
Strathprints Institutional Repository

Coles, A.I. and Smith, A.J. (2004) Marvin: macro-actions from reduced versions of the instance.
Working paper. University of Strathclyde, Glasgow, Scotland.

Strathprints is designed to allow users to access the research output of the University of Strathclyde.
Copyright c© and Moral Rights for the papers on this site are retained by the individual authors
and/or other copyright owners. You may not engage in further distribution of the material for any
profitmaking activities or any commercial gain. You may freely distribute both the url (http://
strathprints.strath.ac.uk/) and the content of this paper for research or study, educational, or
not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to Strathprints administrator:
mailto:strathprints@strath.ac.uk

http://strathprints.strath.ac.uk/

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/9015104?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://strathprints.strath.ac.uk/
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk
http://strathprints.strath.ac.uk/

Coles, A. I. and Smith, A. J. (2004) Marvin: macro-actions from
reduced versions of the instance. Working Paper. Department of
Computer and Information Sciences, University of Strathclyde,
Glasgow, Scotland.

http://eprints.cdlr.strath.ac.uk/1954/

Strathprints is designed to allow users to access the research
output of the University of Strathclyde. Copyright © and Moral
Rights for the papers on this site are retained by the individual
authors and/or other copyright owners. Users may download
and/or print one copy of any article(s) in Strathprints to facilitate
their private study or for non-commercial research. You may not
engage in further distribution of the material or use it for any profit-
making activities or any commercial gain. You may freely distribute
the url (http://eprints.cdlr.strath.ac.uk) of the Strathprints website.

Any correspondence concerning this service should be sent to The
Strathprints Administrator: eprints@cis.strath.ac.uk

https://nemo.strath.ac.uk/exchweb/bin/redir.asp?URL=http://eprints.cdlr.strath.ac.uk/164/
https://nemo.strath.ac.uk/exchweb/bin/redir.asp?URL=http://eprints.cdlr.strath.ac.uk/
mailto:eprints@cis.strath.ac.uk

Marvin: Macro Actions from Reduced Versions of the Instance
Andrew Coles and Amanda Smith

Department of Computer and Information Sciences,
University of Strathclyde,

Livingstone Tower,
26 Richmond Street,

Glasgow,
G1 1XH

email: firstname.lastname@cis.strath.ac.uk

Abstract

Marvin is a forward-chaining heuristic-search planner.
The basic search strategy used is similar to FF’s en-
forced hill-climbing with helpful actions (Hoffmann &
Nebel 2001); Marvin extends this strategy, adding extra
features to the search and preprocessing steps to infer
information from the domain.

Introduction to Marvin
Marvin is a forward-chaining domain-independent planner
that uses a relaxed-plan heuristic to guide its search. The
name Marvin stands for Macro-Actions from Reduced Ver-
sions of the INstance and gives some insight into the way
in which the planner works: it attempts to create a reduced
instance of the problem with which it is presented, solve
this smaller instance, and then use the solution to assist with
solving the original problem.

Basic Search Strategy

The basic search used is similar to FF’s enforced hill-
climbing with helpful actions (Hoffmann & Nebel 2001);
Marvin extends this strategy, adding extra features to the
search and preprocessing steps to infer information from the
domain. This section details the modifications made to the
search strategy.

When plateaux are encountered Marvin resorts to best-
first search as opposed to breadth-first search—in prac-
tise this improves its performance but may increase the
makespan of the plan.

To reduce the overheads incurred by memoising already-
visited states no record is kept of visited states if search
is progressing normally; however, should a plateau be en-
countered, the differences between states on the plateau and
the state at the start of the plateau are memoised, and states
whose difference has already been memoised are pruned.

To prune action choices Marvin constructs groups of sym-
metric objects (objects with identical properties), extracts
one exemplar from each group and then prunes actions
which involve any entities which are not the exemplar for
their group; for example, in the gripper domain, if two balls
are symmetrical in a given state it will only consider apply-
ing the pickup action to one of them.

Marvin can exploit the potential for concurrency in solu-
tion plans by considering, at each choice point, all of the
actions that could be applied at the current time point (t) be-
fore considering the actions that could be applied at the next
time point (for non-temporal domains this is simplyt + 1).
This approach increases the branching factor and could thus
become very expensive during periods of exhaustive search;
hence, during such periods the concurrency reasoning is sus-
pended until the plateau is escaped. The steps to escape a
plateau are then post-processed to reintroduce concurrency
where possible.

Instance Reduction
Before attempting to solve the problem instance with which
it is presented, Marvin creates a smaller instance of the prob-
lem. This approach was motivated by the observation that
small instances can be solved quickly and their solutions of-
ten contain action sequences similar to those in solutions for
larger problem instances. Any knowledge that can be ob-
tained inexpensively by solving a smaller instance will be
valuable in solving the larger instance that was given to the
planner.

Smaller instances are created using symmetry and almost-
symmetry. Two objects are symmetric if, and only if, they
share the same predicates in the initial and goal states: this is
the definition of symmetry used previously by STAN version
3 (Fox & Long 1999). In many domains this reduction does
not discard sufficient entities to create a significantly smaller
problem, hence further pruning is desirable; this is achieved
through the use of almost-symmetry. In this context two
objects are almost symmetric if, and only if, the predicates
defining them in the initial and goal state are of the same
type and they differ only in groundings of one or more ar-
guments of a the predicates. For example, in the problem
below (where all predicates involving package1 and pack-
age2 are shown):

Initial State
at package1 loc1
at package2 loc2
. . .

Goal State
at package1 loc3

at package2 loc4
. . .

the two packages are ‘almost-symmetric’: they only differ
by one binding in the initial state (the location they are at)
and one in the goal state (their destination).

Using this definition of almost-symmetry the symmetry in
the solution plan for these two entities will be captured, as
well as strict symmetry in the problem: if two objects share
the same predicates in the initial state (even if the ground-
ings of these predicates differ) it is likely that the same, or
a similar, plan can be used to achieve the required goals for
both objects.

When the extraction of groups of related objects is com-
pleted a new smaller problem instance is created by taking
one exemplar from each related group and including only
the predicates whose entities are wholly contained within
this set of exemplars; the smaller instance is then solved, us-
ing the search algorithm described in the previous section,
to generate a solution plan.

The plan generated to solve the smaller instance is pro-
cessed to produce macro-actions. Partial-order lifting is used
to extract independent threads of execution in the plan; af-
ter extraction independent threads are made into individual
macro-actions and are added to the list of actions to be used
in planning to solve the original instance. Whilst adding
actions does increase the branching factor the additional ac-
tions often assist in the planning process as they encapsulate
a previously-successful strategy for solving a similar prob-
lem.

It should be noted that for some domains—for example,
freecell—the reduced problem is unsolvable; in such situ-
ations it is usually the case that the problem is proven un-
solvable very quickly: the goals do not appear in the re-
laxed planning graph. For situations in which the goals are
present in the relaxed planning graph it is necessary to in-
troduce an upper bound on the plan length allowed to ensure
that an unreasonable amount of time is not spent solving the
smaller instance; in practise this does not prevent Marvin
from generating useful macro-actions as preliminary exper-
iments show large macro-actions are often too specialised to
a certain task and are therefore not reusable.

Plateau-Escaping Macro-Actions
Solutions to planning problems often contain a given se-
quences of actions more than once; if finding this reused
action sequence corresponds to exhaustive search a lot of
unnecessary search effort is expended in repeatedly attempt-
ing to find this action sequence. Marvin attempts to im-
prove on the plateau behaviour of previous forward-chaining
planners by memoising the action sequence which success-
fully lead from the start of a plateau to a strictly-better state;
these memoised action sequences form what are known as
plateau-escaping macro-actions. To reduce the overheads
of having a greater number of actions to consider at each
state these plateau-escaping macro-actions are only consid-
ered when plateaux are encountered: in normal search only
the original actions from the domain, and any actions de-
rived from the solution to the reduced instance, are used.

When solving the reduced instance any plateau-escaping
macro-actions devised are stored for use when later solving
the original problem; this has the useful side-effect of dis-
covering efficacious escape macros with less computational
effort—it is less computationally expensive to perform the
plateau-escaping search on the reduced instance of the prob-
lem. Furthermore, since the reduced instance is derived from
the original problem instance, it is often the case that the
heuristic breaks down when solving the reduced instance in
some of the places it breaks down when solving the original
problem instance.

As with the macro-actions created from the reduced ver-
sion of the instance the plateau-escaping macro-actions have
a partial order lifted out, the aim of which is to improve
the concurrency within them, reducing the makespan. Once
this processing has taken place the segment of plan which
escaped the plateau is replaced with the macro-action: the
macro-action may exploit concurrency which the original
plan segment did not.

Transformational Operators
Transformation operators are those operators that transform
a certain property of an object but leave other objects un-
changed; for example, the action move in the driverlog do-
main:

pre:
at (truck loc1)
linked(loc1 loc2)

add:
at (truck loc2)

del:
at (truck loc1)

transforms the ‘at’ property of trucks. The reusability of
macro-actions is adversely affected by transformation op-
erators, as they often appear in chains of varying lengths;
consequently, abstraction of the length of these chains is re-
quired if the macro-action is to be as reusable as possible.

Generating sequences of transformational operators is a
shortest path problem, which can be solved by a specialist
solver. Marvin currently recognises transformational oper-
ators by looking for a common fingerprint; however, in the
future TIM (Long & Fox 2000) will be used to provide a
method through which these operators can be identified in a
more-robust manner.

When transformational operators have been identified an
all-pairs shortest-path reachability analysis is done, during
which the best route between two states is stored; then, static
predicates for all pairwise reachable states are added to the
initial state so that Marvin can plan as if the states were all
linked. When an action is later selected for application the
main algorithm simply asks the sub-solver for the action se-
quence required to achieve the desired effect.

ADL
Marvin supports ADL natively; that is, without creating dis-
tinct STRIPS actions for each of the possible ADL action

Figure 1: Example Satisfaction Tree

groundings. ADL support was written for the purpose of
solving the competition ADL domains—without it, due to
the nature of the STRIPS compilations provided, Marvin
would not have been able to construct any reusable macro
actions.

ADL preconditions are dealt with through the logical re-
duction of each operator’s preconditions to form a ‘Satisfac-
tion Tree’. The idea is to create a tree where the leaves are
predicates (or negations of predicates) and the internal nodes
are either conjunction or disjunction nodes (AND or OR);
then, predicates either help a given ground action become
applicable (if they appear as positive predicate leaves in its
satisfaction tree) or hinder its applicability (if they appear as
negative predicate leaves). The tree is formed by recursively
applying the following rules to each action’s preconditions:

(∀xf(x)) ⇒ (f(x0) ∧ . . . ∧ f(xn))
(∃xf(x)) ⇒ (f(x0) ∨ . . . ∨ f(xn))
(a ⇒ b) ⇒ (¬a ∨ b)
(¬(T0 ∧ . . . ∧ Tn)) ⇒ (¬T0 ∨ . . . ∨ ¬Tn)
(¬(T0 ∨ . . . ∨ Tn)) ⇒ (¬T0 ∧ . . . ∧ ¬Tn)

The first two of these simply compile out the existential
quantifiers dynamically; the third is a logical reformation of
the implies operator; the final two, forms of De Morgan’s
duality law, are used to force any negation into the subex-
pressions, and eventually to the predicates.

Figure 1 shows an example satisfaction tree for an action
in an imaginary domain in which objects can only have a
certain action applied to them if they are being held and are
either blue or green.

ADL effects are handled in a similar manner to precon-
ditions, in that they form ‘Effect Trees’; there are differ-
ences, however, due to the differing semantic structure be-
tween Preconditions and Effects: Effect Trees do not con-
tain OR nodes; instead they introduce ‘When’ nodes. When
nodes have two child branches - a condition branch (which
is, itself, a satisfaction tree) and an effect branch (which is
an effect tree). When an action is grounded any uncondi-
tional effects and effects contingent only on static predicates
are associated with the ground action instance; sub-actions
are then created to encapsulate any effects contingent on dy-
namic information.

The relaxed planning graph in Marvin is modified to ac-
count for the negative preconditions required by ADL. Be-
fore the ADL support was implemented a spike (Long & Fox
1999) for positive predicates was used; to build a relaxed
planning graph forward from a given state the spike was ini-
tialised to contain the predicates in a given state and then
grew as applied relaxed actions added predicates to it. To
support negative preconditions a second spike was created;
this spike is initialised to be empty and then any predicate
present in the initial fact layer which is then, later, deleted
is added to it. A negative precondition is then satisfied at
a given layer in the relaxed planning graph either if it isn’t
present in the initial fact layer or it has since appeared in the
negative fact spike.

Future Work
In the future Marvin will be extended to use the generic-
type recognition knowledge provided by TIM (Long & Fox
2000). This will, amongst other things, improve its sup-
port for transformational operators by providing a flexible
framework for their identification; also, it raises the possibil-
ity of using generic-type-derived heuristics to improve the
discrimination between states when the relaxed plan graph
heuristic reaches a plateau.

Marvin will also be extended to deal with Temporal Plan-
ning: as it already uses macro-actions and concurrency,
much of the framework is already complete.

References
Fox, M., and Long, D. 1999. The detection and exploita-
tion of symmetry in planning problems. InIJCAI, 956–961.
Hoffmann, J., and Nebel, B. 2001. The FF planning sys-
tem: Fast plan generation through heuristic search.Journal
of Artificial Intelligence Reserach14:253–302.
Long, D., and Fox, M. 1999. Efficient implementation of
the plan graph in STAN.Journal of Artificial Intelligence
Research10:87–115.
Long, D., and Fox, M. 2000. Automatic synthesis and
use of generic types in planning. InArtificial Intelligence
Planning Systems, 196–205.

