(hyy — hcosa), + m = 0. (36)
In the limit B — 0 this becomes
3Mh,

(hyy — hcosa), + =0, (37)

2h

which is of the same form as equation (5.5p) of Ehrhard & Davis (1991), derived by them

to describe the profile of a two-dimensional drop of fluid of prescribed area that is spreading
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quasi-statically. We note from (36) or (37) and the boundary condition (26) that for M # 0
the curvature of the free surface at the contact line y = a is singular (with hy,, ~ —3M logh
as h — 0), and that

h~(a—y)—1M(a—y)*logla—y) (38)
as y — a.

The discussion thus far has been restricted to flow down a planar substrate, but as Duffy
& Moffatt (1995) describe, the analysis also provides the leading-order approximation to
the local behaviour of a rivulet of nonuniform width draining down a nonplanar cylindrical
substrate (with horizontal generators), with « now representing the local inclination of the
substrate to the horizontal, provided that « varies sufficiently slowly (specifically, provided
that the curvatures of the substrate and the rivulet profile in the downstream direction are
much less than the transverse curvature of the rivulet). Thus results derived in subsequent
sections may be interpreted as describing, for example, a slowly varying rivulet draining
azimuthally from the top (o = 0) to the bottom (o = 7) of a large horizontal circular
cylinder. It is known (Wilson & Duffy 1998) that in the isothermal case M = 0 there are
multiple branches of solutions in %W < «a < 7, but that of these there is only one that

connects smoothly with solutions in 0 < o < %71’; we shall henceforth concern ourselves with

only the latter type of solutions.-

3 An implicit solution and its properties

Integrating (36) twice with respect to y we find

hi — h*cosa + 3Mh [log ( ) ~ 1} =Ch+ D, (39)

)
1+ Bh
where C' and D are constants of integration. Imposing the boundary condition (13a) in the

form

hy = 0 when h = hy, (40)

where h,,, = h(0) denotes the (unknown) height at y = 0, and boundary conditions (26) in
the form

hy = —1 when h = 0, (41)

9



we obtain
h2 = f(h), (42)
where we have defined

h

f(h) = (1 - E) (1 — hhy, cos @) — 3Mh log (M)

o (14 BH) (43)
which must be non-negative in a physically relevant interval containing h = 0 and h = h,,,.
We show in Appendix A that the solution h = h(y) of (36) subject to (13) at y = 0 and
(26) at y = @ has a single stationary point, a maximum h = h,, at y = 0, and so the

cross-sectional profile of the rivulet decreases monotonically from h = h,, at y =0 to h =0

at y = a. The solution of (42) may therefore be written in the implicit form

T dh (44)
Y= / i 44
v FR)]
for 0 < y < a, where the flux ) and semi-width a are given by
2sina fhm  h3 _
Q= 2 / (45)
o ()"

hm 1 -

a= / 1 775 ¢ dh. (46)

One can also show that when M > 0 the function h(y) always has a single point of inflection
in y > 0, so that the cross-sectional profile steepens away from the contact line before
flattening at the middle. On the other hand when M < 0 the profile may have up to two

points of inflection in y > 0 when %7( < a <, but has none when 0 < o < %ﬂ'.

With @ prescribed, equation (45) is an algebraic equation determining h,,, and then
equation (46) determines a explicitly, and (44) determines the profile h(y) implicitly. This
procedure was implemented numerically using the computer algebra package Mathematica,
and analytically in appropriate asymptotic limits. In the remainder of this paper we shall
describe in detail the properties of this implicit solution; in practice the parameter B is often
small, and so for simplicity we shall largely restrict our attention to the adiabatic case B = 0

(see, for example, Tan et al. 1990 and Smith 1995).
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as a function of « in the case -§ < M < 0 is sketched in figure 7, showing the ‘middle’
branch in a; < o < @y connecting the ‘lower’ branch in 0 < o < ey and the ‘upper’ branch
in a; < a < m; examples are shown in figure 3 (in which @, ~ 5.7). ! The critical flux
Q. is determined by the condition that there is just one value of o in %w < a < 7 where
dhm/da — 0o (and da/de — oc). Figure 8 shows the variation of @, with M (= ~M) in
the relevant interval 0 < M < 2. We find that Q. — oo as M —0"and Q. —0as M — 2.
In, for example, flow round a large horizontal cylinder, the maximum height of the rivulet
corresponding to the solution in figure 7 would presumably ‘jump’ discontinuously between
the lower and upper branches when o passes through a; or ay, and so the solutions on the
middle branch where dh,,/da < 0 would not be attained in practice; thus only discontinuous
solutions occur when @ > Q. for —% < M < 0. On the other hand in flow down a plane
inclined at an angle o satisfying a1 < a < o there are three possible solutions. A stability
analysis of the rivulet solutions obtained here is beyond the scope of the present paper, but
a preliminary (quasi-static) stability analysis indicates that solutions on at least part of the

middle branch are unstable; one might therefore conjecture that the middle-branch solutions

are unstable, and so would never be observed in practice.

Figure 9 shows examples of the cross-sectional profile of the rivulet, given by (47), for a
range of values of « in the cases M =1, M = —0.5 and M = —0.8, with () = 1 in each case.
For M = 1 the profiles shown (which are qualitatively similar to those given by Duffy &
Moffatt (1995) in the isothermal case M = 0) become deeper and narrower with increasing
a. For M = —0.5 the profiles are rather flat when a < +m, except in a boundary layer

near the contact line y = a, but are much narrower and more peaked when o > -%7& For

M = —0.8 the profiles are very flat for all «, except in a boundary layer near y = a.

All of the general features of the solutions shown in the figures are captured well by

appropriate asymptotic soluticns, described below.

In figure 3 (a case satisfying ~—% < M < 0) some of the plots of both h,, and a would appear to have
discontinuities in slope (corners) at certain points; in fact, on a finer scale it is seen that all the curves shown

are smooth, though with very high curvature at the apparent corners.
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It is convenient in the subsequent analytical calculations to write i = th,, in (43)—(46)

to obtain

L 1
y = hm, /h/hm W dt, (47)
2ht sina (1 3
Q==n /0 T (48)
L 1
a = h,m/O W dt, (49)

where we define F(t) by F(t) = f(h), that is,

t(1 + Bhy,)
F(t) = (1 = t)(1 — th? cosa) — 3Mhytlog | ——2 | 5
() = (1= (1 = th] cosc) = 3 hytlog (HET)) (50
Moreover, with (48) equation (49) may be written
3Q 1 1-4¢
S R ;
“= 3 sma Ty e @ (51)

In general the integrands in (47)—(49) are finite except when ¢ — 1, and from (50) we have

F(t)=Ci(1 =)+ Co(1—=t)2 +0(1 —¢t)® (52)
as t — 1, where
3Mh/m 2 2 . . BMhm «
Cl — 1+m—hm(5080{, CQZ}I,mLObOf—- m (53)

Since F must be positive as t — 17 (h — h, ) we have C; > 0, and we note that the

singularities in (47)-(49) as t — 1 are integrable if C; > 0.

Examples of the variation of h,, and a with «, obtained from (48)—-(50), are shown in
figures 2, 3 and 4 for the cases M =1, M = —0.6 and M = —1 respectively, for a range of
values of (), and in figures 5 and 6 for the case @ = 1 for a range of positive and negative

values of M respectively.

It is found that for M > 0 and M < —% there exists a solution in which h,, and a are
single-valued functions of « for any (), but that for —% < M < 0 there exists a critical flux
Q. such that h,, and a are single-valued for Q < @, but are triple-valued over some interval
o < a < o for @ > Q; here g > 1m and ap < ay < , where ap = cos™'(—9M?%/4)

(so that %w <o < T,y —> %W as M — 0" and g — 7mas M — —%+). The form of h,,

11



3.1 The limit o — 0

For the integral in (48) to be real valued in the limit & — 0 the maximum height of the
rivulet h,, must approach a finite value, hpo say. However, if C; # 0 when « = 0 in (52)
then the integral in (48) would be O(1) as a@ — 0, and so (48) could not be satisfied. The

only alternative is that C; = 0 when o = 0, so that A, is given by
1 .
hant = [3M + (9M? + 4)'/7]; (54)

this means that Cp = 1(9M? + 4)'/2h,,, > 0 and that the integral in (48) is divergent. The
expansion of the integrand in (48) for ¢ — 1 is nonuniform when 1—¢ = O(a?); to determine
subsequent terms in the expansion of h,, we therefore decompose the integral as the sum of
integrals over the intervals [0,1 — d;] and [1 — d1,1], where 0 < o? < §; < 1, and obtain
asymptotic approximations to these integrals separately (c¢f. Hinch 1991, p. 39). We thus
find that

hZ 2
hn = by + 5 m® 4 O(at) (55)

(9M?2 + 4)1/2
as & — 0. Also the integral in (51) is O(1) as @ — 0, and we have

_3Q h /1 1—13
Tondoa ™o [(1=1)(1 = h2yt) — 3M bt log t]1/2

a

dt + O(a) (56)

as  — 0, showing that whereas h,, approaches the finite value h,, in this limit, a is
unbounded. These results collapse to those of Dufty & Moffatt (1995) in the case M = 0.
Moreover (47) shows that the free-surface profile is flat, with h(y) ~ hy,g, except in a

boundary layer near y = a.

3.2 The limit « - 7

The behaviour of the solution in the limit o — 7 is different in the two cases M > ——-g— and
2
M < —z.
If M > ~% then in the limit o — 7 there is no real positive value of h,, such that C; = 0,
and so the integral in (48) is finite; this means that (48) can be satisfied only if h,, — co
as « — m, which in turn means that the expansions of the integrands in (48) and (49) for

t — 0 are nonuniform when ¢ = O(h;?). Therefore, analogously to the case a — 0 described

13



in §3.1, we treat each integral by decomposing it as a sum of integrals over [0, §;] and [55, 1]

3

where 0 < h;,? < 65 < 1. We thus find that

ouQ N\ o
hm = <m> + (Iﬁ —6log 2> M + o(1), (57)
m(r — « 13
a=m—(2+37M) (%) + o(m — a)/? (58)

as o — m when M > —%, showing that whereas h,, is unbounded in this limit,? a approaches
the finite value 7. Again these results reduce to those of Duffy & Moffatt (1995) in the case

M = 0. Moreover from (47) the free-surface profile is given by

h(y) ~ hy, cos® Ly (59)

(which satisfies h(a) = 0 and hy(a) = o(m — a)~/3, consistent with (26)). Also we note that
in figure 6(b) the difference in sign of the slope of a at & = 7 between the cases M = —0.1 and
M = —0.5 is in agreement with (58), which predicts a change of sign between M < —2/3r

(~—0.21) and M > —2/3m.

If M < ~§ then in the limit o — 7 we find that although there is still a solution of the
type (57)—(59) with h,, unbounded there is also a solution in which h,, remains finite; in
that case (48) can be satisfied only if C; = 0, which determines h,, at leading order, and
then a at leading order is obtained straightforwardly from (51). We thus find, analogously
to (55) and (56), that

h?mr(ﬂ- - a)Q

— _ ma\T =) . 4
hm - hmﬂ' 2(9M2 — 4)1/2 + O(']T (,Y) s (60)
3Q 'L 11—
= 573 - N }TTL7T / = —
o) ™ o [T Dt 2t + 3Mtlog gz O el (61)
as o — m when M = —M > 2, where
1 _ —
B = B [3M — (9]\1z — 4)]/2} . (62)

Equations (60)-(61) show that whereas h,, approaches the finite value h,,, in this limit, a
is unbounded. Moreover (47) shows that the free-surface profile is flat, with h(y) ~ Apa,

except in a boundary layer near y = a.

20f course, the singular nature of h,, as @ —+ 7T means that the lubrication approximation breaks down
in this limit; in the case of flow round a cylinder, an alternative approach would therefore be needed to

describe the flow in the neighbourhood of the bottom of the cylinder o = #.

14



3.3 The limit Q — 0

In the limit of small flux ) — 0 equation (48) can be satisfied only if the outer solution for
hy, (valid away from o = 0 and « = 7) satisfies h,, — 0. It is then found that the integrals
in (48) and (49) are dominated by ‘global contributions’ (Hinch 1991, p. 37) for small h,;
we thus find that

1 /105Q\Y* M 30 \1/2
hm =3 — (840 log 2 — 1/2
2 <4sma> T 33 (84010g 2 = 533) (35sinoz) (@7, (63)
105Q \ 4 113M / 3Q \Y? s

- - 4

¢ <4sina) 16 (35 sinoz) +o(@7) (64)

as Q@ — 0, so that both h,, and a are O(Q'/*). Moreover from (47) the free-surface profile is
given by

2
h(y) ~ hm (1 - 55> : (65)

Comparison with (55)—(61) shows that the solution (63)—(65) fails near « = 0 and oo = 7
where there are boundary layers of width O(@Q)), within which both A, and a are O(1) at
leading order in Q; however, the (implicit) expressions for h,, and a at leading order in the
boundary layers are only slightly simpler than the general results (48) and (49), so we omit

the details for the sake of brevity.

These results are valid, in particular, in the case M = 0 considered by Duffy & Moffatt
(1995), who did not investigate the limit ¢) — 0.

3.4 The limit ) —

The behaviour of the solution in the limit of large flux @) — oo is different in the cases

M>0,-2<M<0and M < —2.

In the case M > 0 the outer solution (valid away from o = 17) has different forms in

the intervals 0 < a0 < %’/T and —;-77 <a<T.

When 0 < o < %w the maximum height h,, must be finite for the integral in (48) to be
real, but then (48) can be satisfied only if C; = 0. This determines h,, at leading order, and

a at leading order is then obtained straightforwardly from (51); we thus find that
3Q

he o H g, 0
m Y O H3sna

(66)
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as () = oo when 0 < o < %ﬂ, where

_ 3M + (9M? + 4 cos o) /2

H
2cosw

; (67)

showing that whereas h,, approaches the finite value H in this limit, ¢ is unbounded. As
o — 17~ we have H ~ 3M /(57 — o) if M >0 and H ~ (37 — &)™V/2 if M = 0. Moreover
(47) shows that the free-surface profile is flat, with h(y) ~ H, except in a boundary layer
near y = a. The leading-order solution for h,, given by (66) and (67) is shown as the dashed
curve in figure 2(a). We note that (66) and (67) agree with (54)—(56) at leading order in the

limit o« — 0.

When im < o < 7 we have Cy > 0 for all by, and so the integral in (48) is finite; this
means that (48) can be satisfied only if h,, — 0o as ) — oo, which in turn means that the
expansions of the integrands in (48) and (49) for ¢ — 0 are nonuniform when ¢ = O(h;?).
We therefore evaluate each integral via the procedure described in §3.2; we thus find that

hy, = ( UG )1/3 + (Z-lz — 6log 2) M +0(1), (68)

57 sin o 10 G2

T 2G + 37 M\ [bSrsina 1/3
TG ( G ) < 24QG ) +0(Q7) (69)

as @ — oo when 17 < o < (where G = | cos a|'/?), showing that whereas h,, is unbounded
in this limit, a approaches the finite value m/G. Moreover from (47) the free-surface profile
is given by

h(y) ~ hy, cos® Gy (70)

(which satisfies h(a) = 0 and hy(a) = o(Q'?), consistent with (26)). The leading-order
solution for a in (69) is shown as the dashed curve in figure 2(b). Also we note that (68)-
(70) agree with (57)-(59) in the limit o — 7.

Clearly the solution (66)—(70) fails near o = 37 where there is a boundary layer across
which A, and a change from their O(1) and O(Q) values in 0 < o < 7 to their O(Q'/?)
and O(1) values in %w < « < 7. The nature of this layer depends on the size of M. When
M = O(1) the layer has thickness O(Q~%7), and within it h,, is O(Q%7) and a is O(QV7).
When M = 0, or more generally when M = o(Q /%), the layer has thickness O(Q~/2), and

within it both h,, and a are O(QY*). Again we omit the details for the sake of brevity.
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These results are valid, in particular, in the case M = 0 considered by Duffy & Moffatt
(1995), who did not investigate the limit @ — oo.

In the case M < ~—§~ we find that in the limit ) — oo the leading-order solutions for
hm and a are given by (66) and (67) across the entire interval 0 < a < 7 (see figure 4); in
particular we have H — —3M as a — im when M < 0. Also we note that (66) and (67)

agree with (60)—(62) at leading order in the limit o — 7.

In the intermediate case —~§— < M < 0 the solutions h,, and a are triple-valued over the
interval oy < o < oy when Q — oo, with oy — 27 and @y — @y = cos™! (—=9M?/4). We find
that the leading-order solutions for h,, and a are given by (66) and (67) on the lower branch
(0 < a < ag) and by (68) and (69) on the upper branch (a; < o < 7); see figures 3 and
7. On the middle branch (a; < a < ap) the integral in (48) is dominated by a contribution
from a double zero t = ¢, # 1 of F(t), so that F(t;) = 0 and F'(¢y) = 0, and therefore
F(to) — toF'(t;) = 0. The latter has relevant root to = H/h,, (where H is given by (67)),
and so h,, at leading order in the limit () — oo on the middle branch is the relevant solution
of the equation F(H/hy,) = 0; this is shown as the dashed curve in figure 3(a), lying in the

interval %w < a < oy~ 0.80057 for M = —0.6.

3.5 The limit M — 0

The solution in the limit of weak héating or cooling M — 0 is perhaps most easily obtained
directly from the differential equation (37) and the boundary and flux conditions (rather
than from the implicit solution (43)—(46)) by expanding h, h,, and a in powers of M in the

form
h=hg+ Mhy +O(M?), Ay = hmo+ Mhp +O(M2), a=ag+ May +O(M?), (71)

and solving the problem that emerges at each order in M. Details of this (rather lengthy)
calculation are relegated to Appendix B, in which it is shown that the results of Duffy &
Moffatt (1995) for the isothermal case are recovered at leading order, and in which the O (M)
terms in (71) are derived. Figure 10 shows the variation of h,; and a; as functions of o

for a range of values of (). The behaviour of the first-order solution in the limits o« — 0,

17



a—m, Q — 0and () — oo is given by the appropriate expansions of the relevant results in

§§3.1-3.4 and so need not be reiterated here.

3.6 The limit M — oo

In the limit of strong heating M — oo equation (48) can be satisfied only if the outer
solution for Ay, (valid away from « = 0 and o = =) satisfies h,, — co and h,, = o(M).
Then the integrals in (48) and (49) are dominated by global contributions with integrands
t92(=3Mhy, logt)~'/? and (=3Mhp,tlogt)~'/2; we thus find that
\ (189@2]\/[)1/ ! ( Tr3Q >” !
‘M. ~ 5 .9 I a ~ Py

72
8 sin® o 9M3sin o (72)
as M — oo, showing that h, — oo and a — 0 in this limit, that is, the rivulet becomes
deep and narrow (see figure 5). Moreover (47) shows that the free-surface profile is given by

h(y) ~ o exp {—2 [erf*"l (Q)r} (73)

a

(where erf ™' denotes the inverse of the error function); this satisfies the boundary conditions
(13a) and (26a) identically, and gives hy(a) = o(M/7), consistent with (265). The solution
(73) is analogous to the solution given by Ehrhard & Davis (1991, Appendix) for the profile
of a two-dimensional drop that is spreading quasi-statically in the case when gravity is

negligible and the contact angle is zero.

Comparison of (72) with (55)—(58) shows that this solution fails near « = 0 and o = 7
where there are boundary layers of thickness O(M~*), within which h,, is O(M) and a is
O(1). Again we omit the details for the sake of brevity.

3.7 The limit M — —

In the limit of strong cooling M = —M — oo equation (48) can be satisfied only if hy, =
O(M™") and C; = 0 in (52), giving Ay, ~ (3M)7Y; then (51) gives a ~ 81QM*/2sina. In
fact, writing h,, = H — 6, where H is given by (67) and 0 < § < H, we find that the integral
in (48) is dominated by a global contribution with integrand t3[3M§(1 — ¢)]~'/2, and that
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the expression for a in (51) is dominated by the first term; thus

64sina)’ 1 3Q
hm ~ H — =0 ~ STrT . 4
< 105@ > (3M)? Y O H3sina (74)

as M = —M — oo. Since H ~ (3M)~!, equation (74) shows that h,, — 0 and @ — oo in
this limit, that is, the rivulet becomes shallow and wide (see figure 6); also h,, coincides with
H up to O(M~%). Moreover (47) shows that the free surface profile is flat, with h(y) ~ H,

except in a boundary layer near y = a.

3.8 Comparison between numerical and asymptotic results

Detailed comparisons show that in general the asymptotic solutions given above can provide
a very accurate representation of the exact (numerical) solutions obtained directly from (47)-
(50). For example, for M = 1 the small-() asymptotic solution for h,, would be virtually
indistinguishable from the exact solution in figure 2(a) for @ = 0.1, and for M = —1 the
large-() asymptotic solution for h,, would be indistinguishable from the exact solution in
figure 4(a) even for @ as small as () = 0.1. (It is for this reason that the solutions are
plotted for only relatively small values of () in figure 4: the solutions h,, for larger values of
@ would be indistinguishable from that for @ = 0.1.) Similarly for @ = 1 the small-M and
large-M asymptotic solutions for h,, would be indistinguishable from the exact solutions in
figure 5(a) for M = 0.1 and M = 10 respectively, and the small-A and large-negative-M
asymptotic solutions for h,, would be indistinguishable from the exact solutions in figure

6(a) for M = —0.1 and M = —3 respectively.

4 The transverse flow

As we have already seen in §2, the thermocapillary effect drives a transverse flow (absent
in the isothermal case), so that overall the fluid particles spiral down the rivulet in helical
vortices. Using (31) and (32) with p, hyyy, and hy,, substituted from (28) and (36) we may
write the transverse velocity components v and w as

_ Mhy2(32z — 2h)

(I + Bh)? (75)
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_ M2
 4h2(1 4+ Bh)?

w

[h(1+ Bh)(h = 2)hyy, + h2(z + Bh(32 — 2h))] . (76)

We consider a projection of this flow onto the transverse yz plane, in which we may define
a ‘stream function’ 1 by v = —, and w = 1, with 7 = 0 on 2z = 0, so that

Mhy,z%(h — 2)
Evidently ¢y = 0 on z = 0, on z = h and on the symmetry axis y = 0. If M > 0 then ¢ <0
in 0 <y < a (since hy < 0 there), and conversely if M < 0 then v > 0in 0 < y < a.

Furthermore if M = 0 then ¢y = 0 and v = w = 0, confirming the absence of a transverse

flow in the isothermal problem.

At any ‘stagnation points’ of the transverse flow we have v = w = 0, which lead either

toy =0, z = hy, (a stagnation saddle point at the ‘apex’ of the rivulet) or to

2
z=2h, h(1+Bh)hy, + 2h; = 0. (78)

From (42) we may substitute for hg and hy, in terms of A into (78) to obtain an algebraic

equation for h, namely h(1 + Bh)f'(h) + 4f(h) = 0, that is,

2Bhmh® cos a + [6hy, cosa — B(1 + h2, cosa)]h? — 5(1 + h2, cosa)h

h(1+ ma)> 0

hom(1+ Bh) (79)

— 3Mhuh + 4y — 3Mhyh(5 + Bh) log <

If this equation has a solution h = h, in the interval 0 < h; < hy,,, then there is a stagnation
point in 0 <y < a, at (ys, zs) say, where

2 hm — dh
ZS:E;}LS, ys:/ns W (O<ys<a). (80)

When B = 0 one can show that, except in the case when —2 < M < 0 and —225M?/96 <
cos a < 0, equation (79) has a unique solution h = hy in 0 < h; < h,,. Thus in the transverse
yz plane the streamlines in y > 0 are closed curves, and the flow comprises a single closed
eddy, with all particles circulating round the stagnation point (ys,z;). In flow down an
inclined plane the time 7 taken by particles to complete one circuit of the eddy varies from
7 = 0 (for a particle at the stagnation point (ys,2s)) to 7 — oo (for a particle on the

bounding streamline ¢ = 0). In flow down a slowly varying substrate a somewhat similar
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statement concérning particle travel times is expected to be valid, but, of course, the eddy
in which any particular particle moves will, in general, be different from one station « to
another. When —% < M < 0 and —225M?%/96 < cosa < 0 there are cases when (79) has
three solutions h = hy in 0 < Ay < hyp, so there are three stagnation points in 0 < y < a,
namely a stagnation saddle point between two ‘elliptic’ stagnation points, all lying on the
curve z = é—h. Thus in the transverse yz plane the streamlines in y > 0 are again closed
curves, but the flow comprises two ‘internal’ eddies (circulating fluid bounded by the ‘saddle
connections’) which in turn are surrounded by circulating fluid. These cases can occur both
when @) < Q. (relevant to the flow of a continuous rivulet round a large cylinder) and when

@ > Q. with h,, lying on the middle or upper branches.

Examples of the transverse streamline patterns are shown for various cases in figures
11-13. For M > 0 the free-surface temperature is greater near the contact line y = a than
it is near the symmetry axis y = 0, so the surface tension is stronger near y = 0 than it
is near y = a; this drives a motion in which particles near the free surface z = h(y) move
't,owards y = 0, and so particles near the substrate z = 0 move towards y = a, that is, the
circulation in y > 0 is anticlockwise in figures with M > 0. For increasing M (that is, for
stronger heating) a stronger transverse flow is generated, and the rivulet becomes narrower
and deeper, as shown in figure 5. For M < 0 the situation is reversed, that is, the transverse
circulation in i > 0 is clockwise, and the rivulet becomes shallower and wider with increasing

|M|, as shown in figure 6.

From (77) any streamline ) = constant may be expressed explicitly (in terms of the

known function hA(y)) by

z:g{l—FQCOS{%i%cos"l (—1—%%—%)}}, (81)

the &+ sign here representing the ‘lower’ and ‘upper’ arcs of the closed streamline, which meet
‘vertically’ on the curve z = %h, at points where
MhZ h 1/2
MR -
27(1 + Bh)?
In particular at any stagnation point (ys, zs) we have 1 = 1,, where

_ MR[f (k)]

U= T Bl

(83)
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The quantity 1, (or, in cases where there are three stagnation points in 0 < y < a, the largest
of the three values 1),) may be regarded as a measure of flux circulating in the transverse
plane; the complete family of streamlines in 0 < y < a is obtained by taking 1), < 1) < 0

(for M > 0) or 0 < ¢ <) (for M < 0) in (81).

In the limit M — 0 the stream function v takes the form
¥ =t + Mepy + O(M?), (84)

with 9y = 0 and
_ hoyz?(ho — 2)
4ho(1 + Bhg)?’

where hy is given by (B3)-(B4) in Appendix B. From (78) the position of the stagnation

(28 (85)

point in the case B = 0 is given at leading order by

(1
. ht!
Gcos

, m
7 if o = 5 (86)
1
G

Qo
— cos™* [é {cos Gag + (24 + cos? Gao)l/z}} if g— <a<m,

T
27

1
: {cosh Gag + (24 + cosh? Gao)l/z}] if0<ax

Il

Ys

( 5cosh Gag — (24 + cosh? Gao)l/2 . T
< 2
9G sinh Gay f0<a< 2’
4ag p ™
Zg = —i—g lf. o = —2*, (87)
—5cos Gag + (24 + cos? Gag)/?  _«
f— <
\ 9G sin Gay "y SeST

where again G = |cosa|Y?. In particular z,/h, — 4/9 and y, ~ ag — log3 (with A, — 1
and ag — 00) as o — 0; also z;/h,, — 5/9 and y, — cos™! % ~ (0.8411 =~ 0.2677a, (with

hpm — 00 and ag — 7) as o — 7.

In the limit M — oo the stream function 9 and the position (ys, z;) of the stagnation
point are given at leading order by substituting the leading-order expression (73) for A into

(77) and (78) respectively; when B = 0 the latter leads to

1 2
ys ~ erf | —= | al® ~0.3453a0,  z, ~ Ze VPR ~ 0.54580), 88
y ( To) s~ g€ hy m (88)
where 29 and a(” are the leading-order outer solutions for h,, and a given in (72).

22



In the limit M — —oo we find at leading order that 1) = 0 except in the boundary
layer near y = a; thus fluid particles in the ‘bulk’ of the rivulet essentially undergo a local

rectilinear flow, and the transverse flow is confined to the boundary layer.

Figure 11 shows examples of the streamline patterns of the transverse flow at a = %ﬂ’ in
cases when there is only one eddy in 0 < y < a. Figures 11(a) and 11(b) are for the cases
M = 0.01 and M = 3, with = 1 in both. For comparison the leading-order composite
streamlines in the limits A — 0 and M — oo, obtained from the above asymptotic results,
are also shown (as the dashed curves); the agreement is seen to be very good in both cases.
Figure 11(c¢) is for the case M = —1 and @ = 0.01; in this case the free surface is essentially
flat except in a boundary layer near y = a, and the transverse flow is confined to the

boundary layer.

Figure 12 gives examples of the streamline patterns in the case M = —0.5 and @ = 14

(< Q. = 17.0); it is seen how, even though the free-surface profile is essentially the same in
all cases, the flow changes rather rapidly with «, from a case at oz = 2.181 with a single eddy
-near the right of the rivulet, through a case at oo = 2.182 with two ‘internal’ eddies, to one at
o = 2.1842 with a single eddy considerably nearer to the centre of the rivulet. Since @ < Q.
in figure 12, such a succession of transverse flows could occur in flow of a continuous rivulet
down a large cylinder. Specifically, for sufficiently small « there is only one stagnation point,
but as o increases through a critical value (lying in $m < a < cos™ (—255M?2/96) ~ 2.297)
a pair of stagnation points is ‘born’, giving three in total; then as « increases through a
second (larger) critical value two of these stagnation points coalesce and ‘annihilate’ each

other, leaving just one.

Figure 13 gives an example of the streamline pattern in a case with @ > @., namely
a = 2072, M = —=0.5 and Q@ = 70 (> Q. ~ 17.0). The figure shows a solution on the
upper branch, with h,, = 3.3289; there is a very similar solution on the middle branch,
with h,, = 3.2088. In both cases there are three stagnation points in 0 < y < a, with two
‘internal’ eddies. In addition there is a solution on the lower branch with a single stagnation
point in 0 < y < a. Again it is unlikely that the middle-branch solution is realizable in

practice.
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5 Conclusions

We have used the lubrication approximation to investigate the steady flow of a thin rivulet of
viscous fluid with prescribed volume flux draining down a planar or slowly varying substrate
that is either uniformly hotter or uniformly colder than the surrounding atmosphere, when
the surface tension of the fluid varies linearly with temperature. Utilizing the (implicit)
solution of the governing ordinary differential equation that emerges, we undertook a com-
prehensive asymptotic and numerical analysis of the flow, including a detailed description
of the different forms that the cross-sectional profile of the rivulet may take. In particular,
it was shown that the variation in surface tension drives a transverse flow that causes the
fluid particles to spiral down the rivulet in helical vortices. In general the transverse flow in
0 < y < a has either one stagnation point (around which all the fluid circulates) or three
stagnation points (with two ‘internal’ eddies surrounded by circulating fluid). Also it was
found that a single continuous rivulet can run from the top to the bottom of a large horizontal
circular cylinder provided that the cylinder is either warmer (M > 0) or significantly cooler
(M < —2) than the surrounding atmosphere, but if it is only slightly cooler (-2 <M <0)
then a continuous rivulet is possible only for a sufficiently small flux (Q < @.), though
a rivulet with a discontinuity in the free surface is possible for larger values of the flux
(@ > Q.). Moreover, near the top of the cylinder the rivulet has finite depth but infinite
width, whereas near the bottom of the cylinder it has finite width and infinite depth if the

cylinder is heated or slightly cooled (M > —2), but has infinite width and finite depth if the

cylinder is significantly cooled (M < ~2§) In practice such marked differences in the width
and depth of the rivulet could dramatically affect the transfer of heat between the substrate

and the atmosphere.

Appendix A: The form of the free-surface profile h(y)

In this appendix we prove that the rivulet profile h(y) has a single stationary point, a
maximum at y = 0. The proof given here (which is shorter and more elegant than the

authors’ original proof) is due to Professor J. B. McLeod (University of Pittsburgh).
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The function h(y) satisfies the differential equation (36), namely

3Mh,
(hyy — hcosa), + m =0, (A1)
with
hy(0) =0, h(a)=0, hyla)= -1, (A2)

and h > 0; also we define h,, by h, = h(0). (Note that at this stage h,, is not necessarily
the global maximum of A(y) in —a <y <a.) Let y = yp (0 < yo < a) be the position of the
stationary point of A(y) that is nearest to y = a. Define the functions hi(€) and hy(€) by
hi(€) = h{yo + &) and ho(€) = h(yo — &£). Then the hy(€) (k = 1,2) satisfy

SMhye
(hkff - h‘k CO8 O{)g + 2hk(1 + Bhk)z - 07 (AS)
hi(0) = h2(0),  h1¢(0) = hae(0) = 0, hage(0) = hage(0). (Ad)

The uniqueness of the solution of such an initial-value problem (at least up to the singularity
at y = a, where h = 0) means that hy(§) = hy(&). Thus h(yo + &) = h(ye — €), that is, h is
symmetric about the stationary point y = v, which must therefore be the unique maximum

By of h(y) in —a <y < a, at y =y, = 0.

Appendix B: The solution in the limit M — 0

Here we obtain the asymptotic form of the solution A(y) to O(M) in the limit M — 0.
We achieve this by substituting the expansions (71) into the differential equation (37), the
boundary conditions (13a) at y = 0 and (26) at y = a, and the flux condition (34), and
solving the problem that emerges at each order in M. At leading order this yields the

third-order differential equation
(h()yy - ho Ccos G{)y = 0, (Bl)
to be integrated subject to the boundary conditions

hoy(O) = (), ho(ao) — 0, hgy(ag) = —1. (BZ)
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Hence hy and ag are the solutions of the isothermal problem studied by Duffy & Moffatt
(1995), namely

cosh Gag — cosh Gy . s
= o< —
G sinh Gag ' 0_a<2,
2 _ 2
holy) = “OQQ Y if o = -725 (B3)

0

cos Gy — cos Gayg e

f—<a<

G sin Gag "3 SOST

where again G = | cos a|'/2, and qq is obtained from (34) as the solution of

SSZ?(lSGaO coth? Gag — 15 coth? Gag — 9Gag coth Gag + 4) if0<a< ZTQ_,
4aj z
_ IS B4
0 - if o 5" (B4)
sin o«

Yl (— 15Gag cot® Gag + 15 cot? Gag — 9Gag cot Gag + 4y if g <a<mT

(with hyo found by setting y = 0 in hg). At first order in M equation (37) yields

3h
(hiyy — hicosa)y, + 2 0, (B5)
2hg
to be integrated subject to the boundary conditions
hiy(0) =0,  hi(ag) + arhoy(ao) =0, hiy(ao) + arhoyy(ag) = 0, (B6)
together with the first-order flux condition
ao g
/ h2h, dy = 0. (B7)
0
We thus obtain (after considerable algebra)
3 .
hy = ay (1 — GhgcothGay) + EYeR {Gy sinh Gy cosh Gag +

(54 +s-) (2 log(sinh Gag) — Gag coth Ga()) — sy logs. —s_log sﬁJ, (B8)

o= 3 13 coth Gag + (17 coth® Gag — 5)Gag — 61(5 coth? Gag — 1) (B9)
"7 4G? |15 coth® Gag — 13 coth Gag — 3Gag(5 coth? Gag — 1) cosech? Gag
for 0 < o < g, where si = sinh*[2G(ao £ y)] and I = I(Gay) is given by
Gag 9
I :/ £2 cosech?® £ d€. (B10)
0
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At a = %7{' we have

2 + 2 3 .
mo= S8 Yo 1) log(2a0) — (0} - 17)
ag 4
— (ao +y)*log(ao +y) — (a0 — y)*log(as — y) |, (B11)
11302
a; = — 930 s (B12)

which may be obtained by letting G — 0 in (B8)—-(B10); moreover h; and a; for 17 < o <7
may be obtained by replacing G by iG in (B8)—(B10). In each case h,,; is obtained by setting
y=01in hy.
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Figure captions

FIGURE 1. Geometry of the problem.

FIGURE 2. Numerically calculated solutions for (a) h.,, and (b) a, plotted as functions of
«/7 for a range of values of () when M = 1. The dashed curves show the leading-order

solutions given in (66) and (67) for h,, and (69) for @ in the limit Q — oco.

FIGURE 3. As for figure 2 except that A/ = —0.6. The dashed curve shows the leading-order

solution on the middle branch in the limit Q) — oo.

FIGURE 4. As for figure 2 except that M = —1. Note that in this case plots of A, for
@ > 0.1 are indistinguishable (at this scale) from that for ) = 0.1.

FIGURE 5. Numerically calculated solutions for (a) h,, and (b) a, plotted as functions of

«/7 for a range of positive values of M when @ = 1.

FIGURE 6. Numerically calculated solutions for (a) h,, and (b) a, plotted as functions of

« /7 for a range of negative values of M when @ =1.

FI1GURE 7. Sketch of the form of h,, as a function of o when —% <M < 0and @ > Q.. The
angles oy and ay are where dh,,/da — oo, and ap = cos™*(—=9M?/4). The dashed curve

represents the leading-order solution for A, in the limit ¢) — oo in this case.

FIGURE 8. The critical flux Q. plotted as a function of M = —M in the relevant interval
0<M <2
FIGURE 9. Transverse free-surface profiles for a range of values of « in the cases (a) M =1,

(b) M = —0.5 and (¢) M = —0.8, when @ = 1.

FI1GURE 10. Solutions for (a) hy,; and (b) ay, plotted as functions of /7 for a range of values
of (). The dashed curves in (a) show the O(M) terms that arise in small-M expansions of

the large-Q results (66) and (68) for 0 < o < #m and 37 < a < 7 respectively.

FIGURE 11. Streamlines of the transverse flow at o = %TF in the cases (a) @ =1, M = 0.01,

(b) @ =1, M =3, and (¢) @ = 0.01, M = —1. The curves z = %h (which the streamlines
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cross ‘vertically’) are also shown. In cases (a) and (b) the dashed curves show the leading-

order composite streamlines in the limits M — 0 and M — oo respectively.

FIGURE 12. Streamlines of the transverse flow in the case M = —0.5 and Q = 14 (< Q. ~

17.0), at (a) o = 2.181, (b) o = 2.182, and (c) a = 2.1842. The curves z = 2h (which the

streamlines cross ‘vertically’) are also shown.

FIGURE 13. Streamlines-of the transverse flow in the case a = 2.072, M = —0.5 and Q = 70
(> Q. ~ 17.0), showing a solution on the upper branch, with A, = 3.3289. Note that in
this figure the streamlines are not plotted at equal intervals in ¢. The curve z = %h, (which

the streamlines cross ‘vertically’) is also shown.
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