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Abstract

We consider an equation for the evolution of growing and dividing
cells, and show, using a result of Kato and McLeod, that the probabil-
ity density function for the stationary size distribution is necessarily
unimodal.

1 Introduction

In [1, 2] Hall and Wake consider the evolution of a population of growing
and dividing cells. If we let n(x, t)dx be the number at time t of cells of
sizes between x and x + dx, then n(x, t) satisfies the following hyperbolic
functional partial differential equation:
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n(x, t)t = −(g(x)n(x, t))x − b(x)n(x, t) + α2b(αx)n(αx, t), x ∈ R+. (1.1)

In this equation a mother cell of size x divides into α > 1 (usually α = 2)
daughter cells of the same size x; g(x) is the growth rate, and b(x) is the
division rate, of a cell of size x.

Note that there is no mortality of cells, so the reasonable boundary condi-
tions for (1.1) are

g(0)n(0, t) = 0 and lim
x→∞

g(x)n(x, t) = 0 ∀ t > 0. (1.2)

Denote the right-hand side of (1.1) by A(n). Below we shall assume that
b(x) ≥ 0, g(x) ≥ 0 for all x ∈ R+ and that b(x)/g(x) ∈ L1(R+). Defining

h(x) = exp
(
−

∫ x

0

b(s)
g(s)

ds

)
,

using the machinery developed in [4] and a result of [1], we have the following
proposition:

Proposition 1 1. (1.1)-(1.2) generates a semiflow on the space

X =

{
u ∈ C(R+) | sup

x∈R+

g(x)
h(x)

|u(x)| < ∞

}
.

2. The semiflow preserves the cone of non-negative functions in X.

3. There is a unique eigenvalue λ > 0 for which the operator A has a non-
negative eigenfunction y(x); furthermore y(x) is positive for all x ∈ (0, ∞).

The key observation is that the change of variable n = hu/g transforms (1.1)
into a problem in which a generator of a strongly continuous semigroup is
perturbed by a bounded operator. [4] treat the case of α = 2 and of cells
of non-zero minimal size and finite maximal size, but the arguments go
through with minor changes. Positivity of y(x) for non-zero x follows from
the arguments of [1] for the case of constant b(x) and g(x). Note that if we
let N(t) be the total cell population, N(t) =

∫∞
0 n(x, t) dx, we have that
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λ is the growth rate of N(t), that is, N(t) = N(0)eλt, so that (1.1) is only
applicable to exponentially growing populations.

It is the eigenfunction y(x) that we are interested in. It has the interpretation
of the probability density function describing the stationary size distribution
(SSD). Hence we supplement the equation it has to satisfy,

(g(x)y(x))′ + λy = −b(x)y(x) + α2b(αx)y(αx), (1.3)

with the conditions
y(x) ≥ 0 for all x ∈ [0, ∞) (1.4)

and the normalization condition (since y(x) is a probability distribution)∫ ∞

0
y(x) dx = 1. (1.5)

.

Obviously, to be able to determine y(x) we need to know λ. There are two
cases where the value for λ can be worked out explicitly; these are the cases
b(x) = β and of g(x) = γx with b(x) growing superlinearly at infinity. In
the first case by integrating (1.3) we have

λ = (α− 1)β.

In the second case we have that
∫∞
0 g(x)y(x)dx is finite, and multiplying

(1.3) by x and integrating we have

λ =

∫∞
0 g(x)y(x)dx∫∞

0 xy(x)dx
, (1.6)

so that in this case λ = γ.

The simplest interesting case of (1.3) arises if we assume that g(x) = 1 and
b(x) = β, a positive constant. Then (1.3) becomes

y′(x) = −αβy(x) + α2βy(αx), y′(x) = −αβy(x) + α2βy(αx), (1.7)

subject to (1.4) and (1.5). Note that by integrating (1.7) between zero and
infinity and using (1.5), we immediately have that y(0) = 0. Equations of
the form (1.7) have been described fairly completely in [3]; that paper is
extensively used in [1], which also concentrates on (1.7).
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Looking at the pictures of [1, 2] one observes that all the SSD functions y(x)
are unimodal. The object of the present note is to give a proof of this fact.
We first prove the result for the (biologically unrealistic) case of constant
g(x) and b(x) and then show how this entails unimodality for reasonable
choices of g(x) and b(x), such as, for example, g(x) = γx and b(x) = βxr

(here γ, β, are positive constants, r > 1). Since unimodality of the SSD
is a necessary consequence of this type of model, deviation from it in ex-
perimental situations must indicate that a more sophisticated model for the
dynamics of the cell population is required. We also note that the solution
N(0) exp(λt)y(x) in the case of g(x) = γxdoes not have good attractivity
properties; see [4].

2 Main Result

Below we denote by y(x) the SSD solution of (1.7). First of all, we prove
the following elementary results:

Lemma 2 If y(x) has a minimum, it must have an infinite number of such
minima.

Proof. Assume on the contrary that there is a finite number of minima.
Note that if x0 is the last point of minimum for y(x),

y(αx0) =
1
α

y(x0),

so that at αx0 > x0 we have that y(αx0) < y(x0). If y(x) has a minimum at
x0, y(2m)(x0) > 0 for some positive integer m. Below we give the argument
for m = 1; the degenerate case follows along similar lines. If m = 1, it
suffices to differentiate the equation (1.7) at x = x0 once (in the general
case it has to be done 2m− 1 times). Thus we have

y′′(x0) = α3βy(αx0).

Hence y′(αx0) > 0, which implies that there is a minimum at some x∗ > x0,
leading to a contradiction. 2

Lemma 3 If y(x) has an infinite number of minima, these cannot accumu-
late at a finite point.
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Proof. Let x0 be the last accumulation point. Then by the above argument
there must exist a minimum between x0 and αx0. 2

Now, using Lemmas 2 and 3 we can prove

Theorem 4 y(x) is unimodal.

Proof. Kato and McLeod [3] (see Theorems 3 and 9 there) discuss the
equation

y′(x) = Ay(θx) + By(x), (2.8)

which is the same as (1.7) under the identification θ = α, B = −αβ, A =
α2β. Hence the parameter κ of Theorem 3 in [3], given by κ = Re k0, where
k0 is any solution of

k =
log(−B/A)

log θ
,

becomes

κ = Re
(

log(αβ/(α2β))
log α

)
= −1.

Hence by Theorem 9 of [3], any solution of (1.7) which is o(xκ) = o(x−1) as
x →∞ is necessarily a multiple of

y0 = e−αβx

[
1 +

∞∑
n=1

(−1)n (α2β)n exp{αβ(1− αn)x}
(−αβ)n(1− α)(1− α2) · · · (1− αn)

]
. (2.9)

It is clear that y0 = O(exp(−αβx)) for large x, and hence from (1.7) it is
obvious that y0 is ultimately monotone decreasing , and so therefore is any
solution of (1.7) that is o(x−1). Since we have by Lemmas 2, 3 that any
non-unimodal solution has necessarily an infinite number of minima going
off to infinity, we see that any solution of (1.7) that is o(x−1) is necessarily
unimodal. However, since y(x) is an SSD (in fact the main result of [1] is
the computation of C such that Cy0(x) is the SSD), by the normalization
condition it has to be o(x−1). As discussed in [2], it is not biologically
realistic to assume that the growth rate g(x) and the division rate b(x) of
a cell of size x are independent of x. [2] discuss the case of g(x) = γx and
b(x) = βxr, where γ, β, r are all positive constants. [2] show that in this
case the SSD can be written in the form

y(x) = C
1
x2

Y0(xr),
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where Y0 is a solution of the same form as y0 of (2.9), i.e. Y0(x) satisfies
equation (2.8) for some choice of θ, A > 0 and B < 0. Hence all the
arguments of Theorem 4 hold, and the SSD is unimodal.
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