
Strathprints Institutional Repository

Glassey, R. and Stevenson, G. and Richmond, M. and Nixon, P. and Terzis, S. and Wang, F.
and Ferguson, R.I. (2003) Towards a middleware for generalised context management. In: First
International Workshop on Middleware for Pervasive and Ad Hoc Computing, Middleware 2003,
2003-06-17, Rio de Janeiro, Brazil.

Strathprints is designed to allow users to access the research output of the University of Strathclyde.
Copyright c© and Moral Rights for the papers on this site are retained by the individual authors
and/or other copyright owners. You may not engage in further distribution of the material for any
profitmaking activities or any commercial gain. You may freely distribute both the url (http://
strathprints.strath.ac.uk/) and the content of this paper for research or study, educational, or
not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to Strathprints administrator:
mailto:strathprints@strath.ac.uk

http://strathprints.strath.ac.uk/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/9015108?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://strathprints.strath.ac.uk/
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk
http://strathprints.strath.ac.uk/

Glassey, R. and Stevenson, G. and Richmond, M. and Nixon, P.
and Terzis, S. and Wang, F. and Ferguson, R. I. (2003)
Towards a middleware for generalised context management.
In: First International Workshop on Middleware for Pervasive
and Ad Hoc Computing, Middleware 2003, 17 Jun 2003,
Rio de Janeiro, Brazil.

http://eprints.cdlr.strath.ac.uk/1958/

Strathprints is designed to allow users to access the research
output of the University of Strathclyde. Copyright © and Moral
Rights for the papers on this site are retained by the individual
authors and/or other copyright owners. Users may download
and/or print one copy of any article(s) in Strathprints to facilitate
their private study or for non-commercial research. You may not
engage in further distribution of the material or use it for any profit-
making activities or any commercial gain. You may freely distribute
the url (http://eprints.cdlr.strath.ac.uk) of the Strathprints website.

Any correspondence concerning this service should be sent to The
Strathprints Administrator: eprints@cis.strath.ac.uk

https://nemo.strath.ac.uk/exchweb/bin/redir.asp?URL=http://eprints.cdlr.strath.ac.uk/164/
https://nemo.strath.ac.uk/exchweb/bin/redir.asp?URL=http://eprints.cdlr.strath.ac.uk/
mailto:eprints@cis.strath.ac.uk

Towards a Middleware for Generalised Context Management

Richard Glassey, Graeme Stevenson, Matthew Richmond, Paddy Nixon, Sotirios Terzis,
Feng Wang, Ian Ferguson

Global and Pervasive Computing Group

Department of Computer and Information Sciences
The University of Strathclyde

Glasgow, Scotland.

{firstname.lastname}@cis.strath.ac.uk

Abstract

It is widely accepted in the Pervasive Computing community that contextual interactions are the key to the delivery
of truly calm technology. However, there is currently no easy way to incorporate contextual data into an application.
If contextual data is used, it is generally in an ad hoc manner, which means that developers have to spend time on
low-level details. There have been many projects investigating this area, however as yet none of them provide sup-
port for all of the key issues of dynamic composition and flexible representation of contextual information as well as
the problems of scalability and adaptability to environmental changes. In this paper we present the Strathclyde Con-
text Infrastructure (SCI), a middleware infrastructure for discovery, aggregation, and delivery of context information.

1. Introduction

Pervasive computing can broadly be defined as calm
technology that delivers the correct service to the cor-
rect user, at the correct place and time, and in the cor-
rect format for the environment with minimal user dis-
traction. It is widely assumed that the introduction of
technology can always bring benefits to the end user.
However, the user’s interactions with technology are
usually context-free (for example, the location, history,
network behaviour and loading, and user preferences
are not used to tailor the interaction). This results in
largely homogenous presentation of service and interac-
tion to the user, that in turn results in often cumber-
some, and sometimes unusable, services. It is widely
accepted in the Pervasive Computing community that
contextual interactions are the key to the delivery of
truly calm technology [1].

One demanding challenge for pervasive computing is
how to collect and process context data from sensors
and other sources. Most early researchers built their
solution in an ad hoc way to investigate the problem
space [2,3]. They had to consider everything, including
the details of reading sensor data, distributing sensor
data, and transforming sensor data into high-level data
as well as application adaptation behavior. From a soft-
ware engineering perspective, this makes developing

applications for pervasive computing very cumbersome.
Instead of exploring the potential of pervasive comput-
ing, designers have to spend time on low-level technical
details. Although recent projects have shown progress
in this area (see Section 3), no single proposed solution
covers all aspects of the problem.

In this paper we present an infrastructure for contextual
services. The focus is on the extraction, placement, and
management of context in the face of mobility. We
premise our work on an overlay network view that more
accurately mirrors the way pervasive services will be
deployed and used. We identify core concepts, such as
our notion of range, which abstracts over the varying
network and sensing technologies, while still providing
appropriate programming models and abstractions.

The paper is structured as follows: Section 2 provides a
summary of related work focused on systems issues in
context management; Section 3 describes the principles
underlying our architecture, introducing the core con-
cept of range and our models of location, mobility
and composition; Section 4 gives a detailed view of
aspects of the implementation; Section 5 provides a
sample application of the system; and Section 6 pro-
vides a view of the potentials and future directions of
the infrastructure.

2. Related Work

Realizing the limitation of an ad hoc solution, Dey et al
developed the Context Toolkit [4] to simplify the col-
lection and processing context data. In the framework,
there are three kinds of components: widgets, aggrega-
tors, and interpreters. The Context Toolkit provides
common functionality such as communication between
context components and encoding of context data. Con-
sequently application developers only need to add sen-
sor-specific code for each sensor and tailor context-
dependent processing code.

At design time, the developer has many choices when
he decomposes the task of gathering and processing
context information into a set of widgets, aggregators
and interpreters. But after the decision has been made
and these context components are built, they become
fixed. This means that the developer has to foresee all
the requirements of applications at design time, which is
unrealistic in pervasive computing environments where
changes are frequent.

Chen and Kotz have proposed Solar [5], an infrastruc-
ture for collecting and aggregating data in ubiquitous
computing environment. In their infrastructure, all the
communication between context components is through
events. Solar supports dynamic composition of context
components; where dynamic composition results from
changes in the environment. Besides the system-
provided context components, it also supports using
user-provided context components. It requires the ap-
plication developer to explicitly specify the composition
graph of context components. The infrastructure will try
to find the common parts of context processing graphs
of different applications and will reuse them, thus im-
proving scalability.

Since the foci in Solar are scalability and flexibility,
they have not addressed the issue of robustness. In per-
vasive computing, the same context may come from
several sources and the data sources may become avail-
able or unavailable due to user movement or component
failure. The requirement that the application developer
has to explicitly choose data source, context operators
and specify the context-processing graph will affect the
robustness of the context system.

iQueue from Cohen et al is a pervasive data composi-
tion framework. The iQueue framework “enables appli-
cations to focus on the semantics of composition by
facilitating the mechanics of composition” [6]. iQueue
aims to help application designers by handling the het-
erogeneity and diverse distribution of data sources that

are available for processing. An iQueue application
obtains its data from composers. A composer combines
data sources to produce a particular result. Data sources
are described by data specifications, which are descrip-
tions of data type required by the composer, rather than
explicitly where to find the data. A composer both pro-
duces values that it computes and accepts subscriptions
for notification of new values. iQueue supports the
continual rebinding of data specifications to the most
appropriate data sources in order to make the best use
of data available to the application at any given time.

It is widely accepted that relevant contextual informa-
tion may take numerous forms but ultimately tell us the
same thing. iQueue faces this issue when presented
with data sources that have widely different syntactic
descriptions but are semantically similar. For example
an iQueue application that has been developed to re-
quest location data from a network of door sensors can-
not take advantage of an environment that provides lo-
cation information using a wireless detection scheme.

Garlan et al have taken a novel approach to managing
pervasive computing environments with Project Aura
[7, 8]. Aura aims to “minimize distractions on a user’s
attention, creating an environment that adapts to the
user’s context and needs” [7]. The two broad concepts
that Aura wishes to achieve are pro activity and self-
tuning. Firstly Aura should pick the most suitable mode
of interaction for the current task whilst changes in
modes of interaction should appear seamless. Secondly,
Aura is context aware, i.e. it should know about its en-
vironment and take appropriate actions e.g. hide sensi-
tive information. Thirdly Aura has a notion of predict-
ing what task the user is trying to achieve. This is likely
to be the most difficult task within the project and will
require more than a technological solution. Aura pro-
poses an infrastructure that moulds itself to the user’s
task or needs with little need for user intervention. It
appreciates that human attention is a limited resource
especially in mobile situations. It however does not
clearly address the problems of scalability that are in-
herently important in pervasive computing environ-
ments.

While investigating the above projects, we have ob-
served the following open issues in the management of
pervasive computing environments that we wish to ad-
dress with our infrastructure:

• Dynamic composition of context entities;
• Control over the quality and structure of con-

text composition;

• Adaptivity to environmental changes (e.g.
component failure);

• Flexible and extensible representation and re-
trieval of contextual information; and

• Scalable infrastructure.

3. SCI Architecture

The Strathclyde Context Infrastructure (SCI) is or-
ganised into two distinct layers. The upper layer of the
infrastructure is a network overlay of partially con-
nected nodes and is referred to as the SCINET (see
Figure 1). The lower layer of the infrastructure concerns
the contents of each node, which consists of entities
(People, Software, Places, Devices and Artifacts) re-
sponsible for producing, managing and using contextual
information, and is referred to as a range.

The SCINET is concerned with managing interactions
that take place between two or more ranges in order to
provide appropriate contextual information. It is likely
entities that exist in one range may be interested in con-
suming contextual information from entities in other
ranges.

The network overlay approach provides the infrastruc-
ture with favourable scalability and robustness charac-
teristics that would have not been possible with a hier-
archical arrangement of nodes. Routing through an
overlay network avoids any bottlenecks created when
using hierarchical infrastructures whilst achieving com-
parable performance [9]. It also provides the necessary
level of abstraction in order for entities to communicate
across many heterogeneous network types using GUIDs
rather than traditional addressing schemes. The
SCINET can be created via Range discovery, requiring
little initialisation. Alternatively it may be desirable to
group relevant Ranges together, such as those operating

within an individual building or across a larger area in
order to control access and increase performance.

A Range is defined as an area that can be described in
logical and/or physical terms. A Range can be can be
bounded by a physical area (a collection of adjacent
rooms, an entire floor of a building) or by the effective
operating range of a particular network type (e.g. a
wireless network). By this definition both physical enti-
ties, such as doors and rooms, network availability and
software components can be represented under the same
common model.

Each Range is governed by it’s own individual Context
Server (CS), the hub for the Range. A CS is consid-
ered to be a secure, always on central server for man-
agement of contextual information within a Range. We
believe that the complexity and timely response re-
quired when providing contextual information justifies
the use of a centralised service. This approach moves
the responsibility regarding the capturing and process-
ing of contextual information away from the entities that
exist within the infrastructure.

3.1 Structure of a Range

This section demonstrates the mechanisms for managing
and providing contextual information within a Range.
Each Range contains a single Context Server, which
manages three types of components; Context Entities,
Context Utilities and Context Aware Applications (see
Figure 2).

The Context Server (CS) is the most important com-
ponent of a Range. It manages the other components
and provides the means of communicating with other
Ranges in the SCINET. It maintains a central store of
entity information as well as managing the context utili-
ties operating within its range. The CS provides the

Figure 1: SCINET

Figure 2: Range

access point for Context Aware Applications to interact
with the infrastructure.

A Context Entity (CE) is a lightweight software com-
ponent for representing an entity within the infrastruc-
ture. A CE allows its entity to communicate by means
of producing and consuming typed events. This abstrac-
tion allows non-computational entities to be included
within the scope of the infrastructure. A CE maintains a
Profile for its entity that contains meta-data describing
the entity. For entities that provide a service, the CE
may also maintain an Advertisement describing the
services that this entity can provide to other entities.
All CE’s are registered within a range when they arrive
and deregistered upon departure. While active within a
Range, the Range’s Context Server manages both the
CE’s Profile and Advertisements.

A Context Aware Application (CAA) is an application
that has the ability to pull or be pushed contextual in-
formation to or from the infrastructure. A CAA com-
municates with the CS by way of a Query as described
later. Indeed the CAA may itself provide additional
information regarding its current context. For example,
a CAA can make use of a users Profile stored in their
CE to determine previous behaviour or preferences in
order to provide a more useful service.

The Context Utilities (CU) are set of specialist services
that help the CS in the management of a Range. Whilst
there is possibility for many types of CU, a core set
exists in all Ranges.

• Range Service: Responsible for detecting the
arrival into and departure of entities from a
Range.

• Query Resolver: Provides the means to take a
high level query and decompose it into a useful
configuration of Context Entities.

• Location Service: Handles the resolution of lo-
cation related tasks.

• Profile Manager: Provides access and update
abilities to Context Entities Profiles.

• Event Mediator: Manages the establishment,
maintenance and removal of event subscrip-
tions between Context Entities and Context
Aware Applications.

• Registrar: Maintains an accurate view of all
entities within the current Range.

3.2 Model of Composition

In order to provide flexibility with regards to the provi-
sion of context, SCI has been designed to support data

composition by means of forming configurations. A
configuration is an event subscription graph between
entities where the inputs to one CE are provided by the
outputs of others. To achieve this, we use query data
along with input and output information obtained from
CE Profiles to perform type matching. When this proc-
ess is complete, setting up subscriptions between CE’s
to their data sources creates the required graph. This
feature of our infrastructure allows us to aggregate dif-
ferent types of contextual information in order to pro-
vide a more useful service to applications.

To illustrate a configuration, consider a CAA on a mo-
bile device that displays a building floor map and can
visually represent the path from one location to another.
Now imagine the scenario where a user, Bob, wishes to
display the path between himself and his colleague
John. Normally, you would require a purpose built ser-
vice to provide such information but our infrastructure
facilitates the creation of a configuration from basic
CEs to accomplish the same task. An outline of the
steps involved is as follows:

• The query generated by the CAA (pathApp)
requests the Path between Bob and John

• The query resolver used by the Context Server
searches CE profiles for entities that provide
path information as an output.

• A CE (pathCE) is found that meets this re-
quirement but requires two locations as inputs.

• The query resolver then searches for CEs that
are able to provide the locations of the re-
quired entities (John and Bob).

• An objLocationCE is found that takes an entity
ID as an input and produces location informa-
tion as an output. When this entity was added
to the system it was set up to subscribe to all
events emanating from door sensors (doorSen-
sorCEs).

• The doorSensor CEs produce events indicating
when an object (equipped with ID tag) passes
through them

Once a complete configuration has been discovered (i.e.
down to the sensor/data level) to fulfill a query’s re-
quirements, the Context Server sets up event subscrip-
tions between the CEs involved (see Figure 3).

Because the required information is delivered to the
CAA through a dynamic subscription graph, any
changes in state (i.e. the generation of new events) will
cause updated information to be delivered to the appli-
cation. For example, if John walks through a door, the
event generated by the doorSensorCE will cause the

objLocationCE to dispatch a new event, which in turn
will result in the pathCE dispatching a new event to the
pathApp. This means that the pathApp will always have
correct information regardless of environmental
changes.

3.3 Model of Location

As discussed earlier, a Range can be either described
physically, logically or indeed both where necessary.
This concept allows for a wider scope of contextual
environments to be modelled instead of imposing a
fixed model. Two contrasting examples of a Range are
as follows. A collection of labs and offices forming a
research area can be considered a Range. An open
space within a campus, not restricted by walls or build-
ings is also a candidate for a Range.

It is inevitable that the choice of such an abstract means
of representing the Range will have serious implications
for the choice of an appropriate location model. With
this in mind we propose that it is preferable to support
many types of location model and interoperate between
them if necessary. For example it may be necessary to
convert geometric information to a hierarchical model
or similarly convert network signal strength to a geo-
metric position [7]. To facilitate this it will be neces-
sary to develop an intermediate location language.

3.4 Model of Mobility

In a dynamic environment entities will move in and
between Ranges throughout their lifecycle. To allow
for this mobility each range monitors internal activity as
well as activity at its boundaries in order to detect the
arrival and departure of entities. For example, a user
wearing an id tag arriving or leaving their range by
walking through a door equipped with a sensor for de-

tecting id tags would be discovered. Similarly a user
with a W-LAN equipped device could be detected leav-
ing the effective operating range of a wireless network.

4. Current Status

We are currently developing a prototype of the infra-
structure using Java along with a hybrid communication
model (a combination of distributed events and point to
point communication) for entity interaction. CE Profiles
consist of simple Metadata about entity inputs and out-
puts while Advertisements take the form of ‘well
known’ interfaces in order that CAAs may transfer ser-
vice specific data to CEs.

4.1 Component Design

Figure 4 shows the high level design of the CE’s and
CAAs. Both entities share the RegisterInterface in order
to facilitate communication with a Range Service (see
below) while CAA’s include the ConsumeInterface for
dealing with events (in response to a query). The Ser-
viceInterface, implemented by the CE represents the
‘well known’ Advertisement interface discussed above.
At the Concrete level, CE or CAA developers need only
to deal with the service they provide or the events they
receive. The work of integrating components into the
system, query submission and event distribution is all
handled internally by the infrastructure.

4.2 Entity Discovery

An important aspect of a dynamic environment is the
way in which components are detected and integrated.
Figure 5 shows how this is done within the SCI infra-

Figure 4: Architectural Design

Figure 3: Configuration of CEs

structure. When a Context Server starts up, it deploys a
Range Service (RS) to all the machines within its juris-
diction. The RS performs the task of listening for CAAs
or CEs starting up in order to inform them about the
Range’s Registrar. The CAA/CE can then contact the
Registrar in order to gain access to the infrastructure.
Upon completion of the registration process, the Regis-
trar will return the Context Server details to a CAA (in
order to submit queries) or the Event Mediator details to
a CE (in order to publish events). As mentioned above,
this interaction takes place at the abstract class level in
order that the application designer need only deal with
component functionality.

4.3 Query Composition

Currently we use a simple query model to support re-
quests for information from CAAs. A high level over-
view of this model can be seen in figure 6. There are
five sections central to the formation of a query. The
first four are as follows:

• What: Describes what this query is looking for,
be it an entity type (e.g. a printer), a named en-
tity (identified by a GUID) or information fit-
ting a pattern (e.g temperature in degrees Cel-
sius).

• Where: The location (if applicable) of the in-
formation required be it explicit (e.g. Room
10.01) or implicit (e.g. closest to me).

• When: The temporal aspect of the query, the
conditions under which the configuration
should be executed.

• Which: The desired qualitative aspects govern-
ing selection from multiple entities (e.g. short-
est time to service completion) .

The final section, the mode, indicates the intent of the
query. The infrastructure supports four types of query in
order to meet possible user needs. These are:

• Profile request: In order to obtain information
about CEs.

• Event subscription: To subscribe to a piece of
information and be updated with any changes.

• One-time subscription: As above, but the sub-
scription is cancelled after the CAA receives
an event.

• Advertisement request: The interface to com-
municate with a service

5. CAPA: An Example Implementation

To illustrate a use of our infrastructure, we present
CAPA: a Context Aware Printing Application that, as
the name suggests, uses the SCI infrastructure to aid
users in printing documents.

Consider the scenario where Bob is traveling to work by
train. Bob loads CAPA on his PDA, which informs him
that he is currently not in a range. Bob uses the applica-
tion to queue several print jobs and tells the application
that he wishes the documents printed to the closest
printer when he reaches Room L10.01 (his office). As
he is not currently within a range, the application stores
the query for future use.

Bob finally reaches the university and enters the Living-
stone Tower. The network base station in the lift lobby
detects Bob’s PDA which is then registered with the
infrastructure. Once CAPA is informed that it has a
connection to SCI, the previously stored query is sub-
mitted to the lobby range’s Context Server. The Context
Server looks at the query and identifies that the query
should be forwarded to the Context Server for Level
Ten. Once this happens, the Level 10 Context Server

<query>
 <query_id> </query_id>
 <owner_id> </owner_id>
 <what> </what>
 <where> </where>
 <when> </when>
 <which> </which>
 <mode> </mode>
</query>

Figure 6: Query Model

Figure 5: Discovery Sequence

analyses the query, builds a configuration (X) to pro-
vide an answer and stores it until its temporal con-
straints are satisfied. The context server then ‘listens’
for Bob entering L10.01.

When Bob reaches his office, the door sensor generates
an event indicating that Bob has entered (Bob is wear-
ing an electronic ID badge). The Context Server re-
ceives this event and proceeds to execute configuration
X. Once complete, P1 is identified as the closest printer
to Bob (see Figure 7) and CAPA is informed. CAPA
then contacts the Context Entity for printer P1 and
sends it the documents to print.

Meanwhile, John, whose office is next to Bob’s, wants
to quickly print a document before he leaves to give a
lecture. He loads the CAPA software on his computer
and requests his document be printed to the closest
printer with no queue. As before, the Context Server
builds a configuration (Y) to answer the query. During
execution, the following things are found:

• Printer P1 is currently being used by Bob
• Printer P2 is unavailable due to being out of

paper
• Printer P3 is behind a locked door to which

John has no access

Printer P4 is identified as being the closest free printer
with no queue and CAPA is informed and proceeds as
before. John can now pick up his printout and get to his
lecture on time.

6. Conclusions and Future Work

We propose a comprehensive infrastructure to simplify
the development of context-aware applications. Appli-
cations can use the provided context query language to

express their context requirements. The infrastructure
will compose the context processing components and
data sources automatically in order to deliver the re-
quired context. It will also adjust the composition of
these components dynamically in the case of environ-
ment changes, thus improving service and fault toler-
ance while minimising user intervention. Although only
in the early stages of development, many issues have
arisen that will require further study:

1. The topology, and management, of the overlay

network and the consequent placement of computa-
tion and data for timely response to events [9];

2. The structure and form of a context query language
which encapsulates composition operators, notions
of semantic equivalence, partial equivalence, rele-
vance and contracts on quality of the context in-
formation;

3. Autonomic behaviour has to be supported. This
requires the use of appropriate architectural de-
scription mechanisms [10] and adaptation ap-
proaches. We consider the implications of provid-
ing bounds on acceptable adaptation, the scalability
of adaptation in the face of large number of adapt-
ing entities and the overall stability of the system as
critical;

4. Appropriate location models that capture the geo-
metric, topological, and logical spatial relations
have to be developed to allow fine grained control
over the interaction of entities with the real world
and the user;

5. Programming primitives have to be developed that
allow the description of behaviours appropriate for
pervasive systems. Such primitives will have to
capture notions of partial failure, quality of infor-
mation, availability of service, capabilities, user
preference, domain of interaction, and mobility.

In conclusion, to enable the exploration and develop-
ment of pervasive computing systems we have pre-
sented here the development of a general context gath-
ering and management infrastructure. We describe an
open source infrastructure that supports context gather-
ing and storage.

Acknowledgements: This work is supported by the EU
FP5 GLOSS Project (IST-2000-26070), in collabora-
tion with Trinity College Dublin, Université Joseph
Fourier, and The University of St Andrews, and through
research student scholarships from the University of
Strathclyde.

Figure 7: Printer Selection

References

[1] Mark Weiser, Some Computer Science Issues in

Ubiquitous Computing. Communications of the
ACM 36(7): 74-84 (1993).

[2] Long, Sue, Rob Kooper, Gregory D. Abowd and
Christopher G. Atkeson, Rapid prototyping of mo-
bile context-aware applications: The Cyberguide
case study. In the Proceedings of the 2nd ACM In-
ternational Conference on Mobile Computing and
Networking (MobiCom '96), pp. 97-107.

[3] Abowd, Gregory D., Christopher G. Atkeson, Ja-
son Hong, Sue Long, Rob Kooper and Mike
Pinkerton. Cyberguide, A mobile context-aware
tour guide. ACM Wireless Networks 3(5): pp.
421-433. October 1997.

[4] Anind K. Dey, Daniel Salber and Gregory D. Ab-
dowd, An Architecture to Support Context-Aware
Applications. Submitted for review to UIST’
1999.

[5] Guanling Chen and David Kotz, Supporting Adap-
tive Ubiquitous Applications with the Solar Sys-
tem. Technical Report TR2001-397, May, 2001.

[6] Norman H. Cohen, Apratim Purakayastha, Luke
Wong, and Danny L. Yeh, iQueue: a pervasive
data-composition framework. The 3rd Interna-
tional Conference on Data Management, Singa-
pore, Janauary 8-11, 2002.

[7] David Garlan, Daniel P. Siewiorek, Asim
Smailagic and Peter Steenkistie, Project Aura:
Toward Distraction-Free Pervasive Computing.
IEEE Pervasive Computing Magazine, April-June
2002.

[8] Joao Pedro Sousa and David Garlan, Aura: An
Architectural Framework for User Mobility in
Ubiquitous Computing Environments. 3rd Work-
ing IEEE/IFIP Conference on Software Architec-
ture, Montreal, 2002.

[9] A Dearle, G.N.C Kirby, R Morrison, A McCarthy,
K Mullen, Y. Yang, R.C.H Connor, P. Welen, and
A. Wilson, Architectural Support for Global
Smart Spaces. LNCS 2574, Proceedings of the 4th
International Conference on Mobile Data Man-
agement, Springer Verlag, pp 153-164, 2003.

[10] P A Nixon, S Terzis, F Wang, S A Dobson, Archi-
tectural Implications for Context Adaptive Smart
Spaces. Proceedings of IEEE International work-
shop on Networked Appliances, pp 156-161.
2002. IEEE Press.

