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Abstract

Stan is a Graphplan-based planner, so-called because it uses a variety of STate ANal-

ysis techniques to enhance its performance. Stan competed in the AIPS-98 planning

competition where it compared well with the other competitors in terms of speed, �nding

solutions fastest to many of the problems posed. Although the domain analysis techniques

Stan exploits are an important factor in its overall performance, we believe that the speed

at which Stan solved the competition problems is largely due to the implementation of

its plan graph. The implementation is based on two insights: that many of the graph

construction operations can be implemented as bit-level logical operations on bit vectors,

and that the graph should not be explicitly constructed beyond the �x point. This paper

describes the implementation of Stan's plan graph and provides experimental results which

demonstrate the circumstances under which advantages can be obtained from using this

implementation.

1. Introduction

Stan is a domain-independent planner for STRIPS domains, based on the graph construc-
tion and search method of Graphplan (Blum & Furst, 1997). Its name is derived from the
fact that it performs a number of preprocessing analyses, or STate ANalyses, on the domain
before planning, using the Type Inference Module Tim described by Fox and Long (1998).

Stan competed in the AIPS-98 planning competition and achieved an excellent overall
performance in both rounds. The results of the competition, which can be found at the
URL given in Appendix A, show that Stan was able to solve some problems notably
quickly and that it could �nd optimal parallel solutions to some problems which could not
be solved optimally by any other planner in the competition, for example in the Gripper
domain. The problems posed in the competition did not give Stan much opportunity to
exploit its domain analysis techniques, so this performance is due mainly to the underlying
implementation of the plan graph that Stan constructs and searches. A more detailed
discussion of the competition, from the competitors' point of view, is in preparation.

The design of Stan's plan graph is based on two insights. First, we observe that action
pre- and post-conditions can be represented using bit vectors. Checking for mutual exclusion
between pairs of actions which directly interact can be implemented using logical operations
on these bit vectors. Mutual exclusion (mutex relations) between facts can be implemented
in a similar way. In order to best exploit the bit vector representation of information
we construct a two-layer graph called a spike which avoids unnecessary copying of data
and allows layer-dependent information about a node to be clearly separated from layer-
independent information about that node. The spike allows us to record mutex relations
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using bit vectors, making mutex testing for indirect interaction much more e�cient (we
distinguish between direct and indirect interaction in Section 2.1). Second, we observe that
there is no advantage in explicit construction of the graph beyond the stage at which the
�x point is reached. Our plan graph maintains a wave front which keeps track of all of the
goal sets remaining to be considered during search. Since no new facts, actions or mutex
relations are added beyond the �x point these goal sets can be considered without explicit
copying of the fact and action layers. The wave front mechanism allows Stan to solve very
large problem instances using a fraction of the time and space consumed by Graphplan and
Ipp (Koehler, Nebel, & Dimopoulos, 1997). For example, using a heuristic discussed in
Section 5.1, Stan can solve the 10-disc Towers of Hanoi problem (a 1023 step plan) in less
than 9 minutes.

In this paper we describe the spike and wave front mechanisms and provide experimental
results indicating the performance advantages obtained.

2. The Spike Graph Structure

Graphplan (Blum & Furst, 1997) uses constraint satisfaction techniques to search a lay-
ered graph which represents a compressed reachability analysis of a domain. The layers
correspond to snapshots of possible states at instants on a time line from the initial to the
goal state. Each layer in the graph comprises a set of facts that represents the union of
states reachable from the preceding layer. This compression guarantees that the plan graph
can be constructed in time polynomial in the number of action instances in the domain.
The expansion of the graph, from which solutions can be extracted, is partially encoded in
binary mutex relations computed during the construction of each layer. STAN implements
an e�cient representation of the graph in which a wave front, discussed in Section 4, further
supports its compression. In Graphplan-style planners the search for a plan, from layer k,
involves the selection and exploration of a collection of action choices to see whether a plan
can be constructed, using those actions at the kth time step. If no plan is found the planner
backtracks over the action choices. Two important landmarks arise during the construction
of the plan graph. The �rst is the point at which the graph opens in the sense that the
problem becomes, in principle, solvable. This is the layer at which all of the top level goals
�rst become pairwise non-mutex and is referred to here as the opening layer. The second
is the �x point, referred to as level o� by Blum and Furst (1997), the layer after which no
further changes can be made to either the action, fact or mutex information recorded in the
graph at each layer.

In the original implementation of Graphplan the graph was implemented as an alter-
nating sequence of layers of fact nodes and action nodes, with arcs connecting actions to
their preconditions in the previous layer and their postconditions in the subsequent layer.
The layers were constructed explicitly involving the repeated copying of large portions of
the graph at each stage in maintaining the graph structure. This copying was due to two
features of the graph. First, since actions with satis�ed preconditions in one layer continue
to have satis�ed preconditions in all subsequent layers, actions that have once been added
to a layer will appear in every successive action layer with the same name and the same
pre- and post-conditions. Second, since facts that have once been achieved by the e�ects
of an action will always be achieved by that action, they will continue to appear in every
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successive fact layer after the layer in which they �rst appeared. Although the layers can
get deeper at every successive stage they each duplicate information present in the previous
layer, so there is only a small amount of new information added at every stage. The pro-
portion of new material, relative to copied material, decreases progressively as the graph
develops.

In the original Graphplan, mutex relations were checked for by maintaining lists of facts,
corresponding to the pre- and post-conditions of actions, and checking for membership of
facts within these lists. Because of the need to copy information at each new layer, the pre-
and post-conditions of actions were duplicated even though this information did not vary
from layer to layer (it can be determined once and for all at the point of instantiation of
the schema). It is possible to identify layer-independent information, with each node in the
graph, which can be stored just once using a di�erent representation of the graph structure.

The spike representation reimplements the graph as a single fact array, called the fact
spike, and a single action array, called the action spike, each divided into ranks corresponding
to the layers in the original Graphplan graph structure. The observations leading to this
compressed implementation of the plan graph were made independently by Smith and Weld
(1998). In Stan, a fact rank is a consecutive sequence of fact headers storing the layer-
independent information associated with their associated facts in the corresponding fact
layer. Similarly, an action rank is a consecutive sequence of action headers storing layer-
independent information about their associated actions in the corresponding action layer.
Each header is a tuple containing, amongst other things, the name of the fact or action it
is associated with and a structure which stores the layer-dependent information relevant to
that fact or action. In the case of fact headers this structure is called a fact level package
and in the case of action headers it is an action level package. Figure 1 shows how a simple
graph structure can be viewed as a spike.

In the spike the positions of all fact and action headers are �xed and can be referred to
by indexing into the appropriate array. At any point, the sizes of the arrays are referred
to using the constant MaxSize, a large number setting an upper bound on the size of the
spike. All of the vectors allocated are also initialised to this size, although they are used
in word-sized increments. This saves the e�ort of re-allocating and copying vectors as the
spike increases in size towards MaxSize. We now de�ne the data types so far introduced.

De�nition 1 A spike vector is a bit vector of size MaxSize.

De�nition 2 A fact header is a tuple of six components: a name which is the predicate
and arguments that comprise the fact itself; an index, i, giving the position of the fact in
the fact array; a bit mask which is a spike vector in which the ith bit is set and all other bits
are unset; a reference identifying its achieving no-op; a spike vector consumers with bits set
for all the actions which use this fact as a precondition and a fact level package storing the
layer-dependent information about that fact.

De�nition 3 An action header is a tuple of eight components: the name of the action;
an index, i, giving the position of the action in the action array; a bit mask which is a
spike vector in which the ith bit is set and all other bits are unset; a 
ag indicating whether
the action is a no-op; three spike vectors, called precs, adds and dels and an action level
package storing the layer-dependent information about that action. Each bit in precs, adds
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Figure 1: Representation of a plan graph as a spike. In the fact spike, ranks 0, 1 and 2
correspond to fact layers 0, 1 and 2 respectively. In the action spike, ranks 1 and
2 correspond to action layers 1 and 2 respectively.
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and dels corresponds to an index into the fact array and is set in precs if the fact at that
index is a precondition (and unset otherwise), in adds if the fact at that index is an add list
element (and unset otherwise) and in dels if the fact at that index is a delete list element
of the action (and unset otherwise).

De�nition 4 A fact mutex vector (FMV) for a fact, f , is a spike vector in which the bits
correspond to the indices into the fact array and a bit is set if the corresponding fact is
mutex with f .

De�nition 5 An action mutex vector (AMV) for an action, a, is a spike vector in which
the bits correspond to the indices into the action array and a bit is set if the corresponding
action is mutex with a.

De�nition 6 A fact level package for a fact, f , is an array of pairs, one for each rank in
the spike, each containing a fact mutex vector for f and a vector of achievers, called the
achievement vector (AV), in the previous action rank.

De�nition 7 An action level package for an action, a, is an array of triples, one for each
rank in the spike, each containing an action mutex vector for a and a list of actions mutex
with a (MAs).

Using these de�nitions we can now provide a detailed description of the spike construc-
tion process.

2.1 The Spike Construction Process

We will make use of these header access functions in the following discussion:

mvec : fact! factmutex vector

precs of : action! precs

adds of : action! adds

dels of : action! dels

The spike construction process takes place within a loop which stops when all goals are
pairwise achievable, and thereafter alternates with search until the �x point is reached and
the wave front mechanism takes over. The use of the wave front is discussed in Section 4.
The key component of the process is the rank construction algorithm which builds a fact
rank and an action rank by extending the previous fact and action ranks in the spike. The
action rank is started by adding no-ops for each of the fact headers in the previous fact
rank. As soon as these are added, the fact headers can be updated to refer, by index into
the action rank, to their achieving no-ops. This information allows Stan to give preference,
when searching, to plans that use the no-op to achieve a goal rather than some other
achiever. In Graphplan this preference was ensured by keeping all of the no-ops at the top
of the graph layers and considering the achievers in order during search.

All possible action instances are then considered. All applicable action instances are
enacted and then removed so that they will never be reconsidered for enactment. We then
identify mutex relations between the actions in the new action rank, and between facts in
the new fact rank.

91



Long & Fox

As in Graphplan, an action instance is applicable in a rank if all of its preconditions are
present and non-mutex in the previous rank. The way in which preconditions are tested for
mutual exclusion in Stan is based on our bit vector representation of fact mutex relations.
We take the logical or of all of the fact mutex vectors of the preconditions, and logically
and the result with the precondition vector of the action. If the result is non-zero then
there are mutex preconditions and the action is not applicable. This test corresponds to
checking whether the action being considered is mutex with itself - a condition we de�ne as
being self-mutex.

De�nition 8 An action a, with preconditions ap1::apn, is self-mutex if:

(mvec(ap1) _mvec(ap2)_ ::: _mvec(apn))^ precs of(a)

is non-zero.

An applicable action is enacted by adding an action header to the new rank and setting
its name to the name of the action and its bit mask to record its position in the spike.
In Figures 2 and 3 no-ops are given the names of the facts they achieve and are identi�ed
as no-ops by the 
ag components of their headers. We allocate space for the action level
package and create and set its pres, adds and dels vectors. We then add any new facts on
the add list of the action to the corresponding new fact rank. The addition of new facts
requires new fact headers to be initialised.

We then identify mutex actions and mutex facts in the new ranks. Mutex actions
are identi�ed in two phases. Actions which were non-mutex in the previous rank remain
non-mutex and are not considered at this stage. First, existing action mutex relations are
checked to see whether they hold in the new rank. Second, new action mutex relations
must be deduced from the addition of new actions in the construction of this rank. We �rst
consider the existing action mutex relations.

Two actions are mutex, as in Graphplan, if they have con
icting add and delete lists,
con
icting precondition and delete lists or mutex preconditions. In the �rst two cases
the actions are directly, or permanently, mutex and never need to be re-tested although
their mutex relationship must be recorded at each rank. In the third case the actions are
indirectly, or temporarily, mutex and must be retried at subsequent ranks. We keep track of
which actions to retry in order to avoid unnecessary retesting. We con�rm that two actions,
a and b, which were temporarily mutex in the previous rank are still temporarily mutex
using the following logical operations on the fact mutex vectors for the action preconditions.
We �rst logically or together the mutex vectors for a's preconditions then and the result
with the precondition vector for b. If the result is non-zero then a and b are mutex. This
procedure, which is expressed concisely in De�nition 9, is identical to that for checking
whether an action is self-mutex except that, in this case, the result of oring the fact mutex
vectors of the preconditions of one action is anded with the precondition vector of the other
action. Since mutex relations are symmetric it is irrelevant which action plays which role
in the test.

De�nition 9 Two actions a (with n preconditions ap1::apn) and b are temporarily mutex
if

(mvec(ap1) _mvec(ap2) _ :::_mvec(apn))^ precs of(b)
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is non-zero.

We now consider what new mutex relations can be inferred from the introduction of
the new actions. It is necessary to check all new actions against all actions in the spike.
This check is done in only one direction - low-indexed actions against high-indexed actions
- so that the test is done only once for each pair. We check for both permanent and
temporary mutex relations. The permanent mutex test is done �rst, because if two actions
are permanently mutex it is of no interest to �nd that they are also temporarily mutex.
De�nition 10 provides the logical operation used to con�rm that two actions are permanently
mutex. Temporary mutex relations are checked for using the logical operation de�ned in
De�nition 9.

De�nition 10 Two actions a and b are permanently mutex if the result of

((precs of(a) _ adds of(a))^ dels of(b))_
((precs of(b)_ adds of(b))^ dels of(a))

is non-zero.

We add these mutex relations by setting the appropriate bits in the mutex vectors of
each of the new actions. This is done by oring the mutex vector of the �rst action with the
bit mask of the second action, and vice versa. A list of mutex actions is also maintained for
use during search of the spike.

A re�nement of the action mutex checking done by Stan is the use of a record of actions
whose preconditions have lost mutex relations since the last layer of the graph. This record
enables Stan to avoid retesting temporary mutex relations between actions when the mutex
relations between their preconditions cannot have changed. We use a bit vector called
changedActs to record this information. Each fact which loses mutex relations between
layers adds its consumers to changedActs. The impact of this re�nement on e�ciency is
discussed in Section 3.

This concludes the construction of the new action rank. The new fact rank has already
been partially constructed by the addition to the spike of fact headers for any add list
elements, of the new actions, that were not already present. Now it is necessary to determine
mutex relations between all pairs of facts in the spike. To do this we must �rst complete
the achievement vectors for all of the fact headers in the new rank. Any non-mutex pairs
remain non-mutex, as with actions, so e�ort is focussed on deciding whether previously
mutex facts are still mutex following the addition of the new actions, and whether new
facts induce new mutex relations. Two facts are mutex if the only way of achieving both
of them involves the use of mutex actions. We therefore consider every new fact with every
other fact, in only one direction. The pair f , g is mutex in the new rank if every possible
achiever of f is mutex with every possible achiever for g. The test for this exclusion is done
using g's achievement vector and the result of logically anding the action mutex vectors for
all possible achievers of f . the following de�nition gives the details:

De�nition 11 Two facts, f and g, are mutex if:

vecg ^ all mutexf = vecg
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where vecg is g's achievement vector and all mutexf is the consequence of anding all of the
action mutex vectors of all of f 's possible achievers.

It does not matter in which order f and g are treated. The computation of the above
condition corresponds to testing the truth of

8a � 8b � (achiever(a; f)^ achiever(b; g)! mutex(a; b))

Since mutex relations are symmetric and the quanti�ers can be freely reordered the expres-
sion equally corresponds to

vecf ^ all mutexg = vecf

If f and g are found to be mutex then we set the fact mutex vector of f by oring it
with g's bit mask and the fact mutex vector of g is set conversely. This concludes the rank
construction process and one iteration of the spike construction process.

2.2 Subset Memoization in Stan

Most of the search machinery used in Stan is essentially identical to that of Graphplan.
That is, a goal set is considered by identifying appropriate achieving actions in the previous
layer and propagating their preconditions back through the graph. The use of the spike
and bit vector representations does not impact on the search algorithm. We experimented
with using bit vector representations of bad goal sets in the memoization process, in order
to exploit logical bit operations to test for subset relations between sets of goals, but this
proved too expensive and we now rely upon a trie data structure. This bene�ts marginally
from the spike because goal sets do not need to be sorted for subset testing. The order
in which the goals are generated in the spike can be taken as the canonical ordering since
goal sets are formed by a simple sweep through the spike at each successive layer. Stan
implements an improvement on the goal set memoization of Graphplan. In the original
Graphplan, when a goal set could not be achieved at a particular layer the entire set was
memoized as a bad set for that layer. In Stan version 2, only the subset of goals that
have been satis�ed at the point of failure, within a layer, are actually memoized. More goal
sets are likely to contain the smaller memoized subset than would be likely to contain the
complete original failing goal set. This therefore allows us to prune search branches earlier.

This method is a weak version of Kambhampati's (1998, 1999) EBL (Explanation-Based
Learning) modi�cations. EBL allows the identi�cation of the subset of a goal set that is
really responsible for its failure to yield a plan. Memoization of smaller sets increases the
e�ciency of the planner by reducing the overhead necessary in identifying failing goal sets.
DDB (Dependency-Directed Backtracking) improves the search performance by ensuring
that backtracking returns to the point at which the last choice responsible for failure was
made. These modi�cations result in smaller sets being memoized and a more e�cient search
behaviour which, in combination with the trie, ensure that a higher proportion of failing
search paths are terminated early.

We have experimented with an implementation of the full EBL/DDB modi�cations
proposed by Kambhampati, but there is an interaction between the EBL/DDB machinery
and the wave front of Stan which we are currently attempting to resolve. Our experiments
so far indicate that both the wave front and EBL/DDB have signi�cant bene�cial impact
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on search, but not consistently across the same problems. We believe that we can enhance
the advantages of the wave front by full integration with EBL/DDB, but this remains to
be demonstrated.

2.3 A Worked Example

We now demonstrate the spike construction process in action on a simple blocks world ex-
ample in which there are two blocks and two table positions. In the initial state, both blocks
are on the table, one in each of the two positions. Consequently there are no clear table
positions. The initial spike consists of a fact rank containing fact headers for the four facts
that describe the initial state. There is a single operator schema, puton(Block; To; From),
as follows:

puton(X,Y,Z)
Pre: on(X,Z), clear(X), clear(Y)
Add: on(X,Y), clear(Z)
Del: on(X,Z), clear(Y)

The action rank is initially empty. On the �rst iteration of the loop the �rst action rank
is constructed by creating no-ops for every fact in the zeroth fact rank. Two further actions
are applicable and are enacted, and the facts on their addlists are used to create a new fact
rank. This results in the partially developed spike shown in Figure 2.

It can be observed from Figure 2 that, following enactment, the fact headers associated
with the newly added facts are incomplete, and although the new fact level and action level
packages have been allocated they do not yet contain any values. The new fact headers are
missing references to the no-ops that will be used to achieve them in the next action rank.
The new fact level packages are blank because their corresponding fact headers will have
no level information for rank 0.

After identi�cation of mutex actions and mutex facts, the picture is as shown in Figure 3.
In the action level packages, the lists of mutex actions are given as lists of indices for the
sake of clarity. In fact they are lists of pointers to actions, in order to avoid the indirection
involved in the use of indices. None of the action pairs are temporarily mutex at rank 1
because all of the fact mutex vectors from rank 0 are zero-valued.

3. Empirical Results

In this section we present results demonstrating the e�ciency of the spike and vector rep-
resentation of the plan graph used by Stan. We consider graph construction only in this
section { the e�ciency of search in Stan will be demonstrated in Section 4. We show the
e�ciency of graph construction in Stan by showing relative performance �gures for Stan
and the competition version of Ipp in several of the competition domains and two further
standard bench mark domains. These are the Graphplan version of the Travelling Salesman
domain (Blum & Furst, 1997), which uses a complete graph and is referred to here as the
Complete-Graph Travelling Salesman domain, and the Ferry domain available in the PDDL
release.

We compare Stan with Ipp because, to the best of our knowledge, Ipp is the only
other fast Graphplan-based planner currently publicly available. We use the competition
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Figure 2: The spike after enactment of the rank 1 actions.
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Figure 4: Graph construction in the logistics domain: Stan shows a constant factor im-
provement over the performance of Ipp.
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Figure 5: Graph construction in the Gripper domain.
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version of Ipp because this is the most up to date version available from the Freiburg
webpage at the time of writing. In order to focus on the graph construction phase, and
eliminate the search phase from both planners, we have constructed versions of Stan and
Ipp which terminate once the graph has opened. We have removed from Stan all of the
unnecessary pre-processing, domain analysis and additional features that contribute to later
search e�ciency. However, since Ipp is designed to build one more layer before opening
than is strictly necessary, to include a dummy goal corresponding to the achievement of the
conjunction of the top level goal set, we make Stan build one extra layer too so that the
two systems are comparable. We have removed all of the meta-strategy control from Ipp,
forcing Ipp directly into its graph construction. It is possible that a more streamlined graph
constructor could be built from Ipp by elimination of further processing, but we observed,
during experimentation with Ipp, that pre-processing accounts for insigni�cant proportions
of the timings reported below. We are therefore con�dent that any further streamlining
would have minimal e�ects on our results. In order to compare Stan and Ipp accurately it
was necessary to modify the timing mechanisms to ensure that precisely the same elements
are timed. A Unix/Linux di� �le is available at the Stan website, and in Online Appendix
1, for anyone interested in reconstructing the Ipp graph construction system we have used.
The domains and problems used, and our graph construction version of Stan, can also be
found at these locations.

All experiments reported in this paper were carried out on a P300 Linux PC, with
128Mb of RAM and 128Mb swap space. All of the timings in the data sets reported are in
milliseconds.

All the graphs are log-log scaled. This was necessary to combat the long scales caused by
very large timings associated with a few instances in each domain. The graphs show Ipp's
construction performance compared with Stan's construction performance measured on the
same problems in each of six domains. The straight line shows where equal performance
would be. Points above the line indicate superior performance by Stan and points below
the line indicate superior performance by Ipp. In all of the �rst �ve data sets, Stan clearly
out-performs Ipp. In the last data set (Figure 9), Ipp convincingly out-performs Stan and
we now consider a more detailed analysis of the characteristics of the domains and instances
which explain these data sets.

The �rst four data sets reveal a very similar performance. The points are broadly par-
allel to the equal performance line, indicating that Stan performs at a constant multiple
of the performance of Ipp. Despite the trend that these data sets reveal, occasional data
points deviate signi�cantly from this behaviour. This re
ects the fact that di�erent struc-
tures of particular problems exercise di�erent components of the graph construction system.
Components include instantiation of operators, application of individual operator instances
and the corresponding extension of fact layers and checking and re-checking mutex relations
between facts and between actions. We observed that in some problem instances, 50 per
cent or more of the construction time was spent in action mutex checking, whilst in others
instantiation dominated. The density of permanent mutex relations between actions, and
the degree of persistence of temporary mutex relations between actions, are both very sig-
ni�cant in determining e�ciency of performance. For example in problem 8 in the Mystery
domain, where 21 layers are constructed before the graph opens, only 9 per cent of the
action pairs were discarded as permanently mutex and, of the temporary mutex pairs, the
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Figure 6: Graph construction in the Mystery domain. Stan's performance in this domain
is consistently better than that of Ipp, but shows more marked variation revealing
that the bene�ts of the spike are problem-dependent.
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Figure 7: Graph construction in the Mprime domain.
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Figure 8: Graph construction in the Ferry domain. Stan shows polynomially better graph
construction performance than Ipp.

average number of re-tests across the entire graph construction was over 7. The use of
the changedActs mechanism described in Section 2.1, to avoid retesting actions when their
precondition mutex relations had not changed from the previous layer, gave us a 50 per
cent improvement in performance and accounts for a more than 40 second advantage over
Ipp in the construction phase of this problem.

In other problems a much higher percentage of action pairs are permanently mutex,
allowing early elimination of many action pairs from further retesting. Where mutex re-
lations are not highly persistent a similar elimination rate is possible. This allows much
faster construction for Stan. Ipp does not bene�t in the same way, because it does not
distinguish between temporary and permanent mutex and does not try to identify which
pairs of actions should be retested.

In the Ferry domain, Figure 8, 7 layers are constructed to open the graph regardless
of instance size. Analysis reveals that approximately 25 per cent of action pairs are per-
manently mutex and the average persistence of temporary mutex relations is slightly more
than 2 layers. Since Ipp does not intelligently eliminate actions from retesting, the implica-
tion of this is that Ipp unnecessarily re-checks mutex relations for a polynomially increasing
number of pairs of actions. This explains the polynomial advantage obtained by Stan in
this domain.

The last data set shows a rather di�erent pattern of performance from that of the
others. The Complete-Graph Travelling Salesman domain used to produce the data set for
Figure 9 is a simpli�ed version, in which the graph is fully connected, of the well known
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Figure 9: Graph construction in the Complete-Graph Travelling Salesman domain. Stan
displays a polynomially deteriorating graph construction performance. This is
further discussed in the text.

NP-hard TSP. It is, in principle, e�ciently solvable. In Figure 9 Ipp's performance appears
to be polynomially better than that of Stan. Analysis of the graph structure built for
di�erent instances reveals that, on all instance sizes, the graph opens at layer 3. In these
graphs an interesting pattern can be observed in the mutex relations between actions: the
vast majority of action pairs are mutex after their �rst application at layer 2 (because the
salesman can only ever be in one place). These mutex relations are considered, by both
Stan and Ipp, to be temporary although they in fact persist. The consequence is that both
Stan and Ipp retest all pairs at the next layer. Stan obtains no advantage from the use of
changedActs or the distinction between temporary and permanent mutex relations in this
domain. The number of mutex pairs to be checked increases quadratically with increase
in instance size, which is in line with Stan's performance. Ipp clearly pays much less for
this retesting, despite the fact that it does the same amount of work. This fact, together
with pro�ling of both systems, leads us to believe that the disadvantage su�ered by Stan is
due to the overhead in supporting object member applications in its C++ implementation.
It is worth pointing out that in the Complete-Graph Travelling Salesman domain, as well
as in Gripper and Ferry, the construction time for both planners is under 1 second for all
instances tested so the discrepancies in performance in these three domains are insigni�cant
compared with the discrepancies measured in seconds (for large instances) in the other
domains.
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Figure 10: The wave front in Stan.

4. The Wave Front

When a layer is reached in which all of the top level goals are pairwise non-mutex Graphplan-
based planners begin searching for a plan. If no plan can be found, new layers are con-
structed alternately with search until the �x point of the graph is reached. In Graphplan
and Ipp the graph continues to be explicitly constructed beyond the �x point, even though
the layers which can be built beyond this point are sterile (contain no new facts, actions or
mutex relations). Their construction is necessary to allow the conditions for achievement of
goal sets to be established, between the �x point and the current layer. However, this con-
stitutes signi�cant computational e�ort in copying existing structures and in unnecessary
searching of these duplicate structures. Instead of building these sterile layers explicitly,
Stan maintains a single layer, called the bu�er, beyond the �x point together with a queue
of goal sets remaining to be considered. Each time a goal set is removed from this queue,
to be considered in the bu�er, those goal sets it generates in the �x point layer, which have
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not been previously marked as unsolvable, are added to the queue. The goal sets in this
queue are considered in order, always for achievement in the bu�er layer. Thus, rather
than constructing a new layer each time the top level goal set proves unsolvable, and then
reconsidering all of the same achievers in the new layer, the goal sets in the queue are simply
considered in the bu�er layer. We call this mechanism a wave front because it pushes goal
sets forward from the �x point layer into the bu�er, and then recedes to consider another
goal set from the �x point layer. The goal sets generated at the �x point, which join the
queue for propagation, are referred to as candidate goal sets. The wave front is depicted in
Figure 10. The underlying implementation of the plan graph remains based on the spike,
but the �gure depicts the graph in the traditional way for simplicity.

In the picture, G represents the top level goal set and when it is used to initiate a plan
search from the bu�er layer it generates the sequence of goal sets G1, G2 and G3 at the
�x point layer. Assuming that these all fail, the �rst set in this queue, G1, is propagated
forward to the bu�er leading to the generation of goal sets G4 and G5 in the �x point layer.
These are added to the end of the queue and G2 will be the next goal set selected from the
queue to propagate forward.

In order to demonstrate that the wave front machinery maintains an appropriate be-
haviour there are three questions to be considered.

1. Is every goal set that would have been considered in the bu�er layer, had the graph
been constructed explicitly, still considered using the wave front? This question con-
cerns completeness of the search process.

2. Does every plan generated to achieve a goal set that is considered in the bu�er layer
correspond to a plan that would have been generated had the graph been explicitly
constructed? This question concerns soundness.

3. The �nal question concerns whether the termination properties of Graphplan are
maintained.

De�nition 12 A k-level goal tree for goal set G at layer n in a plan graph, GTk;G;n, is a
general tree of depth k in which the nodes are goal sets and the parent-child relationship is
de�ned as follows. If the goal set x is in the tree at level i then the goal set y is a child of
x if y is a minimal goal set containing no mutex goal pairs such that achievement of y at
layer n� i� 1 in the plan graph enables the achievement of x at layer n� i in that graph.
We take the root to be at level 0 of the tree and the leaves to be at level k � 1.

Lemma 1 If n � k � FP then GTk;G;n = GTk;G;n+1, where FP is the number of the �x
point layer in the plan graph.

Proof By de�nition of the �x point, all layers in a plan graph beyond the �x point contain
an exact replica of the information contained at the �x point layer. Since, by de�nition
of the goal tree, the parent-child relationship depends exclusively upon the relationship
between two consective layers in the plan graph, and layers cannot change after the �x
point, it follows that if x is the parent of y at some layer beyond the �x point then the
parent-child relationship between x and y must hold at any pair of consecutive layers beyond
the �x point. Further, no new parent-child relationships can arise beyond the �x point. The
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restriction that n�k � FP ensures that all layers in both goal trees lie in the region beyond
the �x point.

2

The completeness of Stan follows from the completeness of Graphplan provided that
all of the goal sets that would appear in the layer after the �x point in the explicit graph
arise as candidates to be considered in the bu�er layer using the wave front. We now prove
that this condition is satis�ed by �rst proving that the leaves of goal trees generated at
successive layers of a plan graph are all used to generate candidates in Stan. Since the goal
sets considered by Graphplan are always subsets of the leaves of goal trees it will be shown
that the completeness of Stan follows.

Theorem 1 Given a goal set, G, and a plan graph of n layers, containing no plan for G

of length n � 1, with �x point at layer FP (n > FP ), all of the leaves of GTn�FP;G;n are
generated as candidates by Stan.

Proof The proof is by induction on n, with base case n = FP + 1. In the base case the
result follows trivially because the only leaf in GT1;G;FP+1 is the top level goal set G and
this is generated as the initial candidate by Stan.

Suppose n > FP + 1. The inductive hypothesis states that all of the leaves of the tree
GTn�1�FP;G;n�1 are generated as candidates by Stan. Since the plan graph constructed by
Stan is identical to that of Graphplan up to layer FP + 1, and all candidates are used to
initiate search from layer FP +1, the leaves of GTn�FP;G;n�1 will also be generated as goal
sets in layer FP by Stan. These goal sets are then used by Stan to construct candidates.
Stan will not generate multiple copies of candidates, but each new goal set will generate a
new candidate.

By Lemma 1, GTn�FP;G;n = GTn�FP;G;n�1 , so that the leaves of GTn�FP;G;n are gener-
ated as candidates by Stan.

2

The de�nition of goal trees captures precisely the relationship between goal sets and
the search paths considered by Graphplan. However, because Graphplan memoizes failed
goal sets it can prune parts of a goal tree as it regresses through the explicit plan graph
during search. Whenever a goal set contains a memoized goal set search terminates along
this branch and none of its children will be generated. It can now be seen that Graphplan
will generate at layer FP + 1 a subset of the leaves of GTn�FP;G;n , when searching from
layer n with goal set G, whereas Theorem 1 demonstrates that Stan will construct all of
these leaves as candidates.

This argument might suggest that Stan engages in unnecessary search by generating
candidates that Graphplan can prune, using memos, in layers that are not constructed
explicitly by Stan. In fact, Stan generates no more candidates than Graphplan generates
goal sets at layer FP+1. Indeed, Stan achieves a dramatic reduction in search by exploiting
the correspondence between the goal trees generated at layers n and n�1, demonstrated by
Lemma 1. Because of this correspondence there is no need to construct the layers between
FP + 1 and n explicitly, and undertake all of the concommitant search from those layers.
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Figure 11: The sliding window of layers between FP + 1 and n.

Graphplan rebuilds the sliding window, shown in Figure 11, of layers between FP and n�1
as layers FP + 1 through to n. Stan simply promotes the leaves of the tree, generated at
layer FP in GTn�FP;G;n�1 , into layer FP + 1.

It is straightforward to show that the wave front maintains soundness. The search that
Graphplan performs generates a goal tree of goal sets, as de�ned in De�nition 12. In the
example in Figure 10, the tree is rooted at G, with G1, G2 and G3 its children and G4 and
G5 the children of G1. It can be seen from the picture that the tree structure generated
by Graphplan, in which each successive layer would be embedded in a separate layer of the
explicitly constructed graph, appears in a spiral of related goal sets between the �x point
and bu�er layers. All of the candidate goal sets lie in this same search tree and therefore no
additional goal sets are generated. Graphplan constructs the �nal plan by reading o� the
sequence of action choices at each layer in the �nal graph. In Stan, the plan is obtained
by reading o� the initial fragment of the plan in the same way, from the layers preceding
the �x point. The rest of the plan is extracted from the spiral. This extraction process
yields the same path of action choices from the top level goal set to the candidate goal set
as would be recorded explicitly in the Graphplan plan graph.

The only question remaining to be considered is whether the wave front has the same
termination properties as Graphplan. It can be seen that it does since, if no new unsolvable
goal sets are generated at the �x point, the queue will become empty and the planner
terminates. This corresponds exactly to the termination conditions of Graphplan.

A subtlety concerns the interaction between the wave front and the subset memoization
discussed in Section 2.2. In principle, subset memoization could cause the loss of all three of
the desired properties of the graph. The way that Stan generates candidate goal sets is by
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simultaneously generating a candidate set whenever a goal set is memoized at the �x point.
If the candidate set and the memoized set are one and the same, then the memoization of
a subset of a goal set will lead to the propagation of only a subset of the actual candidate
goals into the bu�er and soundness might be undermined. If we use subset memoization at
the wave front then the question arises whether sets that contain a memoized subset should
be propagated forward as candidates. If they are not, then completeness is potentially
lost, since there might be action sequences that could have been constructed following
propagation that will not now be found. If they are, then termination is potentially lost,
since the set that led to the construction of the memoized subset might itself be generated
as a candidate. This could happen, for example in Figure 10, if G1 is unsolvable at the �x
point but is generated again by consideration of a later candidate at the bu�er.

To avoid these problems we have restored full subset memoization at the wave front.
An alternative solution, which we are currently exploring, is to separate the subsets of
goals memoized from the identi�cation of the candidate sets. Both solutions avoid the loss
of soundness because candidates are constructed from entire goal sets rather than from
subsets. In the �rst solution, termination is preserved because memoizing full goal sets
ensures that repeated candidates can be correctly identi�ed as they recur. In the second
solution, we would separately memoize candidates as they were generated to avoid repeated
generation, thereby maintaining termination. In both cases, completeness is preserved by
propagating goal-sets forward as new candidates provided only that they do not contain
previously encountered candidates as subsets. If a potential candidate is a superset of an
entire memoized candidate then it is correct not to propagate that potential candidate into
the bu�er because if the memoized candidate cannot be solved at the bu�er then no superset
of it can be solved there either.

5. Experimental Results

The results presented here use Stan version 2 (available at our website). We have performed
experiments comparing Stan with and without the wavefront in order to demonstrate the
advantages obtained by the use of the wave front. We have performed further experiments
to compare Stan with the competition version of Ipp. There are some minor discrepancies
in the timing mechanisms of these two systems. Stan measures elapsed time for the entire
execution, whereas Ipp measures user+system time for graph construction and search but
not for parsing of the problem domain and instance. On a single user machine as used for
these experiments the discrepancy is negligible.

The problem domains used in this section have been selected to emphasise the bene�ts
o�ered by the wave front. The important characteristic is that there should be an early
�x point relative to the length of plan as instances grow. In the comparisons with Ipp the
wave front accounts for the trends in performance, although Stan employs a range of other
mechanisms which give it some minor advantages. Amongst these is the Tim machinery,
which we have not decoupled as the problem domains used are the standard typed ones
so that no signi�cant advantage is obtained from inferring type structures automatically.
Only the resource invariants inferred by Tim are exploited by Stan version 2, and we
have indicated where this gives us an advantage over Ipp. Our ablation data sets con�rm
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Figure 12: Stan compared with Ipp: solving Towers of Hanoi problems of 3-7 discs.

that the wave front is the most signi�cant component in the performance of Stan in these
experiments.

Stan is capable of e�ciently solving larger Towers of Hanoi instances than are presented
in the graph in Figure 12, which accounts for the additional point in Figure 13. Stan with
the wave front found the 511-step plan for the 9-disc problem in less than 7 minutes using
about 15Mb of memory. During the experiments reported here, Ipp was terminated after
15 minutes having reached layer 179 out of 255 layers in the 8-disc problem. We observe
that on a machine with 1Gb of RAM, Ipp has solved this problem in 8 minutes.

The results for the Gripper domain demonstrate only a small advantage for Stan. The
reason is because the search space grows exponentially in the size of the graph in the Gripper
domain, so that the cost of searching dominates everything else. Although the search spaces
for Towers of Hanoi instances also grow exponentially, they grow as 2x whereas Gripper
instances grow as xx (where x is the number of discs or balls respectively). Although the
wave front helps under these conditions, the size of the search space dwarfs the bene�ts it
o�ers. The Ferry domain is a less rapidly growing version of the gripper domain since only
one vehicle can be carried on each journey, reducing the number of choices at each layer.
The di�erence in bene�ts obtained in the Towers of Hanoi domain relative to the Gripper
and Ferry domains can be explained by consideration of the table in Figure 16. The bene�ts
of the wave front are proportional to the number of layers which exist implicitly between
the bu�er and the layer from which the plan is ultimately found. In the Towers of Hanoi
the number of implicit layers is exponential in the number of discs whereas the number of
layers between the initial layer and the bu�er is linear in the number of discs. Therefore
the bene�ts o�ered by the use of the wave front are magni�ed exponentially as the problem
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Figure 13: Stan with and without the wave front: solving Towers of Hanoi problems of 3-8
discs.
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Figure 14: Stan compared with Ipp: solving Gripper problems of 4-10 balls.
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Figure 15: Stan with and without the wave front: solving Gripper problems of 4-10 balls.

Domain Parameter n Plan Length Bu�er

Towers of Hanoi no. discs 2n � 1 n + 3
Gripper no. balls 2n� 1 5
Ferry no. vehicles 4n� 1 7
Complete-Graph TSP no. cities n 4

Figure 16: Relative values of plan length and number of layers to bu�er for four domains.

instance grows. On the other hand, in both Gripper and Ferry there is only a linear growth
in the di�erence between plan length and �x point layer, so bene�ts are magni�ed only
linearly. This analysis can be con�rmed by observation of Figures 12, 14 and 17.

The bene�t of the wave front is measured not only in terms of the cost of construction
that is avoided by not explicitly building the layers beyond the bu�er, but also in terms
of the search that is avoided in those layers. Crudely, the bene�ts can be measured as
the number of layers not constructed multiplied by the search e�ort avoided at each of
those layers. Thus, the number of layers not constructed magni�es the bene�ts obtained
by not searching amongst them. This is a simpli�cation, since the search e�ort avoided at
successive layers increases as they get further away from the �x point, but it gives a guide
to the kind of bene�ts that can be expected from the wave front.

Stan obtains signi�cant advantages over Ipp in the Complete-Graph Travelling Sales-
man domain, as Figure 19 demonstrates. Some of these advantages are obtained by ex-
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Figure 17: Stan compared with Ipp: solving Ferry problems of 2-12 cars.
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Figure 18: Stan with and without the wave front: solving Ferry problems of 2-12 cars.
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Figure 19: Stan compared with Ipp: solving Complete-Graph Travelling Salesman prob-
lems of 10-20 cities.

ploiting the resource analysis techniques of Tim (Fox & Long, 1998), whilst a signi�cant
proportion of the advantage is obtained from the use of the wave front, as Figure 20 shows.
Resource analysis allows a lower bound to be determined on the number of layers that must
be built in a plan graph before it is worth searching for a plan. In the Complete-Graph
Travelling Salesman domain this is very powerful, as the calculated bound is n, the number
of cities in the instance, which is precisely the correct plan length. In this domain, if no
search is done until n layers are constructed, no search needs to be done at all since it
doesn't matter in what order the cities are visited. This would allow the problem to be
solved in polynomial time (of course, this only makes sense because the Complete-Graph
TSP used here is simpler than the NP-hard TSP). However, when the wave front is used,
the bu�er is at layer 4 and the only way of �nding the plan is to generate all of the candidate
goal sets at layer 4, of which there are an exponential number. The use of the wave front
in this domain therefore forces Stan to take exponential time in the size of the instances.
Despite this the wave front o�ers great advantages. The bene�ts increase exponentially as
instance sizes grow although the magni�cation of these bene�ts at each layer is only linear,
see Figure 16, although the bene�ts are o�set by the exponential growth in the number of
candidates. It must be observed that in Figure 19, the �gures are extrapolated for Ipp for
instances in which n is greater than 14. The extrapolation was based on Ipp's performance
on instance sizes between 2 and 14, which demonstrates a clear exponential growth.

It appears that we could allow the resource analysis to over-ride the wave front when a
domain is encountered in which it can be guaranteed that explicit construction of the graph
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Figure 20: Stan with and without the wave front: solving Complete-Graph TSP problems.

will be more e�cient. In practice the Complete-Graph Travelling Salesman domain seems
exceptional, since search is eliminated if the graph is constructed to layer n, and if this were
not the case the explicit construction and subsequent search would be more costly than the
use of the wave front.

5.1 The Wave Front Heuristic

The queue of candidate goal sets considered in the bu�er can be implemented as an un-
ordered structure in which goal sets are selected for consideration according to more so-
phisticated criteria than the order in which they were stored. In principle, this could save
much searching e�ort since it could avoid costly consideration of goal sets which turn out to
be unsolvable before meeting a solvable goal set. We have experimented with a number of
goal set selection heuristics which favour goal sets for which the search progresses deepest
into the graph structure. These sets are considered to be closer to being solvable than sets
which fail in a layer very close to the bu�er. Candidates are evaluated by considering the
length of the plan fragment associated with the candidate and the extent to which the failed
search penetrated into the graph when initiated from the �x point layer when the candidate
was �rst generated. The search penetration should be maximized while the plan fragment
length should be minimized. Considering the goal sets in some order other than that in
which they are generated does not a�ect any of the formal properties of the planner other
than the optimality of the plans generated. Non-optimal plans can be favoured because
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Figure 21: Towers of Hanoi with (Stanh) and without the heuristic: 3-9 discs.

the balance between fragment length and penetration can cause candidates with shorter
fragments to be overlooked.

Using the heuristic Stan is able to solve Towers of Hanoi problems very e�ciently, as
Figure 21 shows. As previously, the graph is log-log scaled. The line indicates at least a
polynomial improvement in the size of instances. The heuristic was originally developed by
consideration of blocks world problems, in which it also performs well. However, it does not
provide a reliable advantage so it is not used in Stan version 2. It was used on all problems
in the competition but often represented a heavy overhead for Stan. We are continuing to
experiment with alternative domain-independent evaluation criteria.

6. Conclusion

This paper presents two improvements on the representation of the plan graph exploited by
Graphplan-based planners. These are: the representation of the graph as a single pair of
layers, called a spike, built around bit vectors and logical operations, and the use of a wave
front which avoids the explicit construction of the graph beyond the �x point. We describe
a highly e�cient procedure for checking mutex relations between actions and explain what
characteristics of problems allow its full exploitation. The spike and the wave front have
both been implemented in Stan, a Graphplan based planner version 11 of which competed
successfully in the AIPS-98 planning competition. We have presented empirical evidence
to support both improvements. The �rst set of data demonstrates the increase in graph

1. Version 1 contained implementations of both the spike and the wave front. Version 2 enhances both

of these mechanisms with improved implementation and the addition of the changedActs mechanism

discussion in Section 2.1.
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construction e�ciency obtained by the use of the spike. The second set of data shows the
advantages obtained during the search of the plan graph by using the wave front.

Stan also employs the state invariant inference machinery of Tim (Fox & Long, 1998),
but in version 2 the integration of the invariants into the graph construction process is
still only partial. We observe that the mutex relations generated in the Complete-Graph
TSP, in particular, are almost entirely domain invariants of the kind inferred by Tim.
Integration of these inferred invariants into the graph would allow these mutex relations
to be identi�ed immediately as permanent and eliminate them from retesting, dramatically
enhancing Stan's graph construction performance in this domain. A similar advantage
would be obtained across other domains since many of the mutex relations inferred during
graph construction correspond to invariants of the various forms inferred e�ciently by Tim
during a preprocessing stage.

Appendix A. Website Addresses

Online Appendix 1 contains a complete collection of the domains and problems used in this
paper, executables (Linux and Sparc-Solaris binaries) for Stan and the reduced version of
Stan for graph construction, and a di� �le showing how the graph constructing version of
IPP was generated.

The results of the AIPS-98 planning competition can be found at:
http://ftp.cs.yale.edu/pub/mcdermott/aipscomp-results.html.

The Stan website can be found at:
http://www.dur.ac.uk/�dcs0www/research/stanstuff/planpage.html.
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