
Strathprints Institutional Repository

Fox, M. and Long, D. (1998) The automatic inference of state invariants in TIM. Journal of Artificial
Intelligence Research, 9. pp. 367-421. ISSN 11076-9757

Strathprints is designed to allow users to access the research output of the University of Strathclyde.
Copyright c© and Moral Rights for the papers on this site are retained by the individual authors
and/or other copyright owners. You may not engage in further distribution of the material for any
profitmaking activities or any commercial gain. You may freely distribute both the url (http://
strathprints.strath.ac.uk/) and the content of this paper for research or study, educational, or
not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to Strathprints administrator:
mailto:strathprints@strath.ac.uk

http://strathprints.strath.ac.uk/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/9015001?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://strathprints.strath.ac.uk/
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk
http://strathprints.strath.ac.uk/

Journal of Arti�cial Intelligence Research 9 (1998) 367-421 Submitted 7/98; published 12/98

The Automatic Inference of State Invariants in TIM

Maria Fox

Derek Long
Department of Computer Science
University of Durham, UK

maria.fox@dur.ac.uk

d.p.long@dur.ac.uk

Abstract

As planning is applied to larger and richer domains the e�ort involved in constructing

domain descriptions increases and becomes a signi�cant burden on the human application

designer. If general planners are to be applied successfully to large and complex domains

it is necessary to provide the domain designer with some assistance in building correctly

encoded domains. One way of doing this is to provide domain-independent techniques for

extracting, from a domain description, knowledge that is implicit in that description and

that can assist domain designers in debugging domain descriptions. This knowledge can

also be exploited to improve the performance of planners: several researchers have explored

the potential of state invariants in speeding up the performance of domain-independent

planners. In this paper we describe a process by which state invariants can be extracted

from the automatically inferred type structure of a domain. These techniques are being

developed for exploitation by stan, a Graphplan based planner that employs state analysis

techniques to enhance its performance.

1. Introduction

Stan (Long & Fox, in press) is a domain-independent planner based on the constraint
satisfaction technology of Graphplan (Blum & Furst, 1995). Its name is derived from the
fact that it performs a variety of pre-processing analyses (STate ANalyses) on the domain
description to which it is applied, that assist it in planning e�ciently in that domain. Stan
took part in the aips-98 planning competition, the �rst international competition in which
domain-independent planners were compared in terms of their performance on well-known
benchmark domains. Of the four planners that competed in the strips track, three were
based on the Graphplan (Blum & Furst, 1995) architecture. The most important di�er-
ence between stan and the other Graphplan-based planners was its use of state analysis
techniques. Although these techniques were not, at that stage, fully integrated with the
planning algorithm stan gave an impressive performance as can be determined by exami-
nation of the competition results. There is a description of the competition, its objectives
and the results, at the aips-98 planning competition FTP site (see Appendix A).

One of the most important of the analyses performed by stan is the automatic inference
of state invariants. As will be described in this paper, state invariants are inferred from the
type structure of the domain that is itself automatically inferred, or enriched, by stan. The
techniques used are completely independent of the planning architecture, so can be isolated
in a pre-processing module that we call tim (Type Inference Module). Tim can be used
by any planner, regardless of whether it is based on Graphplan or on any other underlying

c1998 AI Access Foundation and Morgan Kaufmann Publishers. All rights reserved.

Fox & Long

architecture. Tim has been implemented in c++ and executables and examples of output
are available at our web site (see Appendix A) and in Online Appendix 1.

Tim takes a domain description in which no type information need be supplied and infers
a rich type structure from the functional relationships between objects in the domain. If type
information is supplied tim can exploit it as the foundation of the type structure and will
often infer an enriched type structure on this basis. State invariants can be extracted from
the way in which the inferred types are partitioned. The consequence is that the domain
designer is relieved of a considerable overhead in the description of the domain. Whilst it is
easy to hand-code both types and state invariants for simple domains containing few objects
and relations, it becomes progressively more di�cult to ensure cross-consistency of hand-
coded invariants as domains become increasingly complex. Similarly, the exploitable type
structure of a domain may be much richer than can easily be provided by hand. We have
observed that tim often infers unexpected type partitions that increase the discrimination of
the type structure and provide corresponding bene�ts to stan's performance. We therefore
see tim as a domain engineering tool, helping to shift the burden of domain design from
the human to the automatic system.

The usefulness of both types and state invariants is well-documented. Types have been
provided by hand since it was �rst observed that they reduce the number of operator in-
stantiations that have to be considered in the traversal of a planner's search space. The
elimination of meaningless instantiations is particularly helpful in a system such as Graph-
plan, in which the structure to be traversed is explicitly constructed prior to search. We
believe that the bene�ts to be obtained from type inference in planning are similar to those
obtained in programing language design: type inference is more powerful than type checking
and can assist in the identi�cation of semantic errors in the speci�cation of the relational
structure of the domain. Indeed, we have found tim to be a useful domain debugging
tool, allowing us to identify aws in some published benchmark domains. We also used
tim to reveal the underlying structure of the Mystery domain, a disguised transportation
problem domain, used in the planning competition. The Mystery domain is described in
Appendix C.2.

The use of domain knowledge can signi�cantly improve the performance of planners,
as shown by a number of researchers. Gerevini and Schubert (1996a, 1996b) have consid-
ered the automatic inference of some state constraints and demonstrated that a signi�cant
empirical advantage can be obtained from their use. Kautz and Selman (1998) have hand-
coded invariants and provided them as part of the domain description used by Blackbox.
They demonstrate the performance advantages obtained and acknowledge the importance of
inferring such invariants automatically. McCluskey and Porteous (1997) have also demon-
strated the important role that hand-coded state invariants can play in domain compilation
for e�cient planning. Earlier work by Kelleher and Cohn (1992) and Morris and Feldman
(1989) explores the automatic generation of some restricted invariant forms. We discuss
these, and other, related approaches in section 5.

In this paper we will describe the type inference process employed by tim and explain
how four di�erent forms of state invariant can be extracted from the inferred type structure.
We will argue that tim is correct since it never infers sentences that are not state invariants.
We will then provide experimental results demonstrating the performance advantages that
can be obtained by the use of types.

368

Automatic Inference of State Invariants

fuelled
1

unfuelled
1

at
1

at

in

load

unload

drive

drive

1

1

Figure 1: A simple transportation domain seen as a collection of FSMs.

2. The Type Inference Module

One way of viewing strips (Fikes & Nilsson, 1971) domains is as a collection of �nite-state
machines (FSMs) with domain constants traversing the states within them. For example, in
a simple transportation domain there are rockets and packages, with rockets being capable
of being at locations and of moving, by driving, from being at one location to being at

another, and of being fuelled or unfuelled, and of moving between these two states. at can
be seen as forming a one-node FSM, and fuelled and unfuelled as forming a two-node FSM.
This view is depicted in Figure 1.

369

Fox & Long

Packages can be at locations or in rockets, and can move between these states in the
resulting two-node FSM. In this example, rockets can be in states that involve more than
one FSM, since they can be both at and fuelled, or at and unfuelled. STRIPS domains
have been seen in this way in earlier work (McCluskey & Porteous, 1997; Grant, 1996), as
discussed in Section 5.

2.1 Types in TIM

When two objects participate in identical FSMs they are functionally equivalent and can be
seen to be of the same type. The notion of type here is similar to that of sorts in the work of
McCluskey and Porteous (1997). A primary objective of the tim module is to automatically
identify the equivalence classes that form the primitive types in a domain description and
to infer the hierarchical type structure of a domain on the basis of the primitive types. The
way this is done is discussed in Section 2.3. The primitive types are functional equivalence
classes, and the objects of the domain are partitioned into these classes. Having identi�ed
the types of the domain objects tim infers the types of the parameters of all of the operators.
State invariants are inferred as a �nal stage.

The early parts of this process rely on three key abstract data types, the property space,
the attribute space and the transition rule. Formal de�nitions of these components are
provided in Section 2.3, but we provide informal descriptions here to support the following
de�nitions. Transition rules represent the state transformations that comprise the FSMs
traversed by the objects in the domain. Property spaces are FSMs, together with the objects
that participate in them, the properties these objects can have and the transition rules by
which they can acquire these properties. Attribute spaces contain collections of objects that
have, or can acquire, the associated attributes. Attributes di�er from properties because
they can be acquired, or lost, without the associated loss, or acquisition (respectively),
of another attribute. Attribute spaces also contain the transition rules that enable the
acquisition (or loss) of these attributes. Once the state and attribute spaces have been
constructed we assign types to the domain objects according to their membership of the
property and attribute spaces. Any two objects that belong in identical property and
attribute spaces will be assigned the same type. It is therefore very important to ensure
that the property and attribute spaces are adequately discriminating, otherwise important
type distinctions can be lost. Much of the subtlety of the algorithm described in Section 2.2
is concerned with maintaining adequate discrimination in the construction of these spaces.

We present the following de�nitions here to support our informal characterisation of the
roles of types in strips and in tim. The de�nitions are used again in Sections 2.4 and 2.6,
which discuss how types are assigned to objects and operator parameters.

De�nition 1 A type vector is a bit vector in which each bit corresponds to membership, or
otherwise, of a unique state or attribute space. The number of bits in the vector is always
equal to the number of distinct state and attribute spaces.

De�nition 2 A type is a set of domain objects each associated with the same type vector.

De�nition 3 A type vector, V1, in which two distinct bits, si and sj, are set corresponds to
a sub-type of the type associated with a vector, V2, in which only si is set (all other settings

370

Automatic Inference of State Invariants

being equal). Then the type associated with V2 can be seen to be a super-type of the type
associated with V1.

De�nition 4 A type structure is a hierarchy of types organised by sub-type relationships
between the component types.

De�nition 5 A type structure is adequately discriminating if objects are only assigned to
state (and attribute) spaces that characterize their state transitions (and attributes).

De�nition 6 A type structure is under-discriminating if it fails to distinguish types that
are functionally distinct.

De�nition 7 A type structure is over-discriminating if functionally identical objects are
assigned to di�erent types.

There are two distinct ways in which types play a role in the speci�cation of a domain.
They can restrict the set of possible operator instances to eliminate all those that are
meaningless in the domain and hence improve e�ciency by reducing the size of the search
space, and they can eliminate unsound plans that could be constructed if they were not
provided. The following examples clarify the di�erence between these two roles. The
untyped schema:

drive(X,Y,Z)
Pre: at(X,Y), fuelled(X), location(Z)
Add: at(X,Z), unfuelled(X)
Del: at(X,Y), fuelled(X)

permits more instances than the typed schema:

drive(X,Y,Z)

params: X:rocket,Y:package,Z:location
Pre: at(X,Y), fuelled(X), location(Z)
Add: at(X,Z), unfuelled(X)
Del: at(X,Y), fuelled(X)

but all meaningless instances will be eliminated during search because their preconditions
will not be satis�able. On the other hand, the typed schema:

y(X,Y,Z)

params: X:aircraft,Y,Z:location
Pre: at(X,Y)
Add: at(X,Z)
Del: at(X,Y)

ensures that only aircraft can be own, whilst the untyped schema:

371

Fox & Long

y(X,Y,Z)

Pre: at(X,Y)
Add: at(X,Z)
Del: at(X,Y)

allows ying as a means of travel for any object that can be at a location, including packages,
and other objects, as well as aircraft. Tim is capable of automatically inferring all types
playing the restrictive role indicated in the typed drive operator. However, tim cannot infer
type information that is not implicit in the domain description. Thus, given the untyped fly
schema, there are no grounds for tim to infer any type restrictions. Tim will draw attention
to unintended under-discrimination by making packages and aircraft indistinguishable at
the type level, unless there is distinguishing information provided in other schemas. At
the very least tim will make explicit the fact that packages are amongst those objects that
can y. This assists the domain designer in tracking errors and omissions in a domain
description, but unstated intended distinctions cannot be enforced by tim.

2.2 An Overview of the TIM Algorithm

Figure 2 gives a broad outline of the tim algorithm. A more detailed description is given
in Appendix B. The role of each component of the algorithm is described, together with a
commentary on discussing related issues and justi�cations, in Sections 2.3, 2.4 and 2.7.

Broadly, tim begins with an analysis of the domain operators, extracting transition rules
that form the foundations of the property and attribute spaces described previously. These
rules are used to separate properties into equivalence classes from which the property and
attribute spaces are constructed. Tim then analyses the initial state in order to assign the
domain objects to their appropriate spaces. This analysis also identi�es the initial properties
of individual objects and uses them to form states of the objects in the property spaces. The
initial states in a property space are then extended by the application of the transition rules
in that space to form complete sets of states accounting for all of the states that objects in
that property space can possibly inhabit. As described in Section 2.4, attribute spaces do
not behave like FSMs, as property spaces do, and the extension of these is carried out by a
di�erent procedure: one that can add new objects to these spaces, rather than new states.

Tim then assigns types to objects using the pattern of membership of the spaces it has
constructed. Finally, tim uses the spaces to determine invariants that govern the behaviour
of the domain and the objects in it.

2.3 Constructing the Transition Rules

We begin by describing the process by which the transition rules are constructed. The
following de�nitions are required.

De�nition 8 A property is a predicate subscripted by a number between 1 and the arity of
that predicate. Every predicate of arity n de�nes n properties.

De�nition 9 A transition rule is an expression of the form:

property�) property� ! property�

372

Automatic Inference of State Invariants

Construct base PRSs (Section 2.3)
Split PRSs (Section 2.3)
Construct transition rules (Section 2.3)
Seed property and attribute spaces (Section 2.3)
Assign transition rules (Section 2.4)
Analyse initial state (Section 2.4)
Extend property spaces (Section 2.4)
Extend attribute spaces (Section 2.4)
Identify types (Section 2.6)
Construct invariants (Section 2.7)

Figure 2: Outline of the tim algorithm.

in which the three components are bags of zero or more properties called enablers, start and
�nish, respectively.

The double arrow,), is read enables and the single arrow, !, is read the transition
from. So:

E) S ! F

is read: E enables the transition from S to F. The properties in S are given up as a result of
the transition. The properties in F are acquired as a result of the transition. The properties
in E are not given up.

If enablers is empty we write:

start ! finish

If start is empty we write:

Transition rule 1

enablers) null! finish

If �nish is empty we write:

Transition rule 2

enablers) start ! null

The bag null is the empty bag of properties. Its role is to emphasise that, in transition
rule 1, nothing is given up as a result of the transition and, in transition rule 2, nothing is
acquired. Rules that have a null start and a null �nish are discarded because they describe
null transitions.

When the property bags contain more than one element they are separated by commas.
The collection:

pk ; qm; ::: rn

373

Fox & Long

is interpreted to mean that each of the properties in the collection can be satis�ed as
many times as they appear in the collection. The comma is therefore used to separate the
elements of a bag. We use � to denote bag union, 	 to denote bag di�erence,
 to denote
bag intersection and v to denote bag inclusion.

De�nition 10 A Property Relating Structure (PRS) is a triple of bags of properties.

The �rst stage of the algorithm constructs a set of transition rules from a set of operator
schemas. Each operator schema is analysed with respect to each parameter in turn and, for
each parameter, a PRS is built. The �rst bag of properties is formed from the preconditions
of the schema, and the number used to form the property is the argument position of
the parameter being considered. For example, if the precondition is on(X; Y), and the
parameter being considered is X , the property formed is on1. This bag, called precs,
contains the enablers that will be used in the formation of the transition rules. The second
bag, called deleted precs, of properties is formed from all of the preconditions that appear
on the delete list of the schema (with respect to this same parameter). The third bag, called
add elements, contains the properties that can be formed from the add list of the schema.
The PRS contains no deleted elements component { it is assumed that every element on
the delete list of a strips operator appears in the precondition list. This is a reasonable
restriction given that strips operators do not allow the use of conditional e�ects. It is
further assumed that every pair of atoms on the delete list of a schema will be distinct for
all legal instantiations of the schema. This does not constitute a signi�cant restriction since
operator schemas can always be easily rephrased whenever this condition is violated.

We now consider the process by which PRSs are constructed. Given the schema:

drive(X,Y,Z)

Pre: at(X,Y), fuelled(X), location(Z)
Add: at(X,Z), unfuelled(X)
Del: at(X,Y), fuelled(X)

and considering the parameter X , the following PRS will be built:

PRS 1

precs : at1; fuelled1
deleted precs : at1; fuelled1
add elements : at1; unfuelled1

By considering the parameter Y we obtain:

PRS 2

precs : at2
deleted precs : at2
add elements :

and by considering the parameter Z we obtain:

374

Automatic Inference of State Invariants

PRS 3

precs : location1
deleted precs :
add elements : at2

In constructing these structures we are identifying the state transformations through which
the objects, instantiating the operator parameters, progress. Note that objects that instan-
tiateX go from being fuelled and at somewhere to being unfuelled and at somewhere; objects
that instantiate Y lose the property of having anything at them and gain nothing as a re-
sult of application of this operator, and objects that instantiate Z continue being locations
and gain the property of having something at them. We now convert these structures into
transition rules in order to correctly capture these state transformations.

Our standard formula for the construction of rules from PRSs is:

precs	 deleted precs) deleted precs! add elements

Thus, using the PRS 1 above, we could build the rule:

at1; fuelled1 ! at1; unfuelled1

A potential problem with this rule is that it causes at1 and fuelled1 to be linked in state
transformations, so that at1 and fuelled1 become associated with the same property space
and, as a consequence, objects that can be at places, but that cannot be fuelled, may be
indistinguishable from objects that require fuelling before they can be moved. In fact, we
wish the transition rules to express the fact that being fuelled enables things to go from
being at one place to being at another place, whilst not excluding the possibility that there
may be other enablers of this transition.

We therefore begin a second phase of PRS construction by identifying, for special treat-
ment, PRSs in which a property appears in both the deleted precs and the add elements.
This is a property that is exchanged on application of the operator. That is, the relation
continues to hold between the identi�ed argument and some other object or objects (not
necessarily the same object or objects as before the application of the operator). For ex-
ample, in PRS 1, the vehicle is at a new location after application of the operator, and no
longer at the old location. We observe that the vehicle must be fuelled to make this tran-
sition. To separate the transition from this condition we split the PRS. Splitting identi�es
the exchanged properties in a PRS and creates one new PRS for each exchange and one
for the unexchanged properties. Therefore, splitting a PRS always results in at most k+ 1
(and at least k) new PRSs, where k is the number of exchanges that the PRS represents.
By splitting PRS 1 we construct two new PRSs: one characterizing the exchange of the at
property, and one characterising the fuelled to unfuelled transition.

The �rst of the new PRSs is:

PRS 4

precs : at1; fuelled1
deleted precs : at1
add elements : at1

375

Fox & Long

from which the rule
fuelled1) at1 ! at1

is constructed. It should be noted that the property of being fuelled is no longer seen as
part of the state transformation but only as an enabler, which is why it does not appear in
the deleted precs bag in the resulting PRS.

The second new PRS captures the fact that at1 can be seen as an enabler for the
transition from fuelled1 to unfuelled1:

PRS 5

precs : at1; fuelled1
deleted precs : fuelled1
add elements : unfuelled1

In this PRS there are no further splits required since no other properties are exchanged in
it. A more general example is as follows:

PRS 6

precs : p1; p2 � � � pn
deleted precs : p1 � � � pi pi+k � � � pm
add elements : p1 � � � pi q1 � � � qk

from which i PRSs would be constructed to deal with each of the i exchanged pairs and a
�nal PRS, PRS 7, would be constructed to describe the remainder of the transition making
i+ 1 PRSs in total.

PRS 7

precs : p1; p2 � � � pn
deleted precs : pi+k � � � pm
add elements : q1 � � � qk

There is no need to consider additional pairings of add and delete-list elements, since these
would not correspond to exchanges of properties. The splitting process is justi�ed in Sec-
tion 3.1. The standard rule construction formula can be applied to PRS 5, yielding the
rule

at1) fuelled1 ! unfuelled1

It should be observed that, even if the add elements bag contains multiple properties, a
single rule will always be built when the standard construction formula is applied.

On considering the remaining PRSs, 2 and 3, it can be observed that they each contain
an empty �eld: in 2 the add elements �eld is empty and in 3 the deleted precs �eld is empty.
When a PRS has an empty �eld special treatment is required. From PRS 2 we build the
rule

at2 ! null

to represent the fact that the object that instantiates Y gives up the property of having
something at it, and gains nothing in return. From 3 we build the rule

location1) null! at2

376

Automatic Inference of State Invariants

to represent the fact that the object that instantiates Z gains the property of having some-
thing at it by virtue of being a location, and gives up nothing in return. These rules have
a somewhat di�erent status from the ones that characterize the exchange of properties. In
these cases properties are being lost or gained, without exchange, so can be seen as resources
that can be accumulated or spent by domain objects rather than as states through which
the domain objects pass. For example, a location can acquire the property of having some-
thing at it, without relinquishing anything in return, whereas an object that requires fuel
can only become fuelled by relinquishing the property of being unfuelled, and vice versa.
Increasing and decreasing resources are identi�ed as attributes and are distinguished from
states. This distinction will later prove to be very important, since the generation of true
state invariants depends upon it being made correctly. Properties that can increase and
decrease without exchange are not invariant, and false assertions would be proposed as
invariants if they were treated in the same way as state-valued properties.

A rule of the form constructed from PRS 3 must be constructed separately for every
property in the add elements bag because these properties must be individually character-
ized as increasing resources. Rules constructed using null are distinguished as attribute
transition rules. If the null is on the left side of the ! the rule is an increasing attribute
transition rule. If the null is on the right hand side then the rule is a decreasing attribute
transition rule.

A �nal case to consider during rule construction is the case in which a PRS has an empty
precs �eld. This happens if the parameter, with respect to which the PRS was constructed,
did not appear in any of the preconditions of the operator schema. In this case a set of
rules is constructed, one for each property, a, in the add elements bag, of the form

null! a

reecting the fact that a is an increasing resource (the deleted precs �eld will necessarily
also be empty in this case).

De�nition 11 A state is a bag of properties.

When it is necessary to distinguish a bag from a set, square brackets will be used to denote
the bag.

De�nition 12 A property space is a tuple of four components: a set of properties, a set
of transition rules, a set of states and a set of domain constants.

De�nition 13 An attribute space is a tuple of three components: a set of properties, a set
of transition rules and a set of domain constants.

It is helpful to observe here that the state and attribute spaces represent disjoint col-
lections of properties, and that these disjoint collections are formed from the transition
rules by putting the start and finish properties of each rule into the same collection. For
example, given two rules:

E1) [p1; p2; p3]! [q1; q2]

and
E2) [r1; r2]! [s1]

377

Fox & Long

the collections [p1; p2; p3; q1; q2] and [r1; r2; s1] would be formed. If a property appears in
the start or finish of both rules then a single collection will be formed from the two rules.

The last stage in the rule construction phase is to identify the basis for the construction
of property and attribute spaces. This is done by uniting the left and right hand sides of the
rules. Uniting forms collections of properties that each seed a unique property or attribute
space. It is not yet possible to decide which of the seeds will form attribute spaces, so
treatment of both kinds of space is identical at this stage. The enablers of the rules are
ignored during this process. We do not wish to make enablers automatically fall into the
same property spaces as the states in the transformations they enable. This could result
in incorrect assignment of properties to property and attribute spaces since enablers only
facilitate, and do not participate in, state transformations. The output of this phase is the
collection of rules, with some properties marked as attributes, and the property space seeds
formed from the uniting process. All properties that remain unassigned at this stage are
used to seed separate attribute spaces, one for each such property.

The role played by the second phase of PRS construction is to postpone commitment
to the uniting of collections of properties so that the possibility of objects, which can have
these properties, being associated with di�erent property spaces is left open for as long as
possible. It may be that consideration of other schemas provides enough information for
this possibility to be eliminated, as in the following abstract example, but we support as
much type discrimination as possible in the earlier phases of analysis. We consider this
simple example to illustrate the problem.

2.3.1 Postponing Property Space Amalgamation

Given a domain description containing the following operator schema:

op1(X,Y,Z)
Pre: p(X,Y), q(X,Y)
Add: p(X,Z), q(X,Z)
Del: p(X,Y), q(X,Y)

the PRS:

precs : p1; q1
deleted precs : p1; q1
add elements : p1; q1

will be constructed, during the �rst phase, for X . The properties p1 and q1 are bound
together in this PRS, and the resulting rule would be:

p1; q1 ! p1; q1

which forces objects that can have property p1 to occupy the same property space as objects
that can have property q1. Since this PRS models the exchange of p1 we will split it, and
replace it with two new PRSs:

precs : p1; q1
deleted precs : p1
add elements : p1

378

Automatic Inference of State Invariants

precs : p1; q1
deleted precs : q1
add elements : q1

We do not consider other pairings of p1 and q1, since these will be found in the PRSs
of other operator schemas if the domain allows them. The two PRSs generated lead to the
generation of the rules:

q1) p1 ! p1

and

p1) q1 ! q1

The two rules indicate that p1 and q1 should be used to form di�erent property spaces since
they could, in principle, be independent of one another. Then objects assigned to these two
spaces can turn out to be of distinct types. However, if we add the following two schemas:

op2(X,Y)

Pre: q(X,Y)
Add: p(X,Y)
Del: q(X,Y)

op3(X,Y,Z)

Pre: p(X,Y)
Add: q(X,Y)
Del: p(X,Y)

we generate, for X , the PRSs:

precs : q1
deleted precs : q1
add elements : p1

and

precs : p1
deleted precs : p1
add elements : q1

and the rules:

q1 ! p1

and

p1 ! q1

indicating that p1 and q1 should be united in the same set and hence form a single property
space, and that objects that can have these properties are really of the same type. The
uniting overrides the potential for separate property spaces to be formed but, in the absence
of these two schemas, there would have been insu�cient information available to determine
the nature of the relationship between the two properties.

379

Fox & Long

2.4 Constructing the Property Spaces and Synthesising the Types

The objective of this stage is to construct the type structure of the domain by identifying
domain objects with distinct property spaces. Objects can appear in more than one property
space, giving us a basis for deriving a hierarchical type structure.

The �rst part of the process involves completing the seeded property spaces. The �rst
task is to associate transition rules with the appropriate property space seeds. This can be
easily done by picking an arbitrary property of the start or �nish component of each rule
and identifying the property space seed to which that property belongs. There can never
be ambiguity because every property belongs to only one seed and uniting ensures that all
of the properties referred to in a rule belong to the same seed. At this point the distinction
between states and attributes becomes important. Any property space seed that has an
attribute transition rule associated with it becomes an attribute space and is dealt with
di�erently from property spaces in certain respects explained below.

The next step is to identify the domain objects associated with each property space and
attribute space.

For each object referred to in the initial state we construct a type vector in which a bit
is set if the corresponding space is inhabited by the object. An object can inhabit more
than one space. Habitation is checked for by identifying all of the properties that hold, in
the initial state, of the object being considered and allocating them as states, rather than
as properties, to the appropriate state and attribute spaces. When every domain object has
been considered a unique type identi�er is associated with each of the di�erent bit patterns.

The next task is to populate the property spaces with states. The following de�nitions
are required to support the explanation of this process.

De�nition 14 A world-state is a collection of propositions characterising the con�guration
of the objects in a given planning domain description.

De�nition 15 Given a world-state, W , a property space, P = (Ps; TRs; Ss; Os), or an
attribute space, P = (Ps; TRs;Os), and an object o 2 Os, the P -projection of St for o is
the bag of properties, possessed by o in W , each of which belongs to Ps.

The collection of properties of an object, o, in the initial state can be divided into a set of
bags of properties, each bag corresponding to the P -projection of the initial state for o, for
some property or attribute space P . Each bag is added to the state set of the corresponding
property space, or discarded if the corresponding space is an attribute space. We now need
to extend the spaces by, for each property space, adding states that can be inferred as
reachable by objects within that space along transitions within that space. This is done for
every state in the space, including states that are newly added during this process, until no
further new states are reachable. The ordering of the properties within states is irrelevant, so
two states are considered equal if they contain the same properties, regardless of ordering
(they are considered order-equivalent). Since, when we come to use this information in
parts of the process of invariant generation, we will not require knowledge of any inclusion
relations between pairs of states, it is convenient to mark these at this stage. The addition
of reachable states is important for the inference of state invariants, and their use will be
discussed in Section 2.7. The attribute spaces receive di�erent treatment at this point. The

380

Automatic Inference of State Invariants

important di�erence to observe is that, since property spaces characterize the exchange
of properties, objects in a property space must start o� in the initial state as members
of that property space. However, since attributes can be acquired without exchange, it
is possible for objects that do not have particular attributes in the initial state to acquire
those attributes later. This is only possible if the attribute space has an increasing attribute
transition rule associated with it. We now, therefore, consider each attribute space to see
whether further objects can be added by application of any corresponding increasing rule.

An object can be added to an attribute space if it potentiates all of the enablers of an
increasing rule in that attribute space. An object potentiates an enabling property if it
is a member of the state or attribute space to which that property belongs. Membership
of all of these spaces indicates that the object could enter a state in which it satis�es all
of the enabling properties, which would justify an application of the increasing rule. Any
enabling property that is not associated with a state or attribute space is a static condition,
so the initial state can be checked to con�rm that the property is true of the object being
considered.

A complication arises if any enabling property was itself used to seed an attribute space
(in which case it is itself an attribute), because it is then necessary to identify all of the
objects in its attribute space and consider them for addition to the current attribute space.
Of course this could, in principle, initiate a loop in the process but we avoid this by marking
attribute spaces as they are considered and ensuring, by iterating until convergence, that
all of the attribute spaces in the loop are completely assigned. The correctness of this part
of the procedure is discussed in Section 3.

When this is done the state and attribute spaces are complete and the types of the
domain objects can be extracted. The completeness of this construction phase is discussed
in Section 3.1.

2.5 A Worked Example

A fully worked example of all stages of the process will help to clarify what is involved.
Consider a simpli�ed version of the Rocket domain in which there are two operator schemas:

drive(X,Y,Z)

Pre: at(X,Y), fuelled(X), location(Z)
Add: at(X,Z), unfuelled(X)
Del: at(X,Y), fuelled(X)

load(X,Y,Z)

Pre: at(X,Y), at(Z,Y)
Add: in(X,Z)
Del: at(X,Y)

and an initial state containing four constants: rocket, package, London and Paris, and
the relations: at(rocket,Paris), fuelled(rocket) and at(package,London). It can be observed
that this simpli�ed Rocket domain has the rather odd feature that the load schema is not
restricted to loading packages into rockets. This oddity will be highlighted by the analysis
that is constructed, showing how the analysis performed by tim can help in understanding
(and debugging) the behaviour of the domain. From the drive operator schema the following
PRSs are constructed for variables X , Y and Z respectively:

381

Fox & Long

precs: at1, fuelled1
deleted precs: at1, fuelled1
add elements: at1, unfuelled1

precs: at2
deleted precs: at2
add elements:

precs: location1
deleted precs:
add elements: at2

From the load operator schema the following PRSs are constructed for variables X , Y
and Z respectively:

precs: at1
deleted precs: at1
add elements: in1

precs: at2, at2
deleted precs: at2
add elements:

precs: at1
deleted precs:
add elements: in2

and the following rules are built. The �rst PRS generates the �rst two rules and subsequent
PRSs each generate one rule.

fuelled1) at1 ! at1
at1) fuelled1 ! unfuelled1
at2 ! null

location1) null! at2
at1 ! in1
at2) at2 ! null

at1) null! in2

We now construct the following united sets of properties:

fat1; in1g
ffuelled1; unfuelled1g
fat2g
fin2g

382

Automatic Inference of State Invariants

These are used to seed property spaces. We �rst associate the rules with these property
space seeds, resulting in the following assignment:

fat1; in1g at1 ! in1; fuelled1) at1 ! at1
ffuelled1; unfuelled1g at1) fuelled1 ! unfuelled1
fat2g location1) null! at2; at2) at2 ! null;

at2 ! null

fin2g at1) null! in2

The last two spaces have been converted into attribute spaces by their association with
attribute transition rules. The resulting spaces can now be supplemented with domain
constants and their legal states. We �rst identify the subset of the legal states of the
domain objects that are identi�able from the initial state. We do not use the goal state
to provide further information about the properties of objects. The goal state might be
unachievable because objects cannot obtain the required properties. This would invalidate
tim's analysis of the domain. In the initial state the rocket has properties at1 and fuelled1,
the package has property at1, London has property at2 and Paris has property at2. Using
this information we associate domain constants with the developing state and attribute
spaces to obtain:

fat1; in1g at1 ! in1; fuelled1) at1 ! at1 frocket; packageg
ffuelled1; unfuelled1g at1) fuelled1 ! unfuelled1 frocketg

fat2g location1) null! at2; at2) at2 ! null; fLondon; Parisg
at2 ! null

fin2g at1) null! in2

The next step is to add the legal states of these objects, which are identi�able so far, to
the property spaces. This results in the following structures, the �rst two of which can
be extended by inference (as will be explained) into completed property spaces. The last
two will be extended into completed attribute spaces by the addition of objects that can
potentially acquire the associated attributes (also described below).

fat1; in1g at1 ! in1; fuelled1) at1 ! at1 frocket; packageg
[at1]

ffuelled1; unfuelled1g at1) fuelled1 ! unfuelled1 frocketg
[fuelled1]

fat2g location1) null! at2; at2) at2 ! null; fLondon; Parisg
at2 ! null

fin2g at1) null! in2

The last stage in the construction of the two property spaces is to add any states that
can be inferred as reachable, via transition rules, by objects in the property spaces. For
example, packages can go from being at1 to being in1, by application of the rule at1 ! in1,
and since that rule is available in the property space to which package belongs, and at1
is one of the legal states in that property space, we add in1 as a further legal state. In
general, we construct the extension by, for each state in the space, identifying applicable
rules and, for each rule, creating a new state by removing the properties in the start of the

383

Fox & Long

rule and adding the properties in the �nish of the rule. This is done until all further states
are order-equivalent to those already generated. The enablers of the rules are ignored, with
the consequence that some of the new states generated might be unreachable. When this
process is completed in the current example the �nished property spaces are as follows:

Property space 1

fat1; in1g at1 ! in1; fuelled1) at1 ! at1 frocket; packageg

[at1]; [in1]

Property space 2

ffuelled1; unfuelled1g at1) fuelled1 ! unfuelled1 frocketg

[fuelled1]; [unfuelled1]

We now consider each attribute space in turn and add domain objects (not already
members) that potentiate their increasing rules. No new domain objects can be added to
the �rst attribute space since only London and Paris can potentiate the increasing rule,
and they are already present. However, when the second attribute space is considered it can
be observed that rocket and package both potentiate the increasing rule and are therefore
both added as new members. The resulting attribute spaces are:

fat2g location1) null! at2; at2) at2 ! null; fLondon; Parisg

at2 ! null

fin2g at1) null! in2 frocket; packageg

The oddity of the load operator is revealed at this stage, since both package and rocket
have been assigned as members of the in2 attribute space (meaning that they both can have
the attribute of having things in them).

The number of distinct bit patterns that are constructed, indicating object membership
of the state and attribute spaces, determines the number of distinct types that exist in the
domain. Hence, in this simpli�ed encoding of the Rocket domain, there are three distinct
types. The rocket has type [1101], the package has type [1001] and Paris and London both
have type [0010]. These types are given abstract identi�ers, T0; T1 and T2, but might be
more meaningfully interpreted as the types of: movable object requiring fuel, movable object
and location respectively. As expected, London and Paris are of type location, whilst the
package is of type movable object and the rocket is of type movable object requiring fuel,
which is a sub-type of movable object.

The distinction we have made between state and attribute spaces is further exploited in
the process of inferring state invariants, discussed in Section 2.7.

2.6 The Assignment of Types to Operator Parameters

Types are assigned to the parameters of the operators in the following way. Given an
operator schema and a collection of property spaces and attribute spaces we allocate a type
vector to each of the variables in the schema. The membership in the state and attribute
spaces of each of the properties of a given variable is recorded by setting the appropriate bits
in the vector for that variable. Only the properties that appear in the preconditions of the

384

Automatic Inference of State Invariants

schema are considered, because any object that can satisfy the preconditions of an operator
can have the properties represented by the postconditions and is therefore of the right type
for instantiation of the operator. When a type is associated with the vector the union of all
of its sub-types is taken. This union is then the type assigned to the variable. Any domain
object, the type of which is a sub-type of the type associated with the variable, can then
be used to instantiate that variable. To see how this process works, consider the variable X
in the drive schema above. The precondition properties of X are: at1, fuelled1. These are
members of the two property spaces 1 and 2. Therefore, the type vector associated with X

is [1100]. It can be observed that the type vector associated with the rocket is [1101], so that
the type of rocket is a sub-type of the type of X . This is the only sub-type, so the union of
sub-types contains only T0, the type of rocket. This means that X can be instantiated by
rocket, but not by any other domain constant, since no other domain constant has a type in
the appropriate sub-type relation. To type the operator parameters we introduce new type
variables, Tk::Tn for unused values between k and n, where k is the number of existing types
and n is k plus the number of variables in the schema being considered. The type vector
for variable Y will be [0010] and Z will have no type vector because location is a static
relation and Z does not appear as an argument to any other predicate in the preconditions.
Z therefore acquires the same type as London and Paris, the only two objects for which
location is true in the initial state. T4 is a super-type of T2. After taking the unions of the
sub-types we can now specify the drive schema in the following way:

drive(X,Y,Z)
Params: X:T0 Y:T2 Z:T2
Pre: at(X,Y), fuelled(X), location(Z)
Add: at(X,Z), unfuelled(X)
Del: at(X,Y), fuelled(X)

stan exploits the sub-typing relations that have been inferred when constructing in-
stances of the drive operator. Any variable that appears in a schema but does not appear
in its preconditions can be instantiated by objects of any type. This is because the domain
description contains no basis for inferring type restrictions in this case. No variable can
appear on the delete list without appearing on the precondition list, since we assume that
all delete list elements appear as preconditions. So such a variable would have to occur on
the add list. This would mean that, regardless of the properties holding of the object used
to instantiate that variable, in the initial state, it can acquire that add list property freely.
Since this acquisition would occur irrespective of the type of the object, such variables are
essentially polymorphic.

2.7 The Inference of State Invariants

The �nal phase of the computation of tim is the inference of the state invariants from
the property spaces. The attribute spaces are not used for the inference of invariants:
incorrect invariants would be proposed by tim if attribute spaces were inadvertantly used.
This explains the importance of identifying the attribute spaces in the earlier stages of the
algorithm.

The current version of tim is capable of inferring four kinds of invariant, three of which
are inferred from the property spaces (identity invariants, state membership invariants and

385

Fox & Long

invariants characterizing uniqueness of state membership) and one of which is inferred from
the operator schemas and initial state directly (�xed resource invariants). In the simpli�ed
Rocket domain, considered above, an example of an identity invariant is:

8x : Tk:8y:8z:(at(x; y)^ at(x; z)! x = z)

A state membership invariant is:

8x : Tk:(9y : Tn:at(x; y)_ 9y : Tm:in(x; y))

A uniqueness invariant is:

8x : Tk::(9y : Tn:at(x; y)^ 9y : Tm:in(x; y))

To infer the identity invariants each property space is considered in turn, with respect
to their properties and states. If a property, for example Pk with P of arity n > 1, occurs
at most once in any state an invariant of the following form, in which �y and �z are vectors
containing n� 1 values, can be constructed:

8x:8�y:8�z:(P (y1::k�1; x; yk::n�1) ^ P (z1::k�1; x; zk::n�1)! �y = �z)

The form of this invariant can be generalised to deal with the case where there are at most
m > 1 occurrences of Pk in any state in the space. In this case we build the following
expression, in which we have assumed that k = 1, for simplicity.

8x:8�y1:::�ym:(P (x; �y1) ^ ::: ^ P (x; �ym)! (�y1 = �y2 _ �y1 = �y3 _ ::: _ �ym�1 = �ym))

The state membership invariants are of the form:

8x:(Disjunct1 _ :: _Disjunctn)

where each disjunct is constructed from a single state. Thus, if a property space contains k
states there will be at most k disjuncts in the invariant constructed for that property space.
Only one state membership invariant is constructed for each property space.

Given the collection of states in a property space we �rst identify those that are supersets
of other states in the collection. All supersets are discarded, since the invariants that would
be built from them would be logically equivalent to those built from their subset states.
Each remaining state is used to build a single disjunct. If the state being considered contains
a single property, Pk with P of arity n, then the expression

9�y:P (y1::k�1; x; yk::n�1)

is constructed. Of course, if n = 1 then there is no existential quanti�er and the disjunct
is just P (x). If the state contains more than one property, say m of them denoted P 1::Pm,
then we build (again, assuming that k = 1 for simplicity):

9�y1:::�ym:(P
1(x; �y1) ^ P 2(x; �y2)^ ::: ^ Pm(x; �ym))

The uniqueness invariants are constructed in a similar way. For each property space we
begin by analysing the superset states to identify non-exclusive pairs of subset states. For

386

Automatic Inference of State Invariants

example, given the subset states fat1g and fin1g and the superset state fat1; in1g, it can
be observed that the two subset states are not mutually exclusive since at1 and in1 can be
simultaneously held. Having done this analysis and identi�ed all mutually exclusive pairs
of states we mark the subset states as unusable for generation of invariants. The remaining
states are considered in all possible pairings. For every pair of states, P;Q, we generate
an invariant of the following form assuming, for simplicity, that x is in the �rst position in
P 1::Pn and Q1::Qm. The form of the invariant is easily generalised, as before.

8x::(9�y1:::�yn:(P
1(x; �y1) ^ P 2(x; �y2)^ :::^ Pn(x; �yn))

^(9�y1:::�ym:(Q1(x; �y1) ^Q2(x; �y2) ^ ::: ^Qm(x; �ym))))

The fourth kind of invariant can be inferred from the structure of the operator schemas
without reference to the property spaces or domain type structure. We call these invariants
�xed resource invariants since they capture the physical limitations of the domain. Fixed
resource invariants cannot be inferred from the state and attribute spaces because they de-
scribe properties of the domain rather than of objects within it. The following schema from
the Gripper domain provides an example of why �xed resource invariants are distinguished
from the other three kinds:

move(X,Y)

Pre: at robot(X), room(Y)
Add: at robot(Y)
Del: at robot(X)

The PRSs that would be built from this operator are:

precs : at robot1
deleted precs : at robot1
add elements :

precs : room1

deleted precs :
add elements : at robot1

and the rules constructed from these are:

at robot1 ! null

and
room1) null! at robot1

It can be observed that both of these rules are attribute transition rules and that at robot1
is attribute rather than state-valued. This means that no invariants of the �rst three kinds
discussed would be constructed.

The reason for the lack of invariants of the �rst three forms is that the encoding of the
robot is embedded in a predicate, so the robot cannot participate directly in state transitions.
An obvious invariant of the robot, which would naturally be true of this domain, is that the

387

Fox & Long

robot is always in exactly one room but this cannot be inferred using the techniques so far
described. In fact, this is an axiom about the world, or domain, rather than speci�c objects
within it, and has to be obtained from information other than the state transformations of
the objects.

It can be seen from the operator schemas for the Gripper domain that at robot1 is bal-
anced. That is, it is always deleted whenever it is added and added whenever it is deleted.
This means that the number of occurrences of at robot in the initial state determines the
number of occurrences that are possible in any subsequent state. This leads to the con-
struction, for this domain, of the invariant

jfx : at robot(x)gj = 1

since there is only one at robot relation in the initial state. The form of �xed resource
invariants is always equational. Such an invariant states that the size of the set of combina-
tions of objects satisfying a certain predicate is equal (or, in some cases, less than or equal)
to a certain positive integer. Because this integer can be very large it is more convenient to
write an equation than it would be to write a logical expression. The information encoded
in the �xed resource invariants is very useful for identifying unsolvable goal sets without at-
tempting to plan for them. For example, in the ICPARC version of the three-blocks Blocks
world (Liatsos & Richards, 1997), in which there are only three table positions, there must
always be exactly three clear surfaces. Any goal specifying more than three clear relation-
ships can be identi�ed as unachievable from the �xed-resource invariants for that domain.
The �xed-resource and uniqueness invariants produced by tim can be seen as providing a
form of multi-mutex relations, in contrast to the binary mutex relations inferred during the
construction of the plan graph in Graphplan-based planners (Blum & Furst, 1995). Binary
mutex relations indicate that two actions or facts are mutually incompatible, whilst multi-
mutex relations indicate that larger groups of actions or facts are collectively incompatible.
Binary mutex relations, preventing a fact that can be true of only one object from holding
of two di�erent objects simultaneously, can be extracted from the identity invariants that
tim infers. Multi-mutex relations are more powerful than binary ones. Stan can detect
unsolvable goal-sets by using the �xed-resource and uniqueness invariants even when the
binary mutex relations at the corresponding level do not indicate that any problem exists.

To infer these invariants we examine the predicates in the language to see whether
they are exchanged on the add and delete lists of the operator schemas. If a predicate is
exchanged equally in all schemas (it always appears the same number of times on the add
list as on the delete list of a schema) then the predicate corresponds to a �xed resource.
If a single schema upsets this balance then the predicate is not treated as �xed. Given a
�xed resource predicate, it can be inferred that there can never be more combinations of
objects satisfying that predicate than there are in the initial state. Because of the slightly
odd encoding of the rocket world considered in this paper, only location is a �xed resource.
at is not �xed because it is not equally exchanged in the load schema. Examples of �xed
resource invariants inferred from various standard domains are provided in Appendix C.

There are certain circumstances under which it is necessary to infer the weaker invariant
that

jfx : P (x)gj � k

388

Automatic Inference of State Invariants

for some positive integer k. If P holds of multiple objects in the initial state then it is
possible for subsequent state transformations, or attribute acquisitions, to result in states
in which two or more instances of P collapse into one. If P holds multiply often in the initial
state (or in any other reachable state) then it is necessary to build the invariant using �
instead of =. If P is state-valued, and multiple instances never occur in any state in its
property space, then it is safe to assert equality in the construction of the invariant.

Automatic inference of the �rst three kinds of invariants relies on the construction
of the property spaces as discussed in Section 2.4. As has been discussed, the distinction
between state and attribute spaces is critical for the inference of correct invariants. However,
using just the techniques described so far, tim would lose information from which it could
construct useful invariants. To give an example of how this could occur we now consider
the following simple encoding of the standard Blocks world:

move(X,Y,Z)
Pre: on(X,Y), clear(X), clear(Z)
Add: on(X,Z), clear(Y), clear(table)
Del: on(X,Y), clear(Z)

In this operator, used by Bundy et al. (1980), the add list element clear(table) makes
reference to a constant. If the operator schema were to be submitted to our analysis in its
current form no PRS would be built for the constant, so the rules that would be constructed,
and hence the state and attribute spaces constructed, would fail to record the fact that every
application of move results in a state in which the table is clear. The resulting analysis
would result in incorrect invariants and types. Grant (1996) identi�es this version of the
move operator as awed, because of the need to maintain state correctness by the addition
of the invariant clear(table) to the add list. However, we can analyse this schema correctly
if we �rst abstract it to remove the constant, yielding the following new schema:

move(X,Y,Z,T)
Pre: on(X,Y), clear(X), clear(Z), table(T)
Add: on(X,Z), clear(Y), clear(T)
Del: on(X,Y), clear(Z)

Now, given an initial state in which blockC is on blockA and blockB is on the table,
we add the proposition table(table) (so that the new precondition can be satis�ed) and the
property and attribute spaces that are constructed are as follows:

fon1g clear1) on1 ! on1 fblockA; blockB; blockCg
[on1]

fon2; clear1g on2 ! clear1; clear1 ! on2; fblockA; blockB; blockC; tableg
table1) null! clear1

The second of these is an attribute space, so our invariant extraction algorithm is not
applied to it. Consequently, the only invariants we can infer are those that characterize
the positions of blocks (every block is on exactly one surface). This is a pity, as there
is information available in the attribute space that could yield useful extra invariants. In
particular, we would like to infer the invariant that every block can be either clear or have

389

Fox & Long

something on it, but it cannot be both clear and have something on it. The reason we
cannot infer this as an invariant is because it would be asserted to hold for every object in
the attribute space, including the table, even though it is not actually true of the table (the
table can have things on it and still be clear).

2.7.1 Sub-space Analysis on Property and Attribute Spaces

The solution to the problem of loss of invariants is to decompose any property or attribute
space that contains k > 1 object types into k sub-spaces. A property sub-space is struc-
turally identical to a property space. Attribute sub-spaces are identi�ed but not used, as
no invariants can be obtained from them. Property sub-spaces can be obtained by analy-
sis on attribute spaces, as the following example will show. The reason for distinguishing
sub-spaces from property and attribute spaces is that the properties are not partitioned
in sub-spaces as they are in the property and attribute spaces. The original property or
attribute space is not discarded and the sub-spaces are not used for determining the types
of objects. The only role of the sub-space analysis is to enable the construction of additional
invariants.

We now consider the Blocks domain described in the previous section as an example of
the bene�ts of sub-space analysis. At the point of invariant construction the types of the
domain objects have been identi�ed by their property and attribute space membership, so
table is already known to be of a di�erent type to that of the blocks. This is because table is
not a member of the property space for on1. Therefore, two sub-spaces can be constructed
from the attribute space, one for the type [11], of blocks, and one for the type [01], of
tables. No sub-spaces can be constructed from the property space because it contains only
one type of object. The rules associated with the sub-spaces will be all of the rules from the
original attribute space that are enabled by objects of the appropriate type. The second
of the two sub-spaces is an attribute sub-space because of the inclusion of the increasing
attribute transition rule. At this stage the two sub-spaces are as follows:

fon2; clear1g on2 ! clear1; clear1 ! on2 fblockA; blockB; blockCg
fon2; clear1g table1) null! clear1; on2 ! clear1; ftableg

clear1 ! on2

The attribute sub-space will not be used for invariant construction because it contains an
attribute transition rule and would result in incorrect invariants (as is the case for attribute
spaces), so there is nothing to be gained from developing it further. However, the state
sub-space is now completed by the addition of the states associated with the objects in the
space, both in the initial state and by extension. The resulting sub-spaces are:

fon2; clear1g on2 ! clear1; clear1 ! on2 fblockA; blockB; blockCg

[on2]; [clear1]
fon2; clear1g table1) null! clear1; on2 ! clear1; ftableg

clear1 ! on2

From the new state sub-space we can infer the following invariants, using the type name
Block to stand for the type vector [11]. We infer the identity invariant:

8x : Block � (8y � 8z � (on(y; x)^ on(z; x)! y = z))

390

Automatic Inference of State Invariants

the state membership invariant:

8x : Block � (9y : Block � on(y; x)_ clear(x))

and the unique state invariant:

8x : Block � :(9y : Block � (on(y; x)^ clear(x)))

Although there is an additional invariant, that the table is always clear, we cannot infer
this at present.

2.8 The Problem of Mixed Spaces

It can happen that the encoding of a domain conceals the presence of attributes within
schemas until the point at which property space extension occurs. This can prevent the
property space extension process from terminating. For example, a simple lightswitch do-
main contains the following two schemas:

switchon(X)

Pre: o�(X)
Add: on(X), touched(X)
Del: o�(X)

switcho�(X)

Pre: on(X)
Add: o�(X), touched(X)
Del: on(X)

and an initial state in which switchA is on. Two PRSs are constructed:

precs : o�1
deleted precs : o�1
add elements : on1; touched1

precs : on1
deleted precs : on1
add elements : o�1; touched1

giving rise to two rules:
o�1 ! on1; touched1

and
on1 ! o�1; touched1

Uniting then seeds one property space containing all three properties. After addition of the
rules the property space is as follows:

fon1; o�1; touched1g o�1 ! on1; touched1; fswitchAg
on1 ! o�1; touched1 [on1]

391

Fox & Long

It is at the point of extension of the space that the problem arises. The following states
are added: [o�1; touched1], [on1; touched1; touched1], [o�1; touched1; touched1; touched1] and
so on. We cannot simply avoid adding properties that are already in the state being ex-
tended because the two, apparently identical, properties might in general refer to di�erent
arguments.

The problem here is due to the fact that touched1 is actually an increasing attribute
but this does not become apparent in the PRSs. The consequence is that mixed spaces are
constructed. A mixed space is a property space containing hidden attributes. Tim detects
hidden attributes by checking, on extension, that no new state contains a state already
generated from the same initial state starting point. Thus, on extension of the mixed space
above, tim would detect the hidden attribute when the state [on1; touched1; touched1] is
constructed, because this state contains the state [on1] that initiated this extension.

Having detected the hidden attribute there are two possibilities: either tim can convert
the mixed space into an attribute space, in which case no invariants will be constructed, or
it can attempt to identify the attribute and split the mixed space into an attribute space
and a property space containing the state-valued components of the mixed space. We take
this option and split the state. This allows us to infer invariants concerning the state-valued
properties.

tim takes the di�erence between the including and included states and, for each distinct
property in the di�erence, processes the rules by cutting any rule containing that property
into two rules, at least one of which will be an attribute rule. The following method is
used to cut the rules. In the following, attr+ indicates one or more occurrences of the
attribute-valued property and the comma is overloaded to mean both bag conjunction and
bag union. If the rule is of the form:

enablers) start ! adds; attr+

then the two new rules will be of the forms:

enablers; start) null! attr+

and
enablers) start ! adds

If the rule is of the form:

enablers) attr+; precs! adds

then the two new rules are of the forms:

enablers; precs) attr ! null

and
enablers; attr) precs! adds

The rule cutting separates the attribute-valued properties from the state-valued properties.
Now pure attribute and property spaces can be constructed. However we do not discard
the original mixed space because it has been used in determining the type structure of

392

Automatic Inference of State Invariants

the domain. Any additional type information that could be extracted from the state and
attribute spaces built following this analysis is not currently exploited.

When this analysis is applied to the lightswitch domain, the following new property
space and attribute space are built:

fon1; o�1g o�1 ! on1; on1 ! o�1 fswitchAg
[on1]; [o�1]

ftouched1g o�1) null! touched1; on1) null! touched1 fswitchAg

Using Lightswitch to stand for the type [11], the following state membership invariant
can be constructed from the property space:

8x : Lightswitch � (on(x) _ o�(x))

tim also constructs the uniqueness invariant:

8x : Lightswitch � :(on(x) ^ o�(x))

3. Properties of TIM

The correctness of tim relies on it constructing only necessarily true invariants. The demon-
stration that only true invariants are constructed guarantees the construction of an ade-
quately discriminating type structure. We cannot guarantee against under-discrimination
but we argue that over-discrimination does not occur in the type structures generated by
tim. These properties were de�ned in Section 2.1.

Over-discrimination would be the result of distinguishing functionally identical objects
at the type level. This would occur if tim placed objects that participate in identical
state transitions in di�erent property spaces but, because of the underlying partitioning of
properties between property spaces, this cannot happen. Further, membership of di�erent
property spaces requires that there be distinguishing state transformations, which there
are not in functionally identical objects. Flawed assignment (assigning an object to a
property space without its corresponding state transformations), should simply be seen as
erroneous, rather than as over-discrimination. The possibility of this occurring can be
excluded because property and attribute space construction and extension are shown to be
correct in Section 3.1.

A failure to detect type di�erences (under-discrimination) in the domain will result
in weak invariants, and over-discrimination, if it could occur, would lead to over-targeted
invariants that would still be true, but only for a subset of the objects they ought to
cover. Flawed assignment would clearly lead to the construction of false invariants. Under-
discrimination, which can arise, therefore a�ects the completeness of the state-invariant
inference procedure. It can also lead to over-generalisation of the operators since the types
assigned to the operator parameters will be equally under-discriminating. This can en-
able meaningless instances to be formed, needlessly increasing the size of the search space
that must be explored by the planner. This clearly raises e�ciency issues but it does not
undermine the formal properties of the planner that exploits tim.

As observed, the consequence of under-discrimination is the construction of weak (but
valid) invariants. The following example illustrates how under-discrimination can occur.
Given a schema:

393

Fox & Long

op(X,Y)

Pre: p(X,Y)
Add: q(X,Y)
Del: p(X,Y)

and an initial state in which
p(a; c); p(b; c); q(b; d)

hold, the following two property spaces are constructed:

fp1; q1g p1 ! q1 fa; bg

[p1]; [q1]; [p1; q1]; [q1; q1]
fp2; q2g p2 ! q2 fc; dg

[q2]; [p2; p2]; [q2; p2]; [q2; q2]

Given these property spaces it is impossible to distinguish a from b or c from d, even
though analysis of the operator schema and initial state reveal that a is functionally distinct
from b and c from d. It can be seen that, although a must always exchange a p1 for a q1,
b can have both p1 and q1 simultaneously. A similar observation can be made for c and
d. However, the process by which invariants are constructed cannot gain access to this
information. An identity invariant constructed for the �rst property space is:

8x : T � 8y � 8z � 8u � (q(x; y)^ q(x; z)^ q(x; u)! y = z _ y = u _ z = u)

This invariant is weaker than is ideal, because a can participate in only one q relation (b can
participate in two simultaneously). A state membership invariant for this property space
is:

8x : T � ((9y : T1 � p(x; y))_ 9y : T1 � q(x; y))

which understates the case for b, which can have p1 and q1 simultaneously. No unique
state invariant is constructed for this property space, because p1 and q1 are not mutually
exclusive.

3.1 Correctness and Completeness of the Transition Rule Construction Phase

The correctness of the algorithm used in tim depends on two elements. Firstly, the property
spaces identi�ed by the algorithm must be correctly populated. That is, no objects should
be assigned to property spaces to which they do not belong and every achievable state must
be included in the appropriate property space. Secondly, these property spaces must only
support the generation of correct invariants. This second element is examined in Section 3.2.

An interesting relationship exists between the states in a property space and the invari-
ants generated from the space. Incorrect invariants will be contructed if a property space is
missing achievable states. This is because the state membership invariants assert that each
object in the property space must be in one of the states in the property space. If states
are missing then this invariant will be false. We now prove that all achievable states will
be in the appropriate property space.

Theorem 1 Given an initial state, I, a collection of operator schemas, O, a property space,
P = (Ps; TRs; Ss; Os), generated by tim when applied to I and O, and any state, St, which

394

Automatic Inference of State Invariants

is reachable from I by application of a valid linearised plan formed from ground instances
of operator schemas in O, then for any o 2 Os, the P -projection of St for o, StoP , is in Ss.

Proof:

The proof is by induction on the length of the plan that yields the state St. In the base
case the plan contains no operator instances so St = I . The P -projection of I for o is in
Ss, by de�nition of the �rst phase of the property space construction process described in
Section 2.4.

Suppose St is generated by a plan of length k + 1, with last step a and penultimate
state pre-St. Let the P -projection of pre-St for o be pre-StoP . By the inductive hypothesis,
this state is in Ss. If a does not a�ect the state of o, then the P -projection of St for o
will be pre-StoP , and therefore in Ss trivially. Otherwise, consider the operator schema,
Op 2 O, from which a is formed. As described in Section 2.7, no constants appear in Op

and all variables in the body of Op are parameters of Op. Let the initial collection of PRSs
constructed from Op, for those parameters instantiated with o in the creation of a, be the
set PRS1:::PRSn where every PRSi has the form:

precs : Pi

deleted precs : Di

add elements : Ai

and the initial collection is the collection formed prior to splitting.
For each value of i the ith PRS will lead to the construction of k + 1 transition rules,

where k is the size of the bag intersection, Xi, of Di and Ai. The k rules will be of the
following form:

8c 2 Xi � (Pi 	 fcg) c! c)

and the remaining rule will be of the form:

Pi 	 (Di 	Xi)) (Di 	Xi)! (Ai 	Xi)

We refer to the latter rule for PRSi as the ith complex rule. A subset of the n complex
rules will contain a property in Ps in either the start or the �nish and will, therefore, be
relevant to the transition from pre-St to St. It can be observed that these m complex
rules (PRS1:::PRSm without loss of generality) must be in P because of the uniting process
described in 2.3.

We de�ne pres(a)oP to be the P -projection of the preconditions of a for o. Similarly,
adds(a)oP and dels(a)oP are de�ned to be the P -projections of the add and delete lists
respectively. By construction of the PRSs, de�ned in Section 3.1,

pres(a)oP =
mM

1

Pi

adds(a)oP =
mM

1

Ai

dels(a)oP =
mM

1

Di

395

Fox & Long

Because of the restriction that delete lists must be a subset of preconditions, and the
fact that a is applicable to pre-St, it follows that dels(a)oP v pres(a)oP v pre-StoP . Since
v represents bag inclusion it can be seen that all of the separate bags Di are included in
pre-StoP without overlap.

The extension process involves the iterated application of the rules as explained in
Section 2.4 and indicated in the pseudo-code algorithm presented in Appendix B.

For a rule to be applicable to a state its start must be included in the state. Therefore
the m complex rules are all applicable, regardless of the sequence of application, to pre-StoP .
It follows that the state

(pre-StoP 	
mM

1

(Di 	Xi))�
mM

1

(Ai 	Xi)

is generated in the extension process. By de�nition of Xi, and the fact that Di v pre-StoP ,
this state can be written as:

(pre-StoP 	
mM

1

Di)�
M

Ai

which, as observed above, is just:

(pre-StoP 	 dels(a)oP)� adds(a)oP

which equals StoP by the standard semantics of operator application in strips.

2

The proof demonstrates that splitting, discussed in 2.3, does not result in the generation
of invalid invariants. However, splitting can compromise the completeness of the invariant-
generation process. It can result in the inclusion of unreachable states in property spaces,
with the consequence that the identity and state membership invariants that are generated
are weaker than would otherwise be the case. This is further discussed in Section 3.2.

We now explain the role of splitting in the PRS construction phases. Each domain
object in a strips domain has an associated �nite automaton in which the states consist of
the properties (for example, at1) it can have, either initially or as a result of the application
of an arbitrary length sequence of operators. Objects that can be observed to be of the
same type will have identical automata at the property level. The PRSs capture the ways
in which operator applications modify the con�gurations of individual objects and hence
provide an encoding of these automata.

The PRSs are built in two phases. In the �rst phase, all of the parameters in all of the
schemas are considered, so all possible object state transitions are captured. However, some
of these transitions conceal the functional distinctions inherent in the domain description
and would lead to premature amalgamation of property spaces, as was observed in the
discussion of the Rocket domain in Section 2.5. In that example it was observed that use
of our standard formula for the construction of rules from these PRSs alone would result in
the failure to detect the type distinction between rockets and packages.

The second phase assists the type inference processes in avoiding under-discrimination
by distinguishing enablers of a state transformation from the properties that are exchanged

396

Automatic Inference of State Invariants

during the transformation. Each PRS characterizing the exchange of k properties is split
to form at most k + 1 new PRSs. The PRSs 4 and 5, given in Section 2.3, show how two
PRSs are constructed from a single PRS containing a single exchanged property. This is a
simple example, as only one split is required to remove exchanges. In general it might be
necessary to split repeatedly until all exchanges are removed, as shown in the example given
by PRS 6 in Section 2.3. No non-exchange combinations of the properties in deleted precs
and add elements should be considered during splitting. The resulting PRSs lead to the
construction of transition rules which allow generic state transformations, such as movement
from one location to another, to be separated from the speci�c nature of the objects that
can make those transformations.

It can be observed that the rules that result from the splitting process are more general
than the rules that would have been obtained from the PRS prior to splitting. They
distinguish more precisely between the properties that take part in state transitions and
the properties that simply enable those transitions, allowing �ner type distinctions to be
inferred on the basis of the functionalities of the objects in the domain. Finer distinctions
are made during the process of seeding property and attribute spaces by uniting. This is
because uniting merges, into single equivalence classes, all of the properties that appear in
both the start and �nish of a rule.

We argue that all state transformations are accounted for by the end of this second
phase. The result of the second phase is that the automata formed during the �rst phase
are separated into collections of simpler automata where possible, so that no transitions
are lost but there is a �ner grained encoding of the possible transitions that can be made
by objects with appropriate properties. The PRSs constructed in this phase support the
construction of rules that allow objects making these transitions to occupy di�erent property
spaces. Some of the second phase PRSs may be under-constraining, in the sense that
analysis of subsequent schemas might eliminate the possibilities they are keeping open, as
in example 2.3.1, but the set of PRSs obtained at the end of the second phase cannot be
over-constraining because all of the �rst phase PRSs are considered for splitting.

A subtlety concerns the consequence, at the type level, of assigning two functionally
distinct objects to the same state or attribute space. For example, in example 2.5, rocket
and package are both assigned to the property space for fin1; at1g and the attribute space for
fin2g. However, because rocket can be fuelled or unfuelled, and the package cannot, there is
a distinction between them that emerges in the property and attribute membership vectors
associated with the rocket and package objects. Membership of the additional property space
for ffuelled1; unfuelled1g means that rocket is assigned a type that is a sub-type of the type
of package and the functional distinctness of rocket and package is recognised. As discussed,
there is an oddity in this encoding that results in the package being assigned membership
of the fin2g attribute space. Furthermore, at1 and in1 were united, with the e�ect that
rockets can make the at1 ! in1 transition and can be used to instantiate variables of type
movable object, even when variables of this type are intended only to be instantiated with
the package. There is nothing in the domain description to prevent this interpretation. A
more conventional encoding of the load schema would prevent the rocket from being loaded
into any other object, and this would cause a re�nement in the type structure that would
identify loadable objects, and would prohibit the use of the rocket in forming instances of
operators that should be restricted to operating on those objects.

397

Fox & Long

The construction of transition rules follows a simple rule whereby any undeleted precon-
ditions are used to enable a transformation from a state in which the deleted preconditions
of a PRS hold to one in which the added elements of the PRS hold. Given the assumption
that all deleted atoms in an operator schema must appear as preconditions in that schema,
these rules correctly characterize strips-style state transformations. All possible transfor-
mations are captured because of the second phase of PRS construction. A complete set of
correct transition rules is therefore constructed.

Given the correctness and completeness of the transition rule construction phase, correct
initial allocation of objects to spaces depends simply on correctly checking membership of
the initial properties of the object in the property sets, formed by uniting the rules, that
are used to seed the spaces. Extension of the property spaces is done by straightforward
application of the transition rules, so all con�gurations of properties that can be occupied
by the objects in the property space will have been added by the end of the extension phase.
Extension of the attribute spaces is unproblematic in the cases where no potential enabler
is itself an attribute. If one is, then the process by which the attribute space of that enabler
is completed could, it appears, initiate a loop in the attribute space extension process. In
fact, this does not happen as tim is able to detect when a loop has occurred and avoid
repeatedly iterating over it.

The following example illustrates the problem and the way it is solved in tim. Suppose
we have three attribute spaces:

Attribute space 1

fq1g p1) null! q1 fa; bg

Attribute space 2

fr1g q1) null! r1 fcg

Attribute space 3

fp1g r1) null! p1 fdg

These spaces are extended by the addition of objects that potentiate their increasing rules,
as discussed in Section 2.4. No problem arises if the enablers of these rules are states, and
not attributes, but in the extension of attribute space 1 above the enabler, p1, is an attribute.
The attribute space for p1 has not yet been extended, so it is necessary to complete that
space before using it to complete 1. Extension of 3 requires the extension of 2, for the same
reason, and that requires the extension of 1 which requires the extension of 3, and so on.

The way tim avoids re-entering this loop is by marking each space, as it is considered, as
having been seen on this iteration. When a marked space is encountered it is not extended
but is used as if it is already complete. Then a second iteration is required to extend
any spaces that still require completion. Subsequent iterations will be required until the
process converges. Our experiments suggest that it is unusual for there to be more than
two iterations required. A worst case upper bound is o � As, where o is the number of
domain constants and As is the number of attribute spaces (which is limited by the number
of properties), and hence quadratic in the size of the domain description.

398

Automatic Inference of State Invariants

If the extension process starts with attribute space 1, in the above example, attribute
space 1 will be marked as having been seen on the �rst iteration. Tim then goes on to
extend space 3 because the extension of space 1 depends upon space 3 being complete.
Space 3 is marked as having been seen on this iteration and space 2 is considered. Space 2
is marked and space 1 is revisited. Because space 1 is marked tim infers that a loop has
been entered. Its objects are added to space 2 without extension and the objects of space 2
are then added to space 3. Finally, the objects of space 3 can be added to space 1 and the
�rst iteration is complete.

fq1g p1) null! q1 fa; bg [fc; dg

fr1g q1) null! r1 fcg [fa; bg
fp1g r1) null! p1 fdg [fc; a; bg

However, space 2 is not yet complete, so a second iteration is required. This iteration
starts in the same place as the �rst and the process is repeated, except that no further
iterations will be required in this example.

3.2 Correctness of the State Invariants

We now argue for the correctness of the invariant inference procedure by considering each
of the four kinds of invariant in turn. The following arguments rely upon correctly dis-
tinguishing property spaces from attribute spaces, since the invariant analysis cannot be
performed on attribute spaces. The only scope for confusing this distinction is in the exten-
sion of mixed spaces, but we extract attributes from mixed spaces by checking for inclusion
of existing states in the new states generated during extension. This process was discussed
in Section 2.8.

De�nition 16 Given a property space P = (Ps; TRs; Ss; Os), Ss can be partitioned into
three disjoint sets: Sssubs and Sssups that contain all of the states in Ss that are included
(as bags) or that include (as bags), respectively, at least one other state in Ss and Ssind
that contains all of the independent states in Ss that are neither in Sssubs nor in Sssups.

Theorem 2 Given a property space P = (Ps; TRs; Ss; Os), in which the set of states Ss
is a union of the three disjoint sets of states Ssind, Sssubs and Sssups, for each object, o, in
Os the following families of invariants will hold:

1. identity invariants;

2. state membership invariants;

3. unique state invariants.

as de�ned in Section 3.2.

Proof:

We address each kind of invariant in turn. By Theorem 1 every object in Os must be in
a state in Ss. Furthermore, all states of each object in Os, with respect to each property in
Ps, will be in Ss. This follows because the properties are partitioned between the spaces

399

Fox & Long

during the seeding process. Therefore, the maximum number of occurrences of a property
p in Ps, possessed by any object in Os in any state of the world, will be bounded by the
maximum number of instances of that property in any state in Ss (these maximum values
might not be equal since Ss can contain inaccessible states). The identity invariants simply
express this bound on the properties of the objects in Os.

Every object in Os must be in a state in Ssind[Sssubs . This follows by de�nition of
these sets in De�nition 16 and by Theorem 1. The state membership invariants assert that
every object in Os must be in at least one of these states, with each disjunct in the invariant
corresponding to the assertion of membership of one of these states.

To argue for the correctness of the unique state invariants, we observe that the proposed
invariants would only be false if they paired states that were not mutually exclusive. In
this case, either the state extension process would have put properties that could be simul-
taneously held into the same bag, or such properties would be simultaneously held in the
initial state and hence would appear in the same bag on initial construction of the property
space. In either case, a state will exist in the property space that is a superset of both of
the non-exclusive states. However, uniqueness invariants are generated for pairs of states
drawn only from Ssind [Sssups so these non-exclusive pairs of states will not lead to the
generation of incorrect invariants.

2

The �xed resource invariants are always associated with a particular predicate. If atoms
built with that predicate are balanced on the add and delete lists of all of the operator
schemas then the number of occurrences of these atoms in the initial state is �xed over all
subsequent states. This is what the invariant expresses. An invariant is constructed for
every predicate that forms balanced atoms.

Since no new techniques are required to infer invariants from sub-spaces, no further
argument is required to support correctness of the invariants formed following sub-space
analysis.

Although Theorem 2 demonstrates the correctness of the invariants inferred by tim it
is possible for weak invariants to be inferred from the presence of unreachable states in Ss.
Weak identity invariants are inferred if an unreachable state is generated, during extension,
containing more instances of a property than are contained in any reachable state. When
this happens an identity invariant will be generated that is weaker than would be ideal, but
is still valid. Further, if a property space contains unreachable states they will cause the
inclusion of additional false disjuncts in the state membership invariants, but since these
false disjuncts will not exclude satisfying assignments their presence will not invalidate
the invariants. Unreachable states cause additional tautologous uniqueness invariants to be
generated but do not a�ect the strength of the invariants that refer only to reachable states.
Clearly we cannot hope to identify all of the unreachable states, as such an analysis would
be as hard as planning itself.

Because no invariants are generated for attribute spaces tim cannot be claimed to be
complete. Sub-space analysis recti�es this to some extent by identifying property spaces
that exist within attribute spaces and allowing further invariants to be generated. This
analysis could be further re�ned.

400

Automatic Inference of State Invariants

3.3 E�ects of TIM on the Properties of the Planner

Tim is itself sound, so no planner that uses tim is in danger of losing soundness as a result.
Tim is certainly not complete for all domain axioms because there are invariant properties of
other kinds that cannot be extracted by the current version. For example, Kautz and Selman
(1998) identify optimality conditions and simplifying assumptions amongst the di�erent
kinds of axioms that might be inferred from a domain. An optimality condition in the
Logistics domain might be: a package should not be returned to a location it has been
removed from. A simplifying assumption in the same domain might be: once a truck is
loaded it should immediately move (assuming all necessary loads can be done in parallel).
These constraints require a deeper analysis of the domain than is currently performed by
tim, but we intend to characterise them and infer them in our future work.

We cannot guarantee that the type structure inferred by tim is always fully discrimi-
nating, although we do guarantee that it is not over-discriminating. However, failure on
tim's part to infer all of the structure that is there to be inferred does not impact on the
completeness of a planner using tim because, in these cases, tim will return an unstructured
domain and the planner can therefore default to reasoning with the unstructured domain
when necessary.

4. Experimental Results

An examination of tim's performance can be carried out on several dimensions. We consider
three speci�c dimensions here: the viability of the analysis on typical benchmark domains;
the scalability of the analysis and the utility of performing the analysis prior to planning. Its
general performance on standard benchmark problems provides an indication of the scale of
the overhead involved in using tim as a preprocessing tool. All experiments were performed
under Linux on a 300MHz PC with 128 Mb of RAM. Figure 3 shows that, even on large
problem instances, the overhead is entirely acceptable. All of the Mystery problems listed
in this table are very large (involving initial states containing hundreds of facts) and could
not be solved by stan, ipp (Koehler, Nebel, & Dimopoulos, 1997) or Blackbox (Kautz &
Selman, 1998) in the aips-98 competition. The nature of the Mystery domain is described
in Appendix C. This emphasises the relative costs of the preprocessing and planning e�orts.

The selection of problems used to construct table 3 is justi�ed as follows. In the Blocks
world we have used a representative example from each of three encodings supplied in the
pddl release. These are: the simple encoding (prob12), the att encoding (prob18) and the
snlp encoding (prob23). The Hanoi set contains a collection of reasonably sized problems.
A representative group of relatively large Mystery instances was chosen from the pddl

release. The two Tyre world instances are the only two strips instances available in the
release. The three Logistics problems are the three largest for the simple strips encoding
included in the pddl release.

The second dimension is scalability of the analysis. An analytic examination of the
algorithm can determine an upper bound on performance that is polynomial in all of the
key domain and problem components, including number of operator schemas, number of
literals in operators, numbers of objects and facts in the initial state and the number and
arities of predicates in the language. Figure 4 shows that the performance of tim is roughly
quadratic in the size of the problem speci�cation. In the graph, size is crudely equated with

401

Fox & Long

Domain and problem Parse time Analysis time Output time Total

Blocks prob12.pddl 2 0 2 5
prob18.pddl 3 1 2 7
prob23.pddl 2 1 1 5

Hanoi 3-disc 2 1 4 7
4-disc 2 1 4 7
5-disc 3 1 4 8
6-disc 3 1 4 9
7-disc 4 2 4 11

Mystery prob060.pddl 17 15 9 43
prob061.pddl 48 82 29 160
prob062.pddl 26 37 10 74
prob063.pddl 11 7 8 27
prob064.pddl 21 21 10 52

Tyre-World prob01.pddl 5 2 28 36
prob02.pddl 6 2 28 37

Logistics prob04.pddl 4 2 5 12
prob05.pddl 4 2 6 12
prob06.pddl 4 2 6 13

Figure 3: Table showing tim's performance in milliseconds on standard domains and prob-
lems. All timings are elapsed times and minor discrepancies in totals arise from
rounding.

402

Automatic Inference of State Invariants

0

2000

4000

6000

8000

10000

12000

0 10000 20000 30000 40000 50000 60000 70000 80000

Millisecs

Size of �le

Tim Analysis of Mystery Domain

������������������������
���� ��

�� �
�� � �

��
�

�

�

Figure 4: Graph showing tim's performance on Mystery problems, plotting time against
size (in characters) of problem �le. The solid line is a plot of a quadratic function.

the number of characters in the speci�cation �le. This graph was constructed by running
tim on all of the strips Mystery domain problems in the pddl release. The increasing
sizes of the problem speci�cations reect increases in any and all of the various categories
of objects in the domain and corresponding facts to describe their initial states.

Figure 5 shows the e�ect on tim's performance as the number of operator schemas
increases. This graph was constructed using an arti�cial domain in which each new operator
causes two new state transitions described by two new literals. Thus, both number of
operators and number of properties is increasing whilst the number of objects stays constant.
The domain is described in detail in Appendix E. The graph indicates the linear growth of
cost of analysis.

The �nal dimension for evaluating tim is the e�ect of exploitation of its output by a
planner. Gerevini and Schubert (1998) and Kautz and Selman (1998) provide convincing
evidence supporting the powerful role of state invariants in enhancing the performance of
SAT-based planning. In Figure 6 we demonstrate the power of inferred types by showing the
advantage that stan with tim obtains over stan without tim on untyped Rocket domain
problems. Figure 6 shows the e�ect on performance of increasing the number of packages
to be transported. The time taken by stan with tim grows linearly, whilst stan without
tim follows a cubic curve. If there are p packages in a problem instance then stan with tim
constructs 4(p+1) operator instances while stan without tim constructs (p+3)2(p+5)+2p
instances. This demonstrates that type information is the most signi�cant factor in the
advantage depicted in the graph. Figure 7 demonstrates that a similar improvement is
obtained in the Logistics domain. In this graph a series of sub-problems were considered in

403

Fox & Long

20

25

30

35

40

45

50

55

60

65

70

0 2 4 6 8 10 12 14 16

Millisecs

Number of operators

Tim Performance with Increasing Number of Operators

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

Figure 5: Graph showing the consequences of increasing the number of schemas and in-
ferrable property spaces.

0

2000

4000

6000

8000

10000

12000

0 5 10 15 20 25 30 35 40

Millisecs

Number of packages

The E�ect of Tim on the Performance of Stan

STAN without TIM 3

3 3 3 3 3 3 3 3
3
3
3
3
3

3

3

3

3

3

3

STAN with TIM +

+ + + + + + + + + + + + + + + + + + +

Figure 6: Graph showing comparison between stan with and stan without tim on Rocket
domain problems generated from the Rocket domain provided in Appendix D.

404

Automatic Inference of State Invariants

0

2000

4000

6000

8000

10000

12000

1 1.5 2 2.5 3 3.5 4 4.5 5

Millisecs

Number of sub-problems

The E�ect of Tim on the Performance of Stan

STAN without TIM
STAN with TIM

Figure 7: Graph showing comparison between stan with and stan without tim on Logistics
domain problems.

which each sub-problem involves the independent transportation of a single package between
two cities.

In very simple domains, the overhead of carrying out this analysis can outweigh the
advantages o�ered. For example, in the Movie domain used in the competition stan gained
no bene�ts from using tim but paid the overhead to the detriment of its performance on
instances from that domain. However, in general we observe that the bene�ts of this analysis
increase with the increasing complexity of domains.

5. Related Work

Although the importance of state invariants for e�cient planning has been observed there
has been relatively little work on automatic inference of invariants. The published work that
most closely resembles the research described in this paper is the state constraint inference
system discoplan, of Gerevini and Schubert (1998). Discoplan enables the inference
of sv-constraints that correspond to a subset of our identity invariants. The reason that
discoplan is restricted to a subset is that it generates sv-constraints only for pairs of literals
(one on the addlist of a schema and the other on the delete list) in which the arguments
vary in only one place. Tim can infer identity invariants in which vectors of arguments vary,
as shown in Section 2.7. Discoplan cannot currently infer all singly varying constraints
(although the techniques described by Gerevini and Schubert (1996a) are not yet fully
implemented in discoplan). For example, discoplan cannot infer that all blocks can only

405

Fox & Long

be on one surface, in its analysis of the Blocks world domain cited in the paper. Tim can
infer these invariants from its sub-space analysis.

Gerevini and Schubert (1996a, 1996b) have also examined the potential for inferring
parameter domains that are similar to the operator parameter types inferred by tim. Their
domains are inferred by an iterative process of accretion which is similar to the attribute
space extension process of tim. However, the accretion process they describe is synthetic,
in that the parameter domains are synthesised directly from the operator descriptions and
initial state. Tim is an analytic system that constructs its types from an analysis of the func-
tional properties of the domain objects. This analytic approach provides a rich information
source from which other structures, including the domain invariants, can be derived.

Some of the implicative constraints inferred by discoplan correspond to an implicit
type assignment and would arise in the type structure built by tim. A further implicative
constraint generated by discoplan refers to the separation of functional roles of objects.
In particular, the irreexivity of on, as in:

8x � 8y � (on(x; y)! :(x = y))

can be captured using this kind of constraint. Tim cannot currently infer these invariants.
Because tim uses an analysis based on the state view of objects in the domain it is able
to generate a broader collection of invariants, including state membership and unique state
invariants currently not produced by discoplan.

Although discoplan can deal with negative preconditions and tim cannot yet manage
them, the invariants they produce overall are currently less powerful than those inferred by
tim.

Apart from the work of Gerevini and Schubert, there is some older work on the inference
of invariants which also relies on the generation of candidate invariants which are then
con�rmed by an inductive process against the domain operators. Two examples are the
work of Kelleher and Cohn (1992) and Morris and Feldman (1989). The former work
concentrates on identifying directed mutual persistence relations, which hold between pairs
of facts in a domain when, once both are established, the second continues to hold while
the �rst does. The use of these relations leads to the inference of a collection of constraints
which fall into the uniqueness invariants inferred by tim. In the work described in (Morris
& Feldman, 1989) the authors build invariants by using truth counts which are counts of the
number of propositions from particular identi�ed sets which must be true in any state of
the domain. Sets for which this count is 1 can then be used to build invariants which are a
subset of the state membership and uniqueness invariants. The authors describe methods for
attempting to identify the sets of facts from which to work. This work, in common with that
of Kelleher and Cohn and of Gerevini and Schubert, builds invariants by �rst hypothesising
a possible seed for the invariants and then determining their validity by analysing the e�ects
of the operators on these seeds. In contrast to this generate-and-test strategy, tim produces
only correct invariants which it infers from a deep, structural analysis of the domain. The
inference of invariants does not exhaust the possibilities of this analysis. For example,
the type structure is inferred automatically during this analysis, which has been shown to
have dramatic potential for the e�ciency of planning. The relationship between enablers,
and the state transitions they enable, determines an ordering on the satisfaction of goals,
which also has signi�cance for e�ciency. Further, the state-based view of the behaviour of

406

Automatic Inference of State Invariants

domain objects would allow the techniques described by McCluskey and Porteous (1997)
to be automated.

McCluskey and Porteous (1997) have proposed and explored an object-centred approach
to planning. This approach is based on the provision, by a domain engineer, of a rich
collection of state invariants for object sorts participating in functional relationships in the
domain. These invariants are then exploited in a domain compilation phase to facilitate an
e�cient planning application to that domain. Tim infers precisely the sorts and collections
of state invariants that McCluskey and Porteous provide by hand.

Grant (1996) generates state invariants from state descriptions, provided by hand, and
then uses these invariants to build operator schemas. His approach is clearly related even
though the objectives of his analysis are di�erent. Grant is concerned with the automatic
synthesis of domain descriptions from a rich requirements speci�cation provided by an
expert user. Our concern is with reverse-engineering a domain description to obtain the in-
formation that can help increase the e�ciency of planners applied to that domain. Although
the primary objectives in the use of tim are to enhance the performance of planning within
a domain, tim also provides a valuable tool in the construction of domain descriptions by
revealing the underlying behaviours that the domain engineer has implicitly imposed, and
helping with the debugging of domain descriptions.

6. Conclusion

Tim is a planner-independent set of techniques for identifying the underlying structure of a
domain, revealing its type structure and a collection of four di�erent kinds of invariant con-
ditions. One important application of these techniques is as a domain debugging aid during
the construction of large and complex domains. Using tim has revealed many anomalies
in domains encoded by us and by others, and has greatly assisted us in understanding
stan's performance on many domains and problems. Another important application is in
increasing the e�ciency of planners by making explicit to the planner information about
the domain that it would otherwise have to infer, from the domain representation, during
planning.

Tim generates a rich collection of invariants containing many that are not inferrable by
related systems, as discussed in the previous section. The results presented by Gerevini
and Schubert (1998) suggest that a marked improvement can be obtained from the use of
invariants in the performance of planners based on SAT-solving techniques. No analysis
has yet been done to determine what advantages might be obtainable by using invariants in
planners based on other architectures. Stan does not yet exploit all of the invariants pro-
duced by tim during planning. It uses the type structure and the �xed resource invariants
and we are currently developing an extension of stan that will fully exploit the other kinds
of invariant. We expect to be able to use the uniqueness and identity invariants to shortcut
the e�ort involved in deducing a signi�cant subset of the necessary mutex relations during
graph construction.

The analysis performed by tim is e�cient, growing more slowly than a quadratic function
of the size of the initial state being analysed. Our empirical analysis does not consider
the e�ect on tim's performance of increasing numbers of operator schemas. However, the
argument presented in Section 4 shows that tim's analysis grows linearly with the number

407

Fox & Long

of operator schemas, linearly with the number of domain constants and linearly with the
size of the initial state. There are other factors to take into account, but this con�rms a
polynomial performance as the size (and related structure) of the domain increases.

The type analysis performed by tim di�ers, in some important respects, from the various
forms of type analysis performed during the compilation of programs written in strongly
typed languages. In the latter context the type-correctness of a program is judged with
respect to an imposed context of basic types. Tim infers the basic types from the domain
description so it is impossible for a domain speci�cation not to be well-typed. Consequently
we do not attempt to type-check domain descriptions using tim. This is a direction in which
we hope to move in the near future, because type-checking will enable some unsolvable
problems to be detected as unsolvable statically rather than at planning time. We currently
focus only on type inference and the exploitation of the inferred type structure in the
management of the search space of the planner.

7. Acknowledgements

We would like to thank Alfonso Gerevini, Gerry Kelleher and the anonymous referees for
useful discussions and helpful comments on earlier drafts of this paper.

Appendix A. FTP and Web Sites

The aips-98 Planning Competition FTP site is at:
http://ftp.cs.yale.edu/pub/mcdermott/aipscomp-results.html.

Our web site, on which stan and tim executables can be found, is at:
http://www.dur.ac.uk/�dcs0www/research/stanstuff/planpage.html

Appendix B. The TIM Algorithm

The following is a pseudo-code description of the tim algorithm.

fConstruct base PRSs (Section 2.3)g
Ps := fg;
for each operator schema, O,

for each variable in O, x,
construct a PRS for x from O and add to Ps;

fSplit PRSsg
for each PRS in Ps, P,

if a property, p, appears in P in both the adds and deleted precs �elds
then split P over p, into P' and Q and replace P with P' and Q in Ps,

where to split P over p:
construct PRS Q with the same precs as P, deleted precs and adds both set to fpg;
construct PRS P' from P by removing p from deleted precs and adds of P;

fConstruct transition rules (Section 2.3)g
Ts := fg;
for each PRS in Ps, P,

construct a transition rule for P and add to Ts;

fSeed property and attribute spaces (Section 2.3)g
let each property be initially assigned to a separate equivalence class;
for each rule, r, in Ts

merge together (unite) the equivalence classes for all the properties in the start and �nish of r;

408

Automatic Inference of State Invariants

construct a separate space for each equivalence class of properties;

fAssign transition rules (Section 2.4)g
for each rule, r, in Ts

place r in the space associated with the equivalence class containing the properties
in the start (and �nish) of r, s;

if r is an increasing or decreasing rule
then mark s as an attribute space;

fAnalyse initial state (Section 2.4)g
for each object, o, in the domain

identify the bag of initial properties of o, I(o);
for each space, s,

construct the bag of properties from I(o) which belong to the equivalence class
associated with s, b;

if b is non-empty
then add o to the space s;

if s is not an attribute space
then add b as a state in s;

fExtend property spaces (Section 2.4)g
for each property space, p,

while there is an unextended state in p, s,
mark s as extended;
newgen := fg;
for each rule in p, r,

if the start of r is included in s
then add the state snew = (s ominus start oplus end) to newgen;

if snewis a superset of any state in newgen
then mark p is an attribute space and exit the analysis of p;

add newgen to the states in p;

fExtend attribute spaces (Section 2.4)g
changes := TRUE;
while changes,

changes := FALSE;
for each unmarked attribute space, a,

extend a where to extend a:
mark a;
for each rule in a, r,

for each property in enablers of r, p,
if p's equivalence class is associated with an unmarked attribute space, a',
then extend a';

add all objects that appear in every space associated with an enabling property for r to a;
if objects are added
then changes := TRUE;

fIdentify types (Section 2.6)g
for each object in the domain, o,

identify the pattern of membership of spaces for o, tt;
associate the type pattern, tt, with o;

for each operator schema, O,
for each argument of O, x,

identify the pattern of membership of spaces for x implied by the properties of x in the
preconditions of O, tt;

associate type pattern, tt, with x in O;

fConstruct invariants (Section 2.7)g
for each property space, P,

for each property in P, p,
construct an identity invariant for p;

construct a state membership invariant for P;
construct a uniqueness invariant for P;

409

Fox & Long

Appendix C. Example Output

The following output was produced by tim and can be found, along with other examples,
on the stan webpage. These examples show the details of the analysis performed on each
of three domains: a Flat-tyre domain, a Mystery domain and a Logistics domain. The
analysis is done with respect to an initial state and a set of operator schemas. The operator
schemas used in these three domains are those provided with the pddl strips releases for
these domains. The initial states were taken from the pddl release. The pddl release can
be found at http://www.cs.yale.edu/HTML/YALE/CS/HyPlans/mcdermott.html.

C.1 The Tyre World

TIM: Type Inference Mechanism - support for STAN: State Analysis Planner

D. Long and M. Fox, University of Durham

Reading domain file: domain01.pddl

Reading problem file: prob01.pddl

TIM: Domain analysis complete for flat-tire-strips

TIM: TYPES:

Type T0 = {wrench}

Type T1 = {wheel2}

Type T2 = {wheel1}

Type T3 = {trunk}

Type T4 = {the-hub}

Type T5 = {pump}

Type T6 = {nuts}

Type T7 = {jack}

It will be noticed that the two wheels are separated into di�erent types. This is because
one wheel is intact and the other is not intact, and there is no operator for repairing wheels
that are not intact. The tools have each been given di�erent types. This is because they
each appear as constants in di�erent operators and therefore are functionally distinct.

TIM: STATE INVARIANTS:

FORALL x:T4. (on-ground(x) OR lifted(x))

FORALL x:T4. NOT (on-ground(x) AND lifted(x))

FORALL x:T3. (closed(x) OR open(x))

FORALL x:T3. NOT (closed(x) AND open(x))

410

Automatic Inference of State Invariants

FORALL x:T1 U T2. (deflated(x) OR inflated(x))

FORALL x:T1 U T2. NOT (deflated(x) AND inflated(x))

The invariants for hubs (below) suggest that almost anything could be on a hub. Since
this is not the case the type structure is under-discriminating. However, the additional
invariants drawn from the sub-space analysis provide enough information, in principle, to
discriminate more fully between the types. This information is not yet being fully exploited.

FORALL x:T4. FORALL y1. FORALL z1. on(y1,x) AND on(z1,x) => y1 = z1

FORALL x:T4. (Exists y1:T0 U T1 U T2 U T5 U T6 U T7. on(y1,x)

OR free(x))

FORALL x:T4. NOT (Exists y1:T0 U T1 U T2 U T5 U T6 U T7. on(y1,x)

AND free(x))

FORALL x:T4. FORALL y1. FORALL z1. tight(y1,x) AND tight(z1,x) => y1 = z1

FORALL x:T4. FORALL y1. FORALL z1. loose(y1,x) AND loose(z1,x) => y1 = z1

FORALL x:T4. ((Exists y1:T0 U T1 U T2 U T5 U T6 U T7. tight(y1,x)

AND fastened(x))

OR (Exists y1:T0 U T1 U T2 U T5 U T6 U T7. loose(y1,x)

AND fastened(x)) OR unfastened(x))

FORALL x:T4. NOT ((Exists y1:T0 U T1 U T2 U T5 U T6 U T7. tight(y1,x)

AND fastened(x))

AND (Exists y1:T0 U T1 U T2 U T5 U T6 U T7. loose(y1,x)

AND fastened(x)))

FORALL x:T4. NOT ((Exists y1:T0 U T1 U T2 U T5 U T6 U T7. tight(y1,x)

AND fastened(x)) AND unfastened(x))

FORALL x:T4. NOT ((Exists y1:T0 U T1 U T2 U T5 U T6 U T7. loose(y1,x)

AND fastened(x)) AND unfastened(x))

TIM: DOMAIN INVARIANTS:

|{x0: container(x0)}| = 1

|{x0: hub(x0)}| = 1

|{x0: intact(x0)}| = 1

|{x0: jack(x0)}| = 1

|{x0: nut(x0)}| = 1

|{x0: pump(x0)}| = 1

|{x0: unlocked(x0)}| = 1

|{x0: wheel(x0)}| = 2

|{x0: wrench(x0)}| = 1

TIM: ATTRIBUTE SPACES:

411

Fox & Long

The attribute space for the properties in the �rst of these groups is subjected to a much
more rigorous analysis in the sub-space invariants below.

Objects, x, in T0 U T1 U T2 U T5 U T6 U T7 can have property:

Exists y1:T3. in(x,y1);

Exists y1:T4. on(x,y1);

Exists y1:T4. tight(x,y1);

Exists y1:T4. loose(x,y1);

have(x);

Objects, x, in T3 can have property:

Exists y1:T0 U T1 U T2 U T5 U T6 U T7. in(y1,x);

Objects, x, in T3 all have property: container(x);

Objects, x, in T4 all have property: hub(x);

Objects, x, in T1 all have property: intact(x);

Objects, x, in T7 all have property: jack(x);

Objects, x, in T6 all have property: nut(x);

Objects, x, in T5 all have property: pump(x);

Objects, x, in T3 all have property: unlocked(x);

Objects, x, in T1 U T2 all have property: wheel(x);

Objects, x, in T0 all have property: wrench(x);

TIM: OPERATOR PARAMETER RESTRICTIONS:

inflate(x1:T1)

put-on-wheel(x1:T1 U T2,x2:T4)

remove-wheel(x1:T1 U T2,x2:T4)

put-on-nuts(x1:T6,x2:T4)

remove-nuts(x1:T6,x2:T4)

jack-down(x1:T4)

jack-up(x1:T4)

tighten(x1:T6,x2:T4)

loosen(x1:T6,x2:T4)

put-away(x1:T0 U T1 U T2 U T5 U T6 U T7,x2:T3)

fetch(x1:T0 U T1 U T2 U T5 U T6 U T7,x2:T3)

close-container(x1:T3)

open-container(x1:T3)

cuss()

TIM: ADDITIONAL STATE INVARIANTS, USING SUB-SPACE ANALYSIS:

We report here only the additional state invariants that add information to the invariants
already listed. TIM currently reports invariants that are subsumed by the earlier collection.

It should be observed that the �rst wheel is intact but the second is not, and this gives
rise to the following new invariant for wheels of the second type.

412

Automatic Inference of State Invariants

FORALL x:T2. (deflated(x))

The �rst attribute space, which contains all objects except the trunk and the hub, is now
subjected to sub-space analysis yielding a rich new collection of invariants.

FORALL x:T0. FORALL y1. FORALL z1. in(x,y1) AND in(x,z1) => y1 = z1

FORALL x:T0. (Exists y1:T3. in(x,y1) OR have(x))

FORALL x:T0. NOT (Exists y1:T3. in(x,y1) AND have(x))

FORALL x:T1. FORALL y1. FORALL z1. in(x,y1) AND in(x,z1) => y1 = z1

FORALL x:T1. FORALL y1. FORALL z1. on(x,y1) AND on(x,z1) => y1 = z1

FORALL x:T1. (Exists y1:T3. in(x,y1) OR have(x)

OR Exists y1:T4. on(x,y1))

FORALL x:T1. NOT (Exists y1:T3. in(x,y1) AND have(x))

FORALL x:T1. NOT (Exists y1:T3. in(x,y1) AND Exists y1:T4. on(x,y1))

FORALL x:T1. NOT (have(x) AND Exists y1:T4. on(x,y1))

FORALL x:T2. FORALL y1. FORALL z1. in(x,y1) AND in(x,z1) => y1 = z1

FORALL x:T2. FORALL y1. FORALL z1. on(x,y1) AND on(x,z1) => y1 = z1

FORALL x:T2. (Exists y1:T4. on(x,y1) OR have(x)

OR Exists y1:T3. in(x,y1))

FORALL x:T2. NOT (Exists y1:T4. on(x,y1) AND have(x))

FORALL x:T2. NOT (Exists y1:T4. on(x,y1) AND Exists y1:T3. in(x,y1))

FORALL x:T2. NOT (have(x) AND Exists y1:T3. in(x,y1))

FORALL x:T5. FORALL y1. FORALL z1. in(x,y1) AND in(x,z1) => y1 = z1

FORALL x:T5. (Exists y1:T3. in(x,y1) OR have(x))

FORALL x:T5. NOT (Exists y1:T3. in(x,y1) AND have(x))

FORALL x:T6. FORALL y1. FORALL z1. in(x,y1) AND in(x,z1) => y1 = z1

FORALL x:T6. FORALL y1. FORALL z1. tight(x,y1)

AND tight(x,z1) => y1 = z1

FORALL x:T6. FORALL y1. FORALL z1. loose(x,y1)

AND loose(x,z1) => y1 = z1

FORALL x:T6. (Exists y1:T4. tight(x,y1)

OR Exists y1:T4. loose(x,y1)

OR have(x) OR Exists y1:T3. in(x,y1))

FORALL x:T6. NOT (Exists y1:T4. tight(x,y1)

AND Exists y1:T4. loose(x,y1))

FORALL x:T6. NOT (Exists y1:T4. tight(x,y1) AND have(x))

FORALL x:T6. NOT (Exists y1:T4. tight(x,y1)

AND Exists y1:T3. in(x,y1))

FORALL x:T6. NOT (Exists y1:T4. loose(x,y1) AND have(x))

FORALL x:T6. NOT (Exists y1:T4. loose(x,y1)

AND Exists y1:T3. in(x,y1))

FORALL x:T6. NOT (have(x) AND Exists y1:T3. in(x,y1))

413

Fox & Long

C.2 The Mystery Domain

The Mystery domain was devised by DrewMcDermott for the aips-98 planning competition.
His intention was to conceal the structure of the problem domain by employing an obscure
encoding of a transportation domain. The code replaces locations with the names of foods
and the routes between them with eats relations. The transports are pleasures while cargos
are pains. Cargos and transports can be at locations, with the at relation encoded as craves.
A cargo is either at a location or in a transport encoded by the fears relation. Transports
have restricted capacity encoded by planets and consume fuel in travelling between locations.
Fuel exists in limited quantities at locations measured by provinces. Using TIM we were
able to decode the domain and identify the roles played by each of the components of the
encoding.

TIM: Domain analysis complete for mystery-strips (prob048.pddl)

TIM: TYPES:

It should be noted that provinces (types T6, T7 and T8) are divided into three separate
types because they form a sequence, de�ned by the attacks relation, in which the �rst and
last have a slightly di�erent functional role to the others. The same is true of the planets
(types T1, T2 and T3).

Type T0 = {beef,cantelope,chocolate,flounder,guava,mutton,onion,

pepper,rice,shrimp,sweetroll,tuna,yogurt}

Type T1 = {saturn}

Type T2 = {pluto}

Type T3 = {neptune}

Type T4 = {achievement,lubricity}

Type T5 = {abrasion,anger,angina,boils,depression,grief,hangover,

laceration}

Type T6 = {alsace,bosnia,guanabara,kentucky}

Type T7 = {goias}

Type T8 = {arizona}

TIM: STATE INVARIANTS:

FORALL x:T4. FORALL y1. FORALL z1. harmony(x,y1)

AND harmony(x,z1) => y1 = z1

FORALL x:T4. (Exists y1:T1 U T2 U T3. harmony(x,y1))

FORALL x:T0. FORALL y1. FORALL z1. locale(x,y1)

AND locale(x,z1) => y1 = z1

FORALL x:T0. (Exists y1:T6 U T7 U T8. locale(x,y1))

FORALL x:T4 U T5. FORALL y1. FORALL z1. fears(x,y1)

414

Automatic Inference of State Invariants

AND fears(x,z1) => y1 = z1

FORALL x:T4 U T5. FORALL y1. FORALL z1. craves(x,y1)

AND craves(x,z1) => y1 = z1

FORALL x:T4 U T5. (Exists y1:T0. craves(x,y1)

OR Exists y1:T4. fears(x,y1))

FORALL x:T4 U T5. NOT (Exists y1:T0. craves(x,y1)

AND Exists y1:T4. fears(x,y1))

TIM: DOMAIN INVARIANTS:

|{(x0,x1): attacks(x0,x1)}| = 5

|{(x0,x1): eats(x0,x1)}| = 36

|{x0: food(x0)}| = 13

|{(x0,x1): harmony(x0,x1)}| = 2

|{(x0,x1): locale(x0,x1)}| = 13

|{(x0,x1): orbits(x0,x1)}| = 2

|{x0: pain(x0)}| = 8

|{x0: planet(x0)}| = 3

|{x0: pleasure(x0)}| = 2

|{x0: province(x0)}| = 6

TIM: ATTRIBUTE SPACES:

Objects, x, in T1 U T2 U T3 can have property:

Exists y1:T4. harmony(y1,x);

Objects, x, in T6 U T7 U T8 can have property:

Exists y1:T0. locale(y1,x);

Objects, x, in T4 can have property:

Exists y1:T4. fears(y1,x);

Objects, x, in T0 can have property:

Exists y1:T4 U T5. craves(y1,x);

Objects, x, in T6 U T7 all have property:

Exists y1:T6 U T8. attacks(x,y1);

Objects, x, in T6 U T8 all have property:

Exists y1:T6 U T7. attacks(y1,x);

Objects, x, in T0 all have property:

Exists y1:T0. eats(x,y1);

Objects, x, in T0 all have property:

Exists y1:T0. eats(y1,x);

Objects, x, in T0 all have property: food(x);

Objects, x, in T2 U T3 all have property:

Exists y1:T1 U T2. orbits(x,y1);

415

Fox & Long

Objects, x, in T1 U T2 all have property:

Exists y1:T2 U T3. orbits(y1,x);

Objects, x, in T5 all have property: pain(x);

Objects, x, in T1 U T2 U T3 all have property: planet(x);

Objects, x, in T4 all have property: pleasure(x);

Objects, x, in T6 U T7 U T8 all have property: province(x);

TIM: OPERATOR PARAMETER RESTRICTIONS:

succumb(x1:T5,x2:T4)

feast(x1:T4,x2:T0,x3:T0)

overcome(x1:T5,x2:T4)

TIM: ADDITIONAL STATE INVARIANTS, USING SUB-STATE ANALYSIS:

These additional invariants show that the transports are always at a location and never
loaded into other transports.

FORALL x:T4. FORALL y1. FORALL z1. craves(x,y1)

AND craves(x,z1) => y1 = z1

FORALL x:T4. (Exists y1:T0. craves(x,y1))

C.3 The Logistics Domain

TIM: Domain analysis complete for logistics-strips (prob05.pddl)

TIM: TYPES:

Type T0 = {bos-truck,la-truck,pgh-truck}

Type T1 = {bos-po,la-po,pgh-po}

Type T2 = {bos-airport,la-airport,pgh-airport}

Type T3 = {bos,la,pgh}

Type T4 = {package1,package2,package3,package4,package5,package6,

package7,package8}

Type T5 = {airplane1,airplane2}

TIM: STATE INVARIANTS:

FORALL x:T0 U T4 U T5. FORALL y1. FORALL z1. at(x,y1)

AND at(x,z1) => y1 = z1

FORALL x:T0 U T4 U T5. FORALL y1. FORALL z1. in(x,y1)

AND in(x,z1) => y1 = z1

FORALL x:T0 U T4 U T5. (Exists y1:T1 U T2. at(x,y1)

416

Automatic Inference of State Invariants

OR Exists y1:T0 U T5. in(x,y1))

FORALL x:T0 U T4 U T5. NOT (Exists y1:T1 U T2. at(x,y1)

AND Exists y1:T0 U T5. in(x,y1))

TIM: DOMAIN INVARIANTS:

|{x0: airplane(x0)}| = 2

|{x0: airport(x0)}| = 3

|{x0: city(x0)}| = 3

|{(x0,x1): in-city(x0,x1)}| = 6

|{x0: location(x0)}| = 6

|{x0: obj(x0)}| = 8

|{x0: truck(x0)}| = 3

TIM: ATTRIBUTE SPACES:

Objects, x, in T1 U T2 can have property:

Exists y1:T0 U T4 U T5. at(y1,x);

Objects, x, in T0 U T5 can have property:

Exists y1:T0 U T4 U T5. in(y1,x);

Objects, x, in T5 all have property: airplane(x);

Objects, x, in T2 all have property: airport(x);

Objects, x, in T3 all have property: city(x);

Objects, x, in T1 U T2 all have property: Exists y1:T3. in-city(x,y1);

Objects, x, in T3 all have property: Exists y1:T1 U T2. in-city(y1,x);

Objects, x, in T1 U T2 all have property: location(x);

Objects, x, in T4 all have property: obj(x);

Objects, x, in T0 all have property: truck(x);

TIM: OPERATOR PARAMETER RESTRICTIONS:

drive(x1:T0,x2:T1 U T2,x3:T1 U T2,x4:T3)

fly(x1:T5,x2:T2,x3:T2)

unload(x1:T0 U T4 U T5,x2:T0 U T5,x3:T1 U T2)

load-plane(x1:T4,x2:T5,x3:T1 U T2)

load-truck(x1:T4,x2:T0,x3:T1 U T2)

TIM: ADDITIONAL STATE INVARIANTS, USING SUB-STATE ANALYSIS:

417

Fox & Long

The following invariants add the constraints that trucks and airplanes must always be at a
location and never loaded into one another.

FORALL x:T0. FORALL y1. FORALL z1. at(x,y1) AND at(x,z1) => y1 = z1

FORALL x:T0. (Exists y1:T1 U T2. at(x,y1))

FORALL x:T5. FORALL y1. FORALL z1. at(x,y1) AND at(x,z1) => y1 = z1

FORALL x:T5. (Exists y1:T1 U T2. at(x,y1))

Appendix D. The Rocket Domain

The Rocket domain used in the construction of Figure 6 is as follows:

(define (domain rocket)

(:predicates (at ?x ?y)

(in ?x ?y)

(fuelled ?x)

(unfuelled ?x)

(loc ?x)

(obj ?x)

(container ?x))

(:action fly

:parameters (?x ?y ?z)

:precondition (and (at ?x ?y) (loc ?z) (fuelled ?x))

:effect (and (not (at ?x ?y)) (at ?x ?z) (unfuelled ?x)

(not (fuelled ?x))))

(:action load

:parameters (?x ?y ?z)

:precondition (and (obj ?x) (container ?y) (at ?x ?z)

(at ?y ?z))

:effect (and (in ?x ?y) (not (at ?x ?z))))

(:action unload

:parameters (?x ?y ?z)

:precondition (and (at ?y ?z) (in ?x ?y))

:effect (and (at ?x ?z) (not (in ?x ?y)))))

Appendix E. Operator Test Domain

This domain is an arti�cial domain used to test the e�ects of increasing operators and literals
in the domain encoding on the performance of TIM. This example is the third instance - the
variation was achieved by adding more operator schemas in the pattern of those included
here.

418

Automatic Inference of State Invariants

(define (domain od)

(:predicates

(p1 ?x ?y) (q1 ?x ?y)

(p2 ?x ?y) (q2 ?x ?y)

(p3 ?x ?y) (q3 ?x ?y)

(p4 ?x ?y) (q4 ?x ?y)

(p5 ?x ?y) (q5 ?x ?y)

(p6 ?x ?y) (q6 ?x ?y)

(p7 ?x ?y) (q7 ?x ?y)

(p8 ?x ?y) (q8 ?x ?y)

(p9 ?x ?y) (q9 ?x ?y)

(p10 ?x ?y) (q10 ?x ?y)

(p11 ?x ?y) (q11 ?x ?y)

(p12 ?x ?y) (q12 ?x ?y)

(p13 ?x ?y) (q13 ?x ?y)

(p14 ?x ?y) (q14 ?x ?y)

(p15 ?x ?y) (q15 ?x ?y)

(p16 ?x ?y) (q16 ?x ?y)

(p17 ?x ?y) (q17 ?x ?y)

(p18 ?x ?y) (q18 ?x ?y)

(p19 ?x ?y) (q19 ?x ?y)

(p20 ?x ?y) (q20 ?x ?y))

(:action o1

:parameters (?x ?y ?z)

:precondition (and (p1 ?x ?y) (q1 ?x ?z))

:effect (and (not (p1 ?x ?y)) (not (q1 ?x ?z))

(p1 ?x ?z) (q1 ?x ?y)))

(:action o2

:parameters (?x ?y ?z)

:precondition (and (p2 ?x ?y) (q2 ?x ?z))

:effect (and (not (p2 ?x ?y)) (not (q2 ?x ?z))

(p2 ?x ?z) (q2 ?x ?y)))

(:action o3

:parameters (?x ?y ?z)

:precondition (and (p3 ?x ?y) (q3 ?x ?z))

:effect (and (not (p3 ?x ?y)) (not (q3 ?x ?z))

(p3 ?x ?z) (q3 ?x ?y))))

The problem instance was �xed as follows:

(define (problem op)

(:domain od)

(:objects a b c)

419

Fox & Long

(:init (p1 a b) (q1 a c)

(p2 a b) (q2 a c)

(p3 a b) (q3 a c)

(p4 a b) (q4 a c)

(p5 a b) (q5 a c)

(p6 a b) (q6 a c)

(p7 a b) (q7 a c)

(p8 a b) (q8 a c)

(p9 a b) (q9 a c)

(p10 a b) (q10 a c)

(p11 a b) (q11 a c)

(p12 a b) (q12 a c)

(p13 a b) (q13 a c)

(p14 a b) (q14 a c)

(p15 a b) (q15 a c)

(p16 a b) (q16 a c)

(p17 a b) (q17 a c)

(p18 a b) (q18 a c)

(p19 a b) (q19 a c)

(p20 a b) (q20 a c))

(:goal (and (p1 a c) (q1 a b))))

References

Blum, A., & Furst, M. (1995). Fast Planning through Plan-graph Analysis. In IJCAI.

Bundy, A., Burstall, R., Weir, S., & Young, R. (1980). Arti�cial Intelligence: An Introduc-
tory Course. Edinburgh University Press.

Fikes, R., & Nilsson, N. (1971). STRIPS: A New Approach to the Application of Theorem-
Proving to Problem-Solving. Arti�cial Intelligence, 2 (3).

Gerevini, A., & Schubert, L. (1996a). Accelerating Partial Order Planners: Some Tech-
niques for E�ective Search Control and Pruning. JAIR, 5, 95{137.

Gerevini, A., & Schubert, L. (1996b). Computing Parameter Domains as an Aid to Planning.
In AIPS-96.

Gerevini, A., & Schubert, L. (1998). Inferring State Constraints for Domain-Independent
Planning. In AAAI.

Grant, T. J. (1996). Inductive Learning of Knowledge-based Planning Operators. Ph.D.
thesis, Rijksuniversiteit Limburg de Maastricht.

Kautz, H., & Selman, B. (1998). The Role of Domain Speci�c Knowledge in the Planning
as Satis�ability Framework. In The Fourth International Conference on Arti�cial
Intelligence Planning Systems.

420

Automatic Inference of State Invariants

Kelleher, G., & Cohn, A. (1992). Automatically Synthesising Domain Constraints from
Operator Descriptions. In Proceedings ECAI92.

Koehler, J., Nebel, B., & Dimopoulos, Y. (1997). Extending Planning Graphs to an ADL
Subset. In Proceedings of 4th European Conference on Planning.

Liatsos, V., & Richards, B. (1997). Least Commitment: An Optimal Planning Strategy. In
Proceedings of the 16th Workshop of the UK Planning and Scheduling Special Interest
Group.

Long, D., & Fox, M. (in press). The E�cient Implementation of the Plangraph in stan. In
JAIR.

McCluskey, T. L., & Porteous, J. (1997). Engineering and Compiling Planning Domain
Models to Promote Validity and E�ciency. Arti�cial Intelligence, 95 (1).

Morris, P., & Feldman, R. (1989). Automatically Derived Heuristics for Planning Search.
In Proceedings of the 2nd Irish Conference on Arti�cial Intelligence and Cognitive
Science, School of Computer Applications, Dublin City University.

421

