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Abstract

A critical element in the use afbbL2.1, the modelling lan-
guage developed for the International Planning Competition
series, has been the common understanding of the semantics
of the language. The fact that this has been implemented in
plan validation software was vital to the progress of the com-
petition. However, the validation of plans using actions with
continuous effects presents new challenges (that precede the
challenges presented pjanningwith those effects). In this
paper we review the need for continuous effects, their seman-
tics and the problems that arise in validation of plans that
include them. We report our progress in implementing the
semantics in an extended version of the plan validation soft-
ware.

1 Introduction

derek.long@cis.strath.ac.uk

erated by entrants to the competition, so it was clearly es-
sential, for evaluation of the results alone, to have an auto-
matic validator. In fact, the role ofAL in communicating

the practical significance of the semantic definitions to en-
trants should not be underestimated — it was a vital tool in
the development process for all of the competitors. In this
paper we consider the problem of extending to handle
continuous change. We consider the semantics on which this
extension is based and explore the practical problems that
are implied in implementing this to achieve automatic vali-
dation both efficiently and correctly.

2 Actions with Continuous Effects

Various authors have considered the representation of con-
tinuous effects in planning contexts. Pednault (Pednault
1986) proposed an extended representation language in

Classical planning research has focussed on logical struc- which actions could initiate continuous processes such as
ture of plans, with temporal structure confined to order- rotation or linear motion, described by continuous functions
ing constraints between activities. With a few notable ex- parameterised by time. In Zeno, Penberthy and Weld (Pen-
ceptions, such as (Vere 1983; Penberthy & Weld 1994; berthy & Weld 1994) considered actions with continuous
Laborie & Ghallab 1995; Muscettola 1994), metric tem- effects described by differential equations for the evolu-
poral structure has not been considered until recently, de- tion of continuously changing values such as fuel. Shana-
spite its obvious importance in practical planning prob- han has extended the event calculus to include continuous
lems. The third International Planning Competition made change (Shanahan 1990), while proposing it as a model for
temporal planning one of the focal objectives and a num- planning. A functional representation (Trinquart & Ghallab
ber of planners achieved remarkable success in handling 2001) of domain models has also been proposed. In this pa-

guite complex metric temporal planning behaviour, includ-
ing MIPS (Edelkamp & Helmert 2000) and~G (Gerevini &
Serina 2002). Although the introduction of metric temporal

per we are not too concerned with the precise syntactic rep-
resentation of continuous change, although we supply ex-
amples usingebDL2.1 (Fox & Long 2002), the language

reasoning was a considerable challenge, there remain impor-developed for the series of international planning competi-
tant additional challenges. For example, in the domains used tions (McDermott & Committee 1998). Instead we concen-
in the competition, all change was modelled using discrete trate on the semantics that underlie the use of continuous
effects. There are features of some domains that cannot beeffects.
accurately modelled with discrete effects. In this paper we  We assume that time runs on a continuous real time line.
review the need for continuous effects to adequately model Actions can instantaneously initiate continuous change in
certain kinds of problems. Planning with continuous effects numeric-valued variables. This change will be in effect over
was previously discussed at the competition workshop 2003 finite intervals within the structure of a plan (we assume
(Howey & Long 2003) and a more in depth account is in plans are finite structures and execute in finite time). The
preparation. description of change is assumed to be given by describing
One of the key elements contributing to the success of the instantaneous changes made to the values of derivatives
the competition was the initial definition of a semantics for of variables (with respect to time). The use of derivatives
pDDL2.1 allowing a general understanding of what consti- has two advantages: the changes can be seen as instanta-
tutes a valid plan and, crucially, the implementation of an neous effects, despite the fact that they lead, indirectly, to
automatic plan validatowaL. Over 5000 plans were gen-  continuous change, and the effects of concurrent actions that



interact in their effects on variables is simplified compared of v is continuously increased at the refuel rate of the fuel

with models that require explicit statement of the function pumpp. If the fuel pump delivers fuel at a constant rate

describing a variable as a function of time. For example, then the volume at any point during refuelling has been in-

the description of the effect of an action of driving between creaesed by the time since refuelling started, multiplied

two locations can be described independently of whether a by the refuel rate. If the refuel rate is itself changing then

concurrent activity changes the velocity of the vehicle. In the behaviour is more complex, described by a differential

addition to the possibility of expressing continuous change equation. It might seem more natural to express this effect

in this way, we also assume that a plan can be constrained as an assertion of the form

to maintain particular invariant conditions over certain inter- d

vals. The need to preserve invariants can arise for various —(volume ?v) = (refuel-rate ?p)

reasons. IrpbDL2.1 invariants can be associated with the dt

execution of durative actions over the interval of their exe- but this would be inappropriate since there might be addi-

cution, but it is also reasonable to suppose that constraints tional actions that affect the value of the volume continu-

could express safety conditions required for the successful ously and concurrently. While it would not be inconsistent

execution of a plan, or goals over intervals. for each of those actions to assert that they had the effect of
A continuous effect can only affect metric quantities: itis increasing volume at some rate, it would be inconsistent for

not possible to change a propositional fluent continuously. A any of them to assert a specific value for the overall rate of

metric variable that can be changed by a continuous effect is change of the volume.

called aPrimitive Numerical Expression (PNEA durative Formally continuous effects are written as follows:
action that has a continuous effect on a PNE changes the flu- (<assign-op-t> <f-head> <f-exp-t>)

ent so that the values taken once the continuous change is ac- where

tivated are described by a continuous function of time. That _ _

is if v is changing continuously on an intenjal, to] then <assign-op-t> = Increase

for eacht’ € [ty, 5] the limitlim, . v(¢) exists and is equal <assign-op-t> = decrease

to u(¢). It is possible for other actions to affect a PNE dur- <t-exp-t> 7= (0 <texp> #)

. . - ; ; L <f-exp-t> n= (* #t <f-exp>)

ing the interval over which a continuous effect is changing it. <f-exp-t> =

In this case, the compound continuous effect will be decom- . . .
posed into segments of continuous behaviour, punctuated by _ @nd<f-head> is a PNE andf-exp> is any expression
points of discrete change. These points can be either dis- (for details seebpL2.1 (Fox & Long 2002)).
crete changes in the value of the PNE itself, where an action ..
assigns directly to the PNE, so that the value describes a dis- 4 Motivation
continuous behaviour, or can be discrete changes in the rateBefore considering continuous effects in more detail, it is
of change so that the value describes a piece-wise continu- worth reviewing why one should consider it necessary to al-
ous, but non-differentiable behaviour. The latter case occurs low for them. Many domains can be modelled adequately
when an action modifies (instantaneously) the derivative of by treating effects that are in reality continuous as though
a PNE. they were discrete effects at the start or end of a durative
For the purposes of validation it is important to observe action. Unfortunately, there are problems in which this is
that discontinuities, either in the value of a PNE or in its not true and in which a plan can only be created if contin-
derivative, can only occur at points corresponding to the in- uous effects are expressible and properly accounted for. To
stantaneous points of effects of actions —PirDL2.1 either demonstrate this let us consider an example in some detall
the starts or ends of durative actions, or the points of applica- for the remainder of this section.
tion of simple actions. These points are defined by the struc-  Consider a generator that must run continuously for 100
ture of a plan, so can be identified before validation needs to time units, requiring 1 unit of fuel per time unit, but with a
consider continuous effects and can be used to segment thecapacity of only 60 units of fuel. Two tanks containing 25
behaviour of metric quantities within a plan into intervals of  units of fuel are available that can be emptied into the gen-

continuous and differentiable behaviour. erator while it is generating, but the volume of fuel in the
generator, which is initially full, cannot exceed its capacity.
3 Syntax of Continuous Effects Only one tank may be emptied into the generator at a time.

The rate of flow of fuel out of the bottom of tank is gov-
erned by Torricelli's Law:Water in an open tank will flow
out through a small hole in the bottom with the velocity it
(increase (volume ?v) (* #t (refuel-rate would acquire in falling freely from the water level to the
?p))) hole The volume of fuel in the tank/, is then shown to be

where#t represents the time over which the effect has gdiven by
been active. However, the whole expression must be inter- av = 2%k(kt — VT, 1)

A continuous effect of a durative action is written in the fol-
lowing style:

preted as having a special significance that cannot be accu- dt

rately captured in terms of an instantaneous effect: instead, wherek is the flow constant of the tank (this depends on the
the expression should be thought of as identifying a rate of size of the hole, gravity, etc} is the initial volume of fuel
change for the PNE on its left. In this example the volume in the tank and is time. At time0 the tank has volume



Problem
(:objects generator tankl tank2)
(:init (= (fuel-volume generator) 60)

(= (capacity generator) 60)
(= (fuel-volume tankl) 25)
(= (sgrtvolinit tankl) 5)
(= (flow-constant tankl) 0.2)
(= (fuel-volume tank2) 25)

(= (sgrtvolinit tank2) 5) 0 Time
(= (flow-constant tank2) 0.4)) 0 ‘ 101
(:goal (generator-ran)) 15
(:metric (total-time))) T
Figure 2: Encoding irDDL2.1 of the generator problem. Figure 3: Graph of (fuel-level generator).

U and starts to drain. Then by timé” the tank is empty  Solving this equation we see that the tank is empty at
so that these equations are only valid for time values) 25. However when the model of refuelling was constructed
[0, @]_ The rate at which the tank empties is fast to begin for the domain we already observed that the tank becomes
and then slows to a dribble as it finally empties. A possible empty at the time given by the square root of the initial vol-
encoding inPDDL2.1 using continuous effects is shown in  ume of fuel in the tank divided by the flow constant. For a
figures 1 and 2. a planner working with this domain this fact is not obvious.
Similarly the second tank takes 12.5 time units to empty.
Now let us add the refuelling action for the generator, us-
ing the first tank. We will first consider refuelling 5 time
units after the generator has started running.

The domain consists of two durative actions. One models
the generator running for 100 time units, with the condition
that the generator must not run out of fuel. The other du-
rative action models the emptying of a tank of fuel into the
generator for a fixed time with the condition that the genera- 1: (generate generator) [100]

tor must not overflow. The square root of the initial volume & (refuel generator tank1) [25]

of a tank,(sgrtvolinit ?t) , Is required for the equation

describing the flow of fuel out of the tank. This must be During the period of refuelling the volume of fuel of the
given in the first instance sinaebbL2.1 does not handle  generator}/, is given by the sum of the effects of the gener-
the use of square roots. The square root of the volume of the ator generating and the tank refuelling the generator:

tank, (sqrtvol ?t) , can then be tracked by a linear func- dv
tion of time which then can be used to supply the square root — = (1) + (2 —0.08t).
of the initial volume of the tank in the case that the tank is dt
partially drained and then drained later. Thus

V(t) = —0.04¢> +t+55 fortin[0,25],

4.1 Calculating a Plan wheret is the local time for the refuelling durative action.
Now let us consider solving this problem, clearly the first e use the condition th&f is 55 att = 0 since we know that
thing to do is to set the generator running for 100 time units. the generator has already used 5 units of fuel. The refuelling
So let us start the generator running for 100 time units after durative action has an invariant condition that the generator
time 0, say at time 1: must not overflow which is given by

1: (generate generator) [100] —0.04t> +t +55< 60 fortin (0,25),

. . . which is equivalent to
The generator uses one fuel unit per time unit, so the gen-
erator needs 100 fuel units to generate for 100 time units. 0.04t> —t+5>0 fortin(0,25).

The generator starts with 60 fuel units and each tank has 25 |ever this condition only holds for values ofin

fuel units, so we have 110 fuel units to use, which is good. (0,6.91] U [18.09, 25) (values to 2 decimal places). So, we
We can try to empty both tanks into the generator —but how paye started to refuel the generator too soon, overflowing
long does each tank take to empty? From the definition of yhe generator. This is shown in figure 3. What is the earli-
the refuelling durative action and the constants for the first o¢; time that refuelling could occur? Let the volume of fuel

tank, given in the problem definition, the rate of change of ¢ ihe generator at the start of refuelling b Then the
the volume of fuel of the first tank/, is given by volume of fuel in the generator is given by

dt o The invariant condition for the generator not to overflow is
Therefore, the volume of fuel is given by then given by

Vi(t) = 0.04t* — 2t 4 25. 0.04t* —t —vg +60 >0  fortin (0,25).



Durative actions

(:durative-action generate

‘parameters (?9)

:duration (= ?duration 100)

:condition (over all (> (fuel-volume ?g) 0))

:effect (and (decrease (fuel-volume ?g) (* #t 1))
(at end (generator-ran))))

(:durative-action refuel
parameters (?g ?t)
:duration (<= ?duration (/ (sqrtvolinit ?t) (flow-constant ?t)))
:condition (and (at start (not (refuelling ?g)))
(over all (<= (fuel-volume ?g) (capacity ?g))))
.effect (and (at start (refuelling ?g))
(at start (assign (refuel-time ?t) 0))
(at start (assign (sqrtvol ?t) (sgrtvolinit ?t)))
(increase (refuel-time ?t) (* #t 1))
(decrease (sqrtvol ?t) (* #t (flow-constant ?t)))
(decrease (fuel-volume ?t) (* #t (* (* 2 (flow-constant ?t))
(- (sgrtvolinit ?t) (* (flow-constant ?t) (refuel-time ?t))))))
(increase (fuel-volume ?g) (* #t (* (* 2 (flow-constant ?t))
(- (sgrtvolinit ?t) (* (flow-constant ?t) (refuel-time ?t))))))
(at end (not (refuelling ?g)))
(at end (assign (sqrtvolinit ?t) (sqrtvol ?t)))))

Figure 1: Encoding irrDDL2.1 of the generator domain using durative actions
+ Value

6Q]
The roots of this quadratic are

14 /=8.6 + 0.1600
0.08 '

For the refuelling action to occur as soon as possible we
want this invariant to only just hold so that the volume

of fuel in the generator is at capacity. This occurs when
vy = % = 53.75, and from this we know the generator /\
must have been running for 6.25 time units for the volume )
of fuel to drop to this amount in the generator. Therefore 0], . / Time

the earliest we can refuel using all of the first tank is at time 0 ) 101
7.25. Figure 4: Graph of (fuel-level generator).

1: (generate generator) [100]
7.25: (refuel generator tankl) [25] ) )
fuelling, although such a plan cannot be considered very ro-

bust. A better behaviour would be to push the refuelling

Now, we still wish to do another refuelling before the end ~iions comfortably into the generating interval.

of generating, the latest we could do this is at time 88.5 in the
plan. However the volume of fuel of the generato”2.5 4.2 Calcula‘“ng a Plan Us|ng Bounds
by this time, meaning, of course, that the generator has since
run out fuel and the plan is not valid. If we wanted to delay
to the last moment then the second refuelling would occur
before time 86, this being the time when the generator runs
out of fuel which can be deduced from the rate at which fuel
is consumed and the previous volume of fuel since the last
refuelling. So our final plan could be

A more feasible approach to calculating a plan for a problem
involving continuous effects may be to use linear approxi-
mations on the continuous effects, in particular the use of
step functions. For the generator problem, if we reason that
atank is only going to add 25 fuel units then we can wait un-
til the generator has used up 25 fuel units, so that we know
that no overflow could occur. The first refuelling would then

1: (generate generator) [100] take place at time 26. Next, the second refuelling can occur
7.25: (refuel generator tankl) [25] as soon as the first refuelling has finished, since we know
85.99: (refuel generator tank2) [12.5] that the volume of fuel in the generator is 35, so that no

The volume of fuel of the generator for this plan is shown Overflow could occur. Figure 5 shows the volume of fuel of
in figure 4. the generator for this plan.

It would be interesting to see a planner capable of pro- 1: (generate generator) [100]
ducing a plan that includes the earliest or latest possible re- 26: (refuel generator tankl) [25]



4+ Value

developed, based on the semantics of discrete durative ac-
tions (Fox & Long 2002). The semantics of discrete durative
actions can be formulated in terms of discrete state changes
at the instants of change, in a familiar state-transition se-
mantic framework, but with the addition of an embedding
of the activity into a real time line. This is a straightfor-
ward extension, except for two important complications in-
troduced by the embedding: one is to explain under what
circumstances the end points of actions (when instantaneous
0 Time change occurs) may coincide and the other is to account for
0 ' ' ' 101 the way in which the interaction between action execution
Figure 5: Graph of (fuel-level generator). and invariants is handled. The first of these issues is re-
solved by preventing action end points from coinciding if the
postconditions of one of the end points include any proposi-
tion that is included in the preconditions of the other. This
51.01: (refuel generator tank2) [12.5] constraint implies that propositions are treated like shared

Now consider what was involved in constructing this plan. Memory in multi-processing operating systems, with actions
The volume of fuel in the generator was calculated as a @nalogous to separate processes. An action precondition de-
function of time from the differential equation governing its Mandsread-accesso all of the atomic propositions it in-
behaviour, but with no other continuous effects interacting cludes, while action postconditions demanmute-accesso
with the volume of fuel. We then considered the refuelling @l Of the atomic propositions they refer to. A propositional
action for the first tank on its own, solving the differential  variable can support multiple coincident read-accesses, but
equation in order to figure out how long it takes to empty the & write-access prevents any other access to the propositional
tank. A step function was then used to approximate the refu- variable. An action can, of course, refer to the same propo-

elling action, adding all of the fuel at the start of the durative Sition in both its pre- and postconditions, just as single pro-
action. The linear function for the generator fuel volume C€SS can read and then write to a memory, because its own

was then used to determine when the refuelling given by the Memory accesses are sequenced. An alternative approach,
step function could be applied. Similarly with the second adopted by McDermott (McDermott 2003) and Bacchus and

tank of fuel. Notice that we did not use a step function for Ady (Bacchus & Ady 2001), is to allow actions that occur
the generating action. simultaneously to be sequenced. We consider this approach

If this kind reasoning can be used to produce a plan us- difficult to justify, since it is not clear how, in execution,

ing simple calculations to handle linear functions and linear Simultaneous actions could actually be guaranteed to exe-
bounds for non-linear functions then this makes the plan- cute in a specific order. A plan contains a finite number of

ning process much easier. However using linear bounds &Ctions. Thus, the management of invariants is handled by
can greatly reduce the flexibility of durative actions withina OPServing that it is only necessary to confirm each invari-
plan, the more accurate continuous effects can be handled inant betwgen the flnltely many gﬁsqrete points of change that
the planning process the better the scope of valid plans that ©Ccur during the interval to which it applies.
can be produced. In the generator example we saw that the The introduction of continuous change creates two further
earliest time a refuelling could occur using the first tank is complications: continuous changes can interact and contin-
at time 7.25. However, using linear bounds for the volume Uous change can affect values appearing in invariant condi-
of fuel in the generator (by way of a step function on the re- tions during the period of continuous change. A semantic
fuelling action), the earliest safe time to refuel is at time 26. account can be constructed using a timed hybrid automaton
This reduction in flexibility might suggest that no valid plan  model, such as Henzinger's (Henzinger 1996). This model
exists at all when there are, in fact, many valid plans. is attractive because it is close to the familiar state transi-
If we attempt to model the fuel-consumption of the gener- tion semantics for planning problems. The key extension to
ator with a step function we have a problem: either the fuel the discrete temporal model is that interacting processes are
is consumed at the start, which suggests that a tank can sim-described by systems of differential equations, whose effects
ply transfer its 25 units of fuel to the generator at the start €an be resolved at the conclusion of each interval over which
without exceeding the generator fuel capacity. Alternatively, they act uninterrupted. Invariants can be checked by consid-
if we put the consumption at the end then we cannot refuel €ring the functions describing the change in PNEs over the
the generator until it has ran out of fuel. In order to solve the Same intervals. This is illustrated in figure 6. In (1) we show
prob'em we have to have access to an accurate (Or at |easthOW the |nterVal Of a duraUVe action eﬁec“ng continuous

a sufficiently accurate) model of the fuel in the generator change can be handled by updating the continuously chang-
throughout its generating time. ing PNEs discretely at the end of the interval and checking

any invariants at this point. Each invariant check is respon-

: : sible for confirming correctness over the preceding interval

5 Semantics of Continuous Effects of continuous change. In (2) we show that if another ac-

We do not attempt to give a formal semantics in this sec- tion end point punctuates the interval then the evaluation of
tion, due to limited space: a formal semantics has been continuous effects and invariant checks are managed at each
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Figure 6: Durative action with continuous effects. Graph
shows the values of a PNE, which is changing continu-
ously during the execution of the durative action

point of change. Part (3) illustrates how discrete affects can
arise, due to parallel activity during the intervals, breaking
the continuous change into piece-wise continuous differen-
tial components.

6 Interacting Continuous Effects

There may be a number of continuous effects active at one
time each of which additively modifies the derivative of a
PNE. If a PNE has its derivative modified more than once

7 Invariants

Continuous effects have their most significant effect on the
validation of plans when they interact with invariants. Anin-
variant condition must be evaluated on an interval by check-
ing that the continuously changing PNEs that appear within
it do not assume values that lead to a violation of the invari-
ant.

7.1 One-Clause Invariants

An invariant comparison containing PNEs that are contin-

uously changing can always be expressed as a function of
time, ¢, that must be greater than zero (or perhaps greater
than or equal to zero. If equality is used then the difference
between the left hand side and the right hand side cannot
vary for the invariant to hold). For example

t?4+2t+2>0 forte(0,5)

may be an invariant condition to check. If the invariant ex-
pression is linear in time we can simply evaluate the expres-
sion at the end points of the interval to confirm the condition
holds. However checking an invariant condition with a non-
linear expression in time it is no longer sufficient to check
the condition at end points only. An invariant comparison
F(t) > 00on(0,T), whereF is some continuous function

in time, ¢, can be checked by one of the following methods:

1. Check thatF'(0) > 0 and F(T") > 0 and also check that

the value at any stationary points(i@, T') is greater than
zero.

2. CheckthatF’(0) > 0 andF(T") > 0 and also check to see

if any roots exist in(0, T'). (If the inequality is non-strict
then care is needed in case of repeated roots).

Method 2 is chosen to check non-linear invariants/amn .

then the derivative is given by the sum of the contributions. e key to the problem of checking invariants that are com-
The rate of change of a PNE may also depend on the value of 5 isons with non-linear expressionstiiis one of finding

other PNEs which may themselves be continuously chang-
ing. The values of all the changing PNEs are thus given by
a system of differential equations:

dfi

dt 7f7l)

where thef; are the PNEs and thg¢ are some functions
depending on the set of continuously changing PNEs. PNEs
that are not changing continuously are treated as constants
For example consider the following continuous effects

:gi(f17f2a"' 7:6{1,2,"',71},

increase (distance ?c) (* #t (speed ?c))
increase (speed ?c) (* #t (acceln ?c))

which describe the motion of a car driving. The rate of
change of the PNE for the distance of the car is given by
the PNE for the speed of the car. The PNE for the speed
of the car is in turn given by the PNE for the acceleration
of the car. To solve these differential equations to give the
functions of time describing the motion of the car we must
firstly determine the acceleration, then the speed, and lastly
the distance of the car.

Solving the system of differential equations that can arise
is considered in sections 8.1 and 8.2.

the roots of a non-linear function. This problem is, in gen-
eral, non-trivial, even in the case of polynomials. There are
many algorithms to find the roots of equations but we need
to be sure of finding all the roots in a given interval in ev-
ery possible case. Itis therefore necessary to impose certain
restrictions on the invariants that may be expressed to guar-
antee that they may be verified on a given interval.

We are initially only considering invariant comparisons

‘which depend on continuously changing PNEs that are given

by polynomials int. For one-clause invariant comparisons
which are given by an inequality that is strict we are in fact
only interested in the existence of real roots on a given open
interval. Finding the roots of polynomials is considered in
section 8.3.

7.2 Invariants with Disjunctions

Let A andB be two atoms that depend on time then consider
the two conditions

A(t) v B(t) forallt € (0,T), @)
(A(t) forallt € (0,T7)) VvV (B(t) forallt € (0,7)). (3)

It could be the case that(t) is only satisfied on(0, 27
and B(t) on [1T,T) so that condition (2) is satisfied but



forming the cover. In the case of polynomials this can be
achieved (finding the roots of polynomials is considered in
section 8.3). Even in the case of polynomials of polynomi-
als, the degree of the largest polynomial is bounded giving
us a tractable collection of roots and a tractable problem for
validation. Using this approach means that our validation
of plans cannot be more accurate than the degree of preci-
0 to T sion used in the solver. However in practice, all numerical
testing, even for linear functions, is subject to the degree of
Figure 7: Example oh,, hy and f. If f is required to be ~ Precision supported by our machines (always finite), so the
aboveh, or below h; across(0,T), then the value at, problem of plan validation must always be qualified by an
breaks the constraint. observation of the limitation on the accuracy with which nu-
meric constraints can be checked.
A detail of finding a covering of0, T") is important, let us
condition (3) is not. Clearly the two interpretations are not Call @n exact covering o, T') fracturedif there is a value,

equivalent. Suppose a durative action continuously updates % Other thand or T, such that for every € C'if = € [
a PNE,f, and there is a concurrent action (possibly the same thenz is an end point of . (The intuition is that no interval

action) with an invariant condition of the form: spans between the left and right of the interval acngsdf
' the only exact coverings that exist to satisfy a given invariant
f(t) < hi(t) A f(t) > ho(t) forallt € (0,T), are fractured at then this implies that at the invariant flips

from being satisfied in one way to being satisfied in another.
This flip could depend on arbitrarily precise synchronisation
of the activities governing the continuous change and this is
unlikely to be within the power of any physical executive.
For this reason, we might prefer to discount such plans as
F(t) < hi(t)V F(t) > ho(t) forallt € (0,7), unrobust. This issue is also related to numeric precision in
handling values, both in a potential executive and in the ma-
then each comparison cannot be considered separately. chinery expected to validate a plan.
In the simple case wherle, andh; are constants anfl Two things (other than the form of the functions that de-
is linear we can no longer simply check the end points of scribe the behaviours of the PNEs that appear in the proposi-
hi — f andf — hs to be greater than zero. This is because tion) affect the complexity of invariant checking: one is the

whereh; and hy; are some functions that may depend on
other functional expressions. The condition can then be
checked by checking each comparison separately. However
suppose the condition is of the form:;

we could have(h; — f)(0) > 0 and (f — h2)(T) > 0 complexity of the functions that appear in the proposition it-
which satisfies the condition @ and 7" but there could self and the other is whether or not there is more than one
exist a pointty € (0,7) such that(h; — f)(to) < 0 and disjunct. The former is restricted to be (in ascending order
(f = h2)(to) < 0 (see figure 7). of complexity) either simple linear functions, polynomials

S S _ or other functions.
As an example of an invariant with disjunction consider

the following: 8 Solving Differential Equations and
(2 =9t +14>0)V((t—1>0)A(~t+8>0)) Evaluating Invariants
for ¢ in (0, 10). We must find the values fin (0, 10) each In this section we consider approaches to solving a system

disjunct is satisfied on then take the union of the two and see Of differential equations (sections 8.1 and 8.2), which arises
if the result coverg0, 10), which implies the resultisin fact ~ When validating a plan with continuous effects. Then find-

equal to(0, 10). The first disjunct(t? — 9t + 14 > 0), is sat- ing t_he roots of polynomials_ is addre;ged (section .8‘3) as
isfied for values of in (0, 2]U[7, 10). The second disjunctis ~ required for evaluating invariant conditions. Then finally,
not so straightforward, the conditign— 1 > 0) is satisfied a general method (section 8.5) using the solutions to these

on(1,10) and(—t + 8 > 0) is satisfied or{0, 8] then taking problems is presented for evaluating invariants that depend
the intersection of the two we have the disjunct being sat- ©" continuously changing PNEs.
isfied for values of in (1, 8]. Now taking the union of the .
values that the two disjuncts are satisfied on gi(&d0) 8.1 Numerical Methods
which indeed cover§0, 10) showing that the invariant con- It is not possible to solve each system of differential equa-
dition holds. tions analytically that may arise from continuous effect ex-
In general an invariant condition can be considered as pressions irrDDL2.1. The subject of finding analytic solu-
a proposition in DNF that must hold over an interval, say tions to a system of differential equations hasugelitera-
(0,T). To confirm the invariant, we must then find a set of ture and will not be discussed in any detail in this paper. An-
intervals,C, covering(0, T'), such that a disjunct is satisfied  alytic methods fall well short of a complete solution and can
in each interval irC'. This is simplified if it is possible to find be quite complicated, too specific, too long or non-existent
all the roots of all the continuous functions involved, since for some systems of differential equations. Therefore an-
these points can be used as the end points of the sub-intervalsalytic methods are not well suited to complicated systems



of differential equations that may arise naturally in a math-

whereg; is some function depending dn. The function

ematical model. For these reasons numerical methods areg; is restricted to addition, subtraction, multiplication and

very popular among scientists working with mathematical
models described by differential equations. The output of
numerical methods is a finite set of points which is close
to the solution curve and ideally to within a given degree
of accuracy. If this could be achieved then it would be sim-
ple to evaluate invariant conditions by considering this set of
points. Thus if we could achieve this for our system of dif-
ferential equations then this would be ideal. Unfortunately
a method to do this infallibly to within a degree of accu-
racy for such a general system of differential equations sim-
ply does not exist. The vast amount of work on the subject
is a testament to this. A more realistic and desirable result
would be a set of simple restrictions that could be imposed
on the system of differential equations that could be easily
checked whilst allowing sufficient expressibility of differen-

tial equations. These restrictions could then guarantee that

an efficient and infallible method could be used to obtain a
solution to within a degree of accuracy (or at least the detec-
tion that no solution exists). However to the authors’ knowl-

edge and disappointment no such result exists. Numerical
methods are ideal if the system of differential equations is
known and fixed (to within certain parameters), since then

numerical methods can then be applied and guaranteed to

find the an approximate solution to within a degree of ac-
curacy. In our general setting we do not have this luxury
so numerical methods are not appropriate, we therefore con-
sider certain classes of systems of differential equations that
may be solved analytically whilst allowing for sufficiently
interesting planning problems.

8.2 Analytic Methods

A PNE can change as a polynomial function of time or even
a more complex function of time, due to more complex de-
pendencies arising in the expression on the right-hand-side
of the differential equation governing its evolution. In par-
ticular for a non-linear function to arise, the right-hand-side
must include one or more of the PNEs that appear as left-
hand-side elements (including the PNE that is governed by
this equation itself).

For example consider the simple case where a PNE,
varies with the rate of change given by:

df

dt
and f has a value offy for t = 0. Then the value of is
given by
f(t) = foe'.
The following proposition shows that the values taken by
PNEs are given by polynomials if certain restrictions are im-
posed on the differential equations.

Proposition 8.1 Let F' = { f1, fa,..., fn} be afinite set of
PNEs which are changing continuously on the intefoal’]
given by

dfi

dt _gi(f17f27"'afn) forall i € {1)27

;n}

division on its terms and division by a PNE inis not per-
mitted. If the rate of change of no PNE depends on itself
(either directly or indirectly) then the value of every PNE on
[0, T is given by a polynomial in.

Proof. Follows by induction on the dependency structure.

If the conditions in Proposition 8.1 were relaxed to allow
division by a functional expression then a PNE could take
values given by a natural logarithm. If the dependencies
could contain loops then exponential functions could occur
as shown above, as well as trigonometric functions and so

Notice that determination of the structure of the depen-
dency sets can be carried out automatically, using syntac-
tic analysis of the expression parse trees. To achieve this,
a graph is constructed using PNEs as vertices and with di-
rected edges between the expressions on the left of contin-
uous updates and those on the right of the same expression.
If this graph is acyclic (which is easily tested) then the dif-
ferential equations can all be solved with polynomials. The
only limitation is that this dependency analysis carried out
purely syntactically can be conservative, in that it might
be the case that dependencies actually simplify away if ex-
pressions can be symbolically manipulated to cancel terms.
Since this kind of manipulation is non-trivial, we must as-
sume that the dependencies discovered by syntactic analy-
sis could be more restrictive than the true dependencies. It
should also be observed that the dependency analysis must
be considered on a case-by-case basis: each interval over
which continuous change is active must be separately anal-
ysed because the domain might include expressions that, in
principle, allow cycles of dependency to be constructed, but
no cycles might actually appear amongst effects active in the
plan itself.

The complexity of the differential equations that can be
expressed far exceeds the practicality of solving them and
indeed the feasibility. It is therefore necessary to impose
certain restrictions on the differential equations to guarantee
that they can be solved.

8.3 Polynomial Root Finding

As discussed in section 7 to evaluate the truth values of in-
variants it is necessary to find the roots of a polynomial on
a given interval to within a given degree of accuracy. In the

case of an invariant consisting of a single comparison then
it is sufficient to determine only the existence or not of the

roots on a given interval.

There are many methods for finding the roots of polyno-
mials, such as Newton’s Method and Graeffe’s Method, to
name just two, which have their advantages and disadvan-
tages. It is a requirement AL to validate plans so it is
not acceptable to miss the roots of polynomials which then
may give the incorrect truth value of an invariant. We are
then only concerned with implementing methods that will
find the roots of polynomials infallibly (if it cannot guaran-
tee to find the roots on a given interval then this should be
detected).



ForvaL we have chosen to implement a method based on
Descartes’ Rule of Signs for several reasons: it provides an
infallible solution, it is efficient, and it is relatively simple to
implement. This method is subject to the polynomial con-
taining no repeated roots. Fortunately for any given polyno-
mial we can obtain another polynomial with the same roots
but without any repeated roots. This is achieved by divid-
ing the polynomial by the greatest common divisor of it-
self and its derivative. To find the greatest common divisor
of two polynomials the Euclidean (a.k.a. Euclid’s or divi-
sional) algorithm can be used, although the accuracy of the
coefficients must be handled carefully to avoid any spuri-
ous results due to rounding in the calculations. The method
that we have implemented is based on Rouillier and Zimmer-
mann’s algorithm (Rouillier & Zimmermann 2001), which is
itself based on algorithms from Collins and Akritas (Collins
& Akritas 1976).

8.4 Approximation and Power Series

On a given interval of time where there are a number of
PNEs changing continuously, as defined by a system of dif-
ferential equations, the PNEs may be given by arbitrary non-
linear functions of time as mentioned in section 6. These
non-linear functions of time may then appear in invariant
conditions requiring that the functions be analysed for roots
on a given interval, possibly to within a given degree of ac-
curacy. It is then desirable to approximate the function in
a form that can be easily used with numerical methods to
compute the roots. We, of course, want to approximate the
functions by polynomials, and it is a well known result that
any continuous function on a closed bounded interval can
be uniformly approximated on that interval by polynomials
to any degree of accuracy. The most well known method of
approximating continuous functions where the derivatives of
all orders exist is the use of Taylor series. The Taylor series
of a function can be used to obtain a polynomial approxi-
mation to within a given degree of accuracy. So, given a
non-linear function of time appearing in an invariant condi-
tion we can find a polynomial approximation and proceed
to check the invariant using polynomial root finding tech-
nigues. We have used this approaclvan to handle simple
exponential functions.

8.5 Plan Validation
Plan validation may be broken into segments of continuous

polynomial. So foreach=1,--- ,n we havef; expressed
in terms oft wheref; is continuous oif0, 7'] and has deriva-
tives of all orders.

Step Two For each atom in a proposition imwv which is

a comparison depending dn such ash,(t) > ha(t) for
some functions; andhs, we rearrange the comparison to
be zero on the right hand sidg; (t) — ho(t) > 0. Then
letting g(t) = h1(t) — ho(t) we can find a polynomial ap-
proximation forg to within a given degree of accuracy as
mentioned in section 8.4. Thus each comparison is given by
a polynomial and a boolean value to whether it is strict or
non-strict. (For equality comparisons the polynomial must
equal0 and will be considered as a boolean atom for the
purposes of this method).

Step Three For eachA in Inv we determine whether it
holds on(0, T') as follows:

e Booleanlf A is a boolean condition then its truth value is
immediate.

Comparisonlf A is a comparison with polynomiglthen

we can isolate the roots af (if any exist). The com-
parison holds or{0, T') if the end points of; are greater
than zero and no roots exist 0&, 7'). Evaluation ofyg is
needed at key points if0,7’) in the case of a non-strict
comparison (in case of repeated roots) or if the end points
evaluate to zero.

Conjunction If Aisaconjunctiomd = A{AAxA---ANA

for somek € N, then we determine ifi holds on(0,T")

by checking each conjunct in orddrto k, as given by
these rules (depending on whether it is a boolean, com-
parison etc.) to whether it holds for all values @h 7).

If one conjunct does not hold of), 7') then A does not
hold on (0, T") and the remaining conjuncts need not be
checked.

Disjunction If Ais adisjunctioldd = A;VAyV---V A
for somek € N, then we determine il holds on(0,T")
as follows. Firstly determine the valuesiah (0, T') that
A; holds on as given below, calld . If J; = (0,7) then
A holds on(0,T). If J; # (0,T) then we calculate the
values oft that A; holds on,J,, thenif J; U J, = (0,T)

then A holds on(0,T) and so on. fJ5_, J; # (0,T)
then A does not hold ort0, T').

Values oft in (0, T') that a disjunctd4; holds on:

change punctuated by a finite number of discrete changes, as® Booleanlf A; is a boolean value thed; holds on(0, T')

discussed in section 5. These segments are given by inter-
vals of time with the continuous change defined by a system
of differential equations (as in proposition 8.1y, and a

set of conditions/nv, which must hold over the interval.
Each interval is considered by its local time writtEn7].

To evaluate the conditions on the given interval we use the
following steps.

Step One In our answer we are assuming that we can find
an analytic solution to the system of differential equations.
To ensure we can find an analytic solution we impose cer-
tain conditions on the system of differential equations, such
as the conditions in proposition 8.1 so that the solutions are

if A; is true, otherwise it holds on the empty set.

e Comparison If A; is a comparison then from its corre-
sponding polynomial as given in step two, we firstly find
the roots in(0, 7). These roots are used to determine the
end points of a set of intervals that the comparison holds
on. If the comparison is strict then the intervals will be
open, otherwise the interval end points will be closed ex-
cluding0 andT'.

Conjunction If A; is a conjunctiord; = By ABa A--- A
B, for somek € N, then we determine the valuestdhat
A; holds on(0, T') as follows. In order, for eacB; deter-
mine the values of in (0, T) it holds on (by these meth-



ods) call itJ;. TheJ;'s are used to calcula{@,_, ., J;,
and so if there is a conjund?; such thaﬂizl___j J; =
then the remaining; are not calculated.

Disjunction If A; isaconjunctiomd; = B1VByV---VBy,
for somek € N, then we determine the valuesichat A;
holds on(0, T') as follows. In order, for eacB; determine
the values ot in (0, T) it holds on (by these methods) call
it J;. TheJ;'s are used to calculatg),_,. , J;, and so if
there is a conjuncB; such thanzlmj J; = (0,T) then
the remaining/; are not calculated.

For each conjunction and disjunction it is not always nec-
essary to consider every conjunct or disjunct, therefore in
order to save on calculation time we sort the conjuncts and
disjuncts into order of estimated computational effort.

9 Conclusion

This paper examines the problem of validation of plans with
continuous effects. We have implemented this approach in
an extension of/aL used in the 3rd IPC (Long, Cresswell,
& Howey 2003). Currently, to guarantee the validation of a
plan containing durative actions with continuous effects cer-
tain restrictions have to be met: all continuous effects must
be given by a polynomial or a simple exponential function
of time. This condition implies that the dependency graph
of the rates of change of PNEs has no loops except for self
dependent loops. This condition is automatically checked
andvaL identifies plans that it cannot correctly validate.

In section 8 a general framework was presented to handle
more complicated continuous effects; a more thorough ac-
count is in preparation. AlthoughiaL does not currently
handle a wide range of types of functions, methods have
been developed to do so and these methods have been imple-
mented in the handling of exponential functions. The scope
of the continuous functions thanL should handle can be
seen as a prerequisite to developing planners capable of pro-
ducing plans with those continuous functions. Currently, to
the authors’ knowledge, the few planners handling continu-
ous effects only consider linear effects. The next logical step
is to develop planners capable of handling non-linear effects
that are given by polynomials. This is now a much more
realistic target with the availability of an automatic plan val-
idation tool,vAL , capable of handling plans with polynomial
effects. The extension ofaL to handle yet more complex
functions at this stage would be considered overkill.

The validation of plans containing continuous effects is
an important first step in making planners capable of plan-
ning with languages that express them. Validation depends
on semantics and cannot be implemented without removing
ambiguities. The availability of a validation tool is a vital
first step for the community in progressing along this path.
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