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Abstract

There is currently considerable interest in using mainly solid reaction mixtures for en-
zymic catalysis. In these reactions starting materials dissolve into, and product materials
crystalize out of, a small amount of liquid phase in which the catalytic reaction occurs. An
initial mathematical model for mass transfer effects in such systems is constructed using
some physically reasonable approximations. The model equations are solved numerically
to determine how the reactant concentrations vary with time and position. In order to
evaluate the extent to which mass transfer limits the overall rate of product formation
an effectiveness factor is defined as the ratio of the observed total reaction rate to the
total reaction rate in the reaction limited limit. As expected, the value of the effective-
ness factor in steady state is strongly dependent on the Thiele modulus. However, it is
also observed that the effectiveness factor can vary widely as a result of changes in the
other dimensionless groups characterising the system. For example, there are situations
with Thiele modulus equal to unity in which the value of the effectiveness factor varies
between approximately 0.1 and 0.8 as the other parameters are varied in physically rea-
sonable ranges. Analytical asymptotic solutions which provide good approximations to
the numerically calculated results in various physically important limiting cases are also

presented.



1 Introduction

There has recently been considerable interest in enzymic reactions taking place in mainly
solid reaction mixtures (sometimes referred to as “solid-to-solid” reactions). In these
reactions there is a small amount of liquid phase, often not immediately apparent, between
the solid particles in which the catalytic reaction occurs. Starting materials dissolve from
the solids into the liquid phase, and product materials are deposited from the liquid phase
onto a different solid phase. As the reaction proceeds, the solid particles of the starting
materials progressively shrink and disappear, while the product particles grow. These
systems have considerable attractions for industrial applications, notably because of their
very high reaction intensity (the final product level can exceed 900 g per kg of the reaction
mixture, ten times higher than the usual maximum for a solution reaction). They can
also combine high yields in reverse hydrolysis reactions (e.g. peptide synthesis) with good
reaction rates, particularly when the liquid phase is aqueous. Further details about these
reactions are given in the recent review articles by Erbeldinger et al. [1], Straathof et al.

[2], and Ulijn et al. [3].

There has so far been only limited work on the kinetics of enzymic reactions in mainly
solid reaction mixtures. Evidently mass transfer can be limiting since it only occurs by
diffusion through the unstirred reacting mass. The full reaction-diffusion system is rather
complicated. One or more starting materials diffuse from particles of the appropriate
solid phase (usually crystals) to each point in the liquid phase. The product molecules
diffuse in different directions towards the solid product particles (again usually crystals).
Under mass transfer limited conditions, starting material and product concentrations will
both vary considerably with position in the liquid phase, and with them the net reaction
rate at that point. The problem is more complicated than any of the mass transfer
reaction systems analysed in the context of immobilized enzymes (for example) because

of the different directions of flux involved. As in the case of immobilized enzymes, the



use of enzymic catalysis is not relevant to the basic model. To the authors’ knowledge,
modelling of purely chemical reactions has not been attempted for this type of reaction
system. This paper describes a first attempt to model the behaviour of such systems using
idealised kinetics and a simple one-dimensional geometry. The resulting model predicts

some expected features, but also some behaviour that is much harder to anticipate.

2 Model Formulation

The overall reaction involves the following processes.

(a) Dissolution of starting materials at the surface of the solid phase particles.

(b) Diffusion of the starting materials from the particle surfaces into all regions of the

liquid phase.
(c) Enzyme-catalysed conversion to products.
(d) Nucleation of solid-phase product particles.
(e) Diffusion of product to the surface of the product particles.

(f) Growth of the product particles by attachment of new molecules.

All of the processes listed above take place in a more or less random network of solid
particles with liquid filling the spaces in between them. Including all the details of the
reaction would result in a very large and unwieldy model, and so in this initial study a

number of approximations are employed in order to obtain a tractable model.

(a) Processes at the particle surfaces (dissolution, nucleation and growth) are disre-
garded. Even in stirred systems, solid dissolution or growth is commonly controlled
by liquid phase mass transfer rather than surface processes (Grant and Higuchi [4]).

In these unstirred reaction mixtures, mass transfer will be more likely to be rate



(b)

(e)

limiting, although there may be cases in which surface processes are important.
(Indeed, there is experimental evidence that nucleation can limit overall kinetics in

the early stages of an enzymic reaction in such systems, Erbeldinger et al. [5]).

Related to (a), a system in which the product solid phase already exists and is simply

growing with time by diffusion-controlled arrival of product molecules is considered.

A reaction in which one starting material, denoted by A, is converted to one product,
denoted by P, is considered. The majority of systems studied experimentally involve
two starting materials. (They also involve a second product, but this is often water,
which remains in the liquid phase.) Isomerisation reactions with only one starting
material have been studied in mainly solid systems, such as the conversion of fructose

to glucose investigated by Ulijn [6].

The highly complicated real geometry is idealised to a liquid layer between two
infinite parallel solid surfaces, one of starting material and the other of product.
This reduces the problem to one in a single spatial dimension. The surfaces are
considered as infinite sources and sinks. In reality the surfaces are actually free
surfaces which change position as material dissolves or deposits, but the timescale of
this movement will often be much greater than that for reaction and diffusion in the
liquid layer. The net effect of this will be a slow translation of the entire liquid layer
in the direction of the solid A, preserving all concentrations as a function of distance
from the current positions of the solid surfaces. Furthermore, as the surfaces move,
the liquid phase will remain of approximately constant thickness. Hence treating
the solid boundaries as stationary (as we do here) is not unrealistic. Note that the
layer thickness should not be interpreted simply as a typical distance between solid
particles, but should be regarded as some sort of average distance between a liquid

element and the nearest surfaces of the starting material and product particle.

Both starting material and product are taken to have the same diffusion coefficient,



hereafter denoted by D, which is likely to be a good approximation (Green [7]).

(f) The reaction kinetics are described by the reversible Michaelis-Menten mechanism.
This is usually a good approximation for one-substate enzymes under standard con-
ditions (Fersht [8]). However, it can break down at high substrate and product
concentrations such as those often found in mainly solid reaction mixtures. Never-
theless we adopt the Michaelis-Menten mechanism here because including additional
physical effects (such as, for example, substrate inhibition) would significantly com-
plicate the model. Note that the usual form of product inhibition, namely binding
to the enzyme active site in competition with the substrate, is an integral part of

the Michaelis-Menten mechanism.

The equation for the enzyme reaction rate v (with dimensions of moles per unit volume

per unit time) is written as

12

K K

w4, )= En K (1)
1+E+K—P

where A and P are the concentrations of the starting material (substrate) and product
respectively, Ko and Kp are the Michaelis constants for the enzyme (all of which have
dimensions of moles per unit volume), K is the (dimensionless) chemical equilibrium
constant, and Vmax is the Michaelis-Menten maximum forward velocity (with dimensions
of moles per unit volume per unit time). Hence we obtain the following reaction-diffusion

equations that define the system,

0A 02A
Frl Dgx—g—’/(A,P), (2)
oP 2P
a = DEF+V(A,P)’ (3)

for 0 < z < L and ¢t > 0, subject to the boundary conditions

oP _

z=0: A:A, 8_{1’,‘.—0, (4)
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=1: = P* — =
z=1L P g 0, (5)

and appropriate initial conditions. Here L is the thickness of the layer of liquid phase,
and A* and P* are the saturated dissolved concentrations of the starting material A and

product P, respectively.

The behaviour of the system is examined in the following three ways.

(a) Numerical integration of the full time evolution problem.

(b) Numerical integration of the steady state equations obtained by setting the time

derivatives to zero.

(c) Analytical examination of various asymptotic limiting solutions of the steady state

equations.

The details of the numerical method used are described in Appendix A, and analyti-
cal asymptotic solutions in various physically important limiting cases are presented in

Appendix B.

The aims of the investigation are

(a) to identify how the reactant concentrations vary with position (and time), and

(b) to evaluate the extent to which mass transfer limits the overall rate of product

formation.

In order to achieve (b), a dimensionless “effectiveness factor”, hereafter denoted by E, is
introduced by analogy with the classical treatment of immobilised enzyme kinetics. The
quantity £ is defined as the ratio of the observed total reaction rate to the total reaction
rate in the reaction limited limit (i.e. the limit D — oo) in which the concentrations of
A and P are equal to their saturation values of A* and P*, respectively, throughout the

liquid reaction volume. As equation (1) shows, diffusional limitation (i.e. finite values of
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D) will lead to concentrations A < A* and P > P*, with correspondingly lower reaction
rates. Hence E varies between unity in the reaction limited limit (i.e. the limit D — 00)
to zero in the case of complete diffusional limitation (i.e. in the case D = 0). At steady

state, the observed total rate per unit area may be evaluated as either

dA
D=
dz

dpP

—_D—
or Iz

or /OL v(A, P)dz, (6)

and so to obtain E this is divided by the total rate per unit area in the reaction limited

limit, namely v(A*, P*)L, to yield

DKKA(H—A P ) ab

% &) 4z

LVmax (KA* — P%)

E=— z=L (7)

3 Dimensionless Model
The following five dimensionless groups were chosen to characterise the model.

(a) The Thiele modulus ¢ = (L?*Vmax/DK,)Y?. This familiar dimensionless group
represents a dimensionless measure of the relative importance of reaction and dif-
fusion effects. It emerges naturally from the model equations, and its introduction

eliminates any individual appearance of Vinax, L or D.

(b,c) The ratios A*/K, and P*/Kp. These dimensionless ratios indicate the extent to
which the enzyme is kinetically saturated with starting material A and product P
at their saturating dissolved concentrations, respectively. These groupings emerge

naturally from the model equations.

(d) The chemical equilibrium constant K. This parameter is dimensionless by definition,

and was found to emerge as a key parameter in the asymptotic solutions.

(e) The “solid equilibrium number” S = K A*/P*. This dimensionless group is a mea-

sure of the thermodynamic driving force for the overall solid-to-solid conversion and



is by definition always greater than unity since a smaller value of S would corre-
spond to a system in which “product” P was being converted to “starting material”
A (in which case we could simply interchange the labels of A and P). The value of
S can be estimated theoretically from the melting points of the reactants involved

and a reference equilibrium constant for the class of reactions involved (Ulijn et al.

[9])-

The system (1) — (5) is expressed in terms of the following dimensionless variables,

A j2 _ Vmex, , T Ka

A, - — P, = — ! = — = - et
A P PR TTD VT A (®)
in terms of which the reaction rate (1) can be written
a-p
V(4 P) = ——5 . (9)
1 A+ —P
+ 7 + KPP
The equations (2) and (3) can be written
oA’ 1 9?4
8t/ = E&—E — VI(AI, P’), (10)
K oP' K &P,
T - 525 027 + (A", P, (11)

for 0 <2’ <1 and t' > 0, and are subject to the boundary conditions

OP’
"'=0: A=1 =
' =0 . 5 =0 (12)
0A'
¥=1: P =1, o 0, (13)

and appropriate initial conditions. From equation (7) the effectiveness factor E is given
by
E =

K ( A* P ) dpP’ (14)

- (14 =
¢2(S—1) +KA +KP dx'

=1



4 Behaviour of the Model

4.1 Time Evolution of the Concentration Profiles Towards Steady
State

Time evolutions of the concentration profiles of A and P for a variety of parameter values
were obtained numerically using the method described in Appendix A. Initial conditions
for these calculations were A = A* and P = P* for all 0 < z < L at t = 0, corresponding
to the situation in which solid A and P are first equilibrated with the liquid phase and
then the catalyst is rapidly mixed in to start the reaction. In all the cases investigated
the concentrations were found to evolve fairly rapidly towards steady state values that
were, in general, spatially non-uniform. Concentrations had normally reached within 1%
of the final steady state values within a dimensionless time of about unity. Figure 1 shows
a typical example of this evolution. In a typical reaction system, an enzyme with specific
activity (i.e. activity per unit mass of enzyme) of 5 mol kg=* s~! (300 umol mg™! min~?)
might be present at a concentration of 2 x 107* kg 17! (0.2 mg ml™?), giving Vinax of
1073 mol 17! s71. With K of 107! mol 17! a dimensionless time of unity corresponds
to 100 s, in contrast to a typical overall reaction time of several hours. So in this case
concentrations are close to steady state over most of the reaction time, and hence the
steady state solutions should provide a good picture of the physically relevant behaviour.
It is, however, also possible to envisage parameter values such that unsteady conditions
persist over much or all of the reaction. As well as being more complicated to model,
behaviour will then be dependent on the initial profile of reactant concentrations, which
are not easy to specify for most of the ways that reaction mixtures are prepared. Hence,
in the remainder of the present paper we shall restrict our attention to the steady state
solutions of the model. In particular, analytical asymptotic solutions for the steady state
concentration profiles of A and P and the effectiveness factor F in the solid-to-solid
equilibrium limit S — 17, the reaction limited limit ¢ — 0, and the linear kinetics limit

A*/Kas — 0 and P*/Kp — 0 are presented in Appendix B.

10



4.2 Steady State Concentration Profiles

The results of all the present numerical calculations indicate (although we have not for-
mally proved) that provided that the initial concentration profiles A(z,0) and P(z,0)
are monotonically decreasing functions of z then the concentration profiles A(z,t) and
P(z,t) will remain monotonically decreasing for all ¢ > 0, and hence, in particular, that

the steady state concentration profiles will be monotonically decreasing.

Figure 2 shows two examples of the steady state concentration profiles of A and P for dif-
ferent values of K and S calculated numerically using the method described in Appendix
A. Despite the fact that the Thiele modulus ¢ is equal to unity in both cases, the con-
centration profiles are evidently very different. In cases with little diffusional limitation
such as that shown in figure 2(a), the steady state concentration profiles of both A and P
remain close to their saturation values of A* and P*, respectively, throughout the liquid
reaction volume. (Note the greatly magnified vertical scale in figure 2(a).) However, in
other cases such as that shown in figure 2(b), diffusional limitation plays a significant
role. In these cases A falls well below A* away from the source of A at z = 0, and/or P
rises well above P* away from the sink of P at z = L. Note that figure 1 shows another
example of this case in which P/P* reaches large values away from z = L. Figure 2 also
shows that, despite the fact that the values of A*/K, = 0.1 and P*/Kp = 0.1 are not
particularly small, in both cases the “exact” numerically calculated steady state concen-
tration profiles are in excellent agreement with the corresponding asymptotic solutions in
the linear kinetics limit A*/K, — 0 and P*/Kp — 0 given in Appendix B. Note that in
the first case (in which S = 1.1) the corresponding asymptotic solutions in the solid-to-
solid equilibrium limit S — 1%, also given in Appendix B, are virtually identical to the

asymptotic solutions shown in figure 2(a) and hence are omitted for clarity.
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4.3 Values of the Effectiveness Factor

As described in section 2, we define the dimensionless effectiveness factor, F, as the ratio
of the observed total reaction rate to the total reaction rate in the reaction limited limit
in which the concentrations of A and P are equal to their saturation values of A* and P*,
respectively. Values of E near unity indicate that reaction limitation dominates, while

values near zero indicate that diffusional limitation dominates.

Figure 3 shows how the effectiveness factor £ depends on the Thiele modulus ¢ in two
different cases. As expected, in both cases shown E is close to unity for ¢ <« 1, and
close to zero for ¢ > 1. What is much less intuitively obvious is that when ¢ is of order
unity, other parameters have a large effect on the value of E. The two cases shown are for
relatively extreme parameter values, but clearly illustrate how in these cases the values
of the other parameters can cause E to vary between approximately 0.1 and 0.8 when
¢ = 1. Figures 1 and 2 also illustrate examples of situations with very different degrees
of diffusional limitation when ¢ = 1. Figure 3 also confirms that in both cases shown
the numerically calculated values of E are in excellent agreement with the corresponding
asymptotic values in the reaction limited limit (¢ — 0) given in Appendix B provided

that the value of ¢ is sufficiently small.

Figures 4 and 5 show the effects of the other parameters on the effectiveness factor F
when ¢ = 1. In particular, they show how E varies for parameter values in the following
ranges, which were selected as those likely to describe real reaction systems for solid-to-
solid conversions: A*/K and P*/Kp between 0.1 to 10, K between 0.1 and 100, and S

between 1 and 1000.

Figure 4 shows E as a function of A*/K for a range of values of P*/Kp. In all the cases
investigated, E' was found to be a monotonically increasing function of A*/K,. Figure 4
also shows that (depending on the values of the other parameters) increasing the value of

P*/Kp can either increase or decrease F.
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Figure 5 shows E as a function of the solid equilibrium number S for a range of values of
K. In all the cases investigated, E was found to be a monotonically decreasing function of
S, but a monotonically increasing function of K. Interestingly, there is no discontinuity
in the behaviour of F as we approach S = 1, despite the fact that in this limit the net
reaction rate becomes zero (the solid-to-solid conversion is at equilibrium). In particular,
figure 5 shows how the numerically calculated values of E approach their appropriate

limiting values given in Appendix B as S approaches unity.

5 Implications for Design of Reaction Systems

It is useful to briefly note how the dimensionless parameters may be altered in the design

of a practical reaction system so as to achieve maximum effectiveness.

As in any mass transfer-reaction system, the Thiele modulus, ¢ = (L*Vinax/DKa)'?,
should be minimised. The parameter Vimax can always be reduced by lowering the cata-
lyst concentration, but the penalty is of course a longer reaction time. The characteristic
thickness of the layer of liquid phase L should be reduced by means of smaller reactant
particles and more uniform mixing of them. The diffusion coefficient D will usually not
change very much, but may be made smaller by using a solvent in which high reactant
solubilities lead to a highly viscous liquid phase. The parameter A*/K, should be max-
imised. Both A* and KA can be changed by altering the solvent. However, they tend
to vary by the same proportion, due to substrate solvation effects (van Tol et al. [10],
Wescott and Klibanov [11], Janssen et al. [12]), in which case the ratio will be unchanged.
More usefully, where more than one enzyme is available to catalyse the desired reaction,
K may be reduced by selecting one with a higher affinity for the substrate. Changing
K will, of course, also affect the value of ¢, although only with a square root depen-
dence. This will tend to have the opposite effect on E, and so the net result would
need to be carefully determined in each individual case. The solid equilibrium number,

S = KA*/P*, is a thermodynamic quantity that will be constant for a given reaction,

13



whatever the solvent. However, the chemical equilibrium constant K can be altered by
changing the solvent, and the effectiveness factor, F, will be increased for larger K at
any value of S. To increase K the chosen solvent should solvate P better than it does
A. However, other factors are also important in the choice of solvent, and, in particular,
it is often desirable to use just water. Solvent choice is also important for maximising
equilibrium yield (Ulijn et al. [13]). Clearly, the possibilities for increasing effectiveness
by changing these other parameters are somewhat limited. Nevertheless, it is evidently

important to appreciate their effects in choosing a target value of ¢ to aim for in design.

6 Conclusions

An initial mathematical model for mass transfer effects in a mainly solid enzymic reaction
mixture was constructed using some physically reasonable approximations. Numerically
calculated solutions of the model equations show how reactant concentrations vary with
time and position, and give an effectiveness factor F as a measure of the impact of mass
transfer limitations. As expected, the value of F in steady state is strongly dependent on
the Thiele modulus ¢. However, it was also observed that E can vary widely as a result of
changes in the other dimensionless groups characterising the system. For example, there
are situations with ¢ = 1 in which the value of F varies between approximately 0.1 and
0.8 as the other parameters are varied in physically reasonable ranges. Analytical asymp-
totic solutions which provide good approximations to the numerically calculated results
in various physically important limiting cases were also presented. The relatively simple
model discussed in this paper is based on a number of physically reasonable approxima-
tions and could, of course, be extended and improved in a variety of ways. Nevertheless
we feel that the present results provide a useful insight into a highly complex physical

system.
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Appendix A: Details of the Numerical Method

In this appendix all quantities are dimensionless and so we omit the dashes for brevity.

In order to calculate the solution of the system (10)-(13) numerically the spatial domain
0 <z <1 and the temporal domain ¢ > 0 were discretised using the finite difference grid
{(jAz,nAt); j=1,...,M,n=1,...,N} such that MAz = 1 and NAt = T where T
denotes the final time to be computed to. The numerically calculated values of A and P

at £ = jAx and ¢t = nAt are denoted by A} and P} respectively.

After rearrangement, a full Crank-Nicolson discretisation of equations (10) and (11) results

in
ATt — prtl/g
Antl 52An+1 At J J
i Tagtti T (1 T AAT Ky + PP /KP)
1 —P*/S
= A} L524n — At ! 1
+2¢2 e2 <1+A*A;P/KA+P*P;1/KP)’ (15)
prtl 52})““ 3 —S—At A;.Ulrl _ pjﬂ+1/S :
! 2¢7° 14+ A*AZY /Ky + PP} Kp
S A? — P*/S
— pn 62Pn At J J
=5t g% Tk (1 + A A Kn + PP/ Kp> (16)

for j = 1,...,M, where r = At/(Az)? and 62 denotes the usual centered three-point

finite difference approximation to a second spatial derivative.

The equations (15) and (16) may be written more compactly as
F(Zn+1) =b (17)

where b is a vector containing the previously calculated values Al Prforj=1,...,M,
and 2"t = (AL, PMTT with A™ = (APF, ... A%fY) and P = (PPt . PR,
A (first order) discretisation of the boundary conditions (12) and (13) is incorporated into

(17).

The algorithm consists of time-stepping forward using the Crank-Nicolson scheme (17).

Since the equations are nonlinear the solution at each time step is obtained by using

16



several iterations of Newton’s method, which may be written in the form
F'(2")(z(y" - 2(ty)) = —F(2") (18)

where F'(z") denotes the Jacobian

a_F. or 8—F‘l- for l,k=1,...,2M, (19)
9z z=z" 8Zk zr=2y

k

and z’(";.;’l denotes the ith iteration of z" . A reasonable first guess for the Newton iteration

is obtained by taking the value calculated at the previous time step, i.e. z?o")'l =z".

The effectiveness factor E (calculated from the total rate per unit area) is then obtained

by evaluating the integral
1
/ v(A, P) dz (20)
0

using the trapezoidal rule.
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Appendix B: Steady State Asymptotic Solutions in
Limiting Cases

In this appendix all quantities are dimensionless and so (as in Appendix A) we omit the
dashes for brevity. Furthermore, we shall use the standard mathematical “order notation”

in which O(X) denotes terms of the same (or higher) order as X in the limit X — 0.

From equations (10) and (11) in steady state A and P satisfy

1
A—-PpP
_1_d2A _ S (21)
¢* dz? 1+A*A+ P
Ka Kp
1
A—ZP
T )
1 A P
Tt ®

subject to the boundary conditions (12) at # = 0 and (13) at z = 1. Note that adding
equations (21) and (22) and integrating twice yields A+ KP/S = az + 3 where o and 8

are arbitrary constants determined by imposing the boundary conditions.

B.1 The Solid-to-Solid Equilibrium Limit S — 1+

In the solid-to-solid equilibrium limit S — 17 we have

_ K[14 K coshC + Czsinh C — cosh (Cz) — K cosh (C(1 — x))]
2K + KCsinh C + (1 + K?)cosh C

+0(S - 1), (23)
4 K +coshC + KC(1 — z)sinh C — cosh (Cz) — K cosh (C(1 — z))

A =1

(5-1)

Po=1 2K + KCsinhC + (1 + K?) cosh C (§-1)
+0(S -1)?, (24)
where we have defined
1/2
K (1 + + )
Ky, Kp

18



showing that, as expected, both A and P are equal to the constant value of unity at

leading order, and that

(1+ K)?sinh C

C[2K + KCsinh C + (1 + K?) cosh C] +0(S —-1). (26)

Hence we find that at leading order F is a monotonically decreasing function of C satisfy-
ing E=1-C?/3+0(C*)asC -0, E~ (1+K)?/KC? - 0asC — 00, E~1/C =0
as K —» 0 (C ~ ¢(K(1+ A*/Ks + P*/Kp))™*? = ), and E ~ tanhC/C as K — oo
(C~ ¢(1+ A*/Kp + P*/Kp)™1/?).

B.2 The Reaction Limited Limit ¢ — 0

In the reaction limited limit ¢ — 0 we have

(S-1D2-2z)z

A= 1- — ¢’ + O(g"), (27)
A P
25 (1+ 7ot KP)
_ 2
P o= 1452 D0=T) o, (28)
oK (1+ 7ot Kp)

showing that, as expected, both A and P are equal to the constant value of unity at

leading order, and that E is just less than unity and given by

A* P

[1+K+(SKA+KP)(S+K)]

* P* 2
3K(1+A )

E=1-

¢* + O(9"). (29)

KA+KP

Note that it is necessary to calculate A and P to O(¢*) (not shown here for brevity) in

order to determine this O(¢$?) accurate expression for E.

B.3 The Linear Kinetics Limit A*/Ky — 0 and P*/Kp — 0

At leading order in the linear kinetics limit A*/K, — 0 and P*/Kp — 0 equations (21)

and (22) reduce to linear equations and so can be solved immediately to yield

A =oaz+ f+ cyexp(cz) + c- exp(—cz) (30)
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and hence

P = S(az+pB) — %C+ exp(cz) — %c_ exp(—cz) (31)

where the constants «, 3, ¢, and c_ are given by

o - K(S —1)(1+ K exp(—c)) (32)
" 7 282K + Kcsinhc + (1 + K2) cosh (]’
K(S - 1)(1+ K exp(c))
cC. = . ) (33)
25 [2K + Kcsinhc+ (1 + K2) cosh ]
B K(S —1)csinhe
S[2K + Kcesinhc + (14 K?) coshc]’

K(1+8)+ KScsinhc+ (K2 + S) coshc

p S[2K + Kesinhe+ (1 + K?2) cosh ] (35)
where we have defined
/2
Ja+x)7
and hence
1+ K)?sinh
(1+ K)*sinhc (37)

E = :
c[2K + Kcsinhc+ (1 + K?) cosh ¢]
Hence we find that at leading order E is a monotonically decreasing function of ¢ satisfying

E=1-c/3+0(c*)asc—0and E~ (1+K)?/Kc® — 0 as ¢ — oo.

Clearly the solution in a number of interesting sublimits can be obtained from the solution
in this limit. For example, in the solid-to-solid equilibrium limit S — 17 we recover the
appropriate special case of the results in section B.1 above, while in the limit S — oo in

which the solid-to-solid reaction is highly favourable we obtain

4 K + coshc+ Kc(1 — ) sinh ¢ + K cosh(cz) + K2 cosh(c(1 — z)) (38)
2K + Kcsinhc+ (1 + K?)coshe ’

p S[K + coshc+ Kc(1 — ) sinh ¢ — cosh(cz) — K cosh(c(1 — 1))] (39)
2K + Kcsinhc + (1 4+ K?) coshe ’

with E still given by (37). In the limit K — 0 in which the liquid phase reaction is highly

unfavourable then ¢ ~ ¢/v/K — co and we obtain

A~ 1- ﬁ‘s—,_—l)x\/l_f+ w [K exp(—cz) + exp(—c(1 — z))], (40)
P ~ S—¢(S=1)aVK — (S —1)[K exp(—cz) + exp(—c(1 — z))], (41)
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and E ~ v/K/$ — 0, showing that away from thin boundary layers of thickness VK < 1
near both z = 0 and z = 1 then both A and P are constant at leading order (with P
being S times A, corresponding to the reaction being in equilibrium in the bulk of the
liquid), while in the limit K — oo in which the liquid phase reaction is highly favourable

then ¢ ~ ¢ and we obtain

cosh ¢ + (S — 1) cosh(é(1 — x))
S cosh ¢ ’
14 (S—1)[1+ (1 —=z)¢sinh¢ — cosh(¢(1 — z))]
K cosh ¢ ’

A (42)

P (43)

and F ~ tanh ¢/¢. In the reaction limited limit ¢ — 0 we recover the appropriate special
case of the results in section B.2 above, while in the completely diffusion dominated limit

¢ — oo then ¢ — oo and we obtain

A~ 1-— S; 1:10 + (Ss_cl) [K exp(—cz) + exp(—c(1 — z))], (44)
P~ S—(S—1)a— (-ng—cl) K exp(—ca) + exp(—c(1 — 2))], (45)

and E ~ (1+ K)/¢*> — 0, showing that away from thin boundary layers of thickness
1/c < 1 near both x = 0 and z = 1 then both A and P are linear in z at leading order

(with P being S times A, again corresponding to the reaction being in equilibrium in the

bulk of the liquid).
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Figure 1: Time evolutions of the concentration profiles of (a) A/A* and (b)
P/P* across the liquid reaction volume 0 < z/L < 1 when Vipaxt/Kx =
0.0,0.05,0.1,0.2,0.3,0.4,0.5,0.8,1.0 and in steady state in the case ¢ =1, A*/K, = 0.1,
P*/Kp = 0.1, K = 0.2 and S = 20. Note the greatly magnified vertical scale in part (a),
and that in part (b) the solutions when Viaxt/Ks = 0.8 and 1.0 are virtually indistin-
guishable from the steady state solution.
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Figure 2: Examples of steady state concentration profiles when (a) K = 0.011and S = 1.1,
and (b) K = 1000 and S = 100 in the case ¢ =1, A*/Kx = 0.1 and P*/Kp = 0.1. The
numerical results are denoted by solid lines and the corresponding asymptotic results in
the linear kinetics limit (A*/K, — 0 and P*/Kp — 0) given in section B.3 are denoted
by dotted lines. Note the greatly magnified vertical scale in part (a).
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Figure 3: The effectiveness factor E plotted as a function of the Thiele modulus ¢ in
the case A*/K, = 0.1, P*/Kp = 0.1, K = 0.011 and S = 1.1 (case a), and the case
A*/Kx =10, P*/Kp = 0.1, K = 100 and S = 10 (case b). The numerical results are
denoted by solid lines and the corresponding asymptotic results in the reaction limited
limit (¢ — 0) given in section B.2 are denoted by dotted lines.
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Figure 4: The effectiveness factor F plotted as a function of A*/K, for P*/Kp = 0.1,
0.3, 1, 3 and 10 in the case ¢ =1, K =1 and S = 100.

0.4

effectiveness factor E

0 i aa " i il " P R T
1 10 100 1000

solid equilibrium number S

Figure 5: The effectiveness factor E plotted as a function of the solid equilibrium number
S for K = 0.1, 0.3, 1, 3, 10, 30 and 100 in the case ¢ =1, A*/Kx = 0.1 and P*/Kp = 0.1.
The dashed lines show the limiting values of E in the solid-to-solid equilibrium limit
(S — 17) given in section B.1.
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