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ANALYSIS OF THE SINGULAR VALUE DECOMPOSITION AS A
TOOL FOR PROCESSING MICROARRAY EXPRESSION DATA

DESMOND J. HIGHAM∗, GABRIELA KALNA† , AND J. KEITH VASS‡

Abstract. We give two informative derivations of a spectral algorithm for clustering and par-
titioning a bi-partite graph. In the first case we begin with a discrete optimization problem that
relaxes into a tractable continuous analogue. In the second case we use the power method to derive
an iterative interpretation of the algorithm. Both versions reveal a natural approach for re-scaling
the edge weights and help to explain the performance of the algorithm in the presence of outliers.
Our motivation for this work is in the analysis of microarray data from bioinformatics, and we give
some numerical results for a publicly available acute leukemia data set.

keywords: bioinformatics, clustering, data mining, microarray, power method,
singular vaue decomposition.

AMS: 92D10, 92C55, 65F15

1. Introduction. Microarray technology gives information about the expression
levels of thousands of genes simultaneously. When microarray data from a number
of samples is collected, the natural data structure is a bi-partite graph with non-
negatively weighted edges. An important problem is then to partition, or cluster, the
graph in an attempt to produce sets of genes and sets of samples such that each set
of genes behaves uniformly across each set of samples. Here, we give analytical and
experimental support for the use of the singular value decomposition (SVD).

In the next section we motivate the problem. In section 3 we start with a discrete
optimization problem and proceed by adding constraints and relaxing to the contin-
uous setting. By breaking the derivation into transparent steps, we are able to gain
insights into the potential performance of the algorithm. This analysis generalizes the
work in [9] to the bi-partite graph case. In particular, we show that there is a natural,
justifiable, way to pre-process the edge weights to account for differently callibrated
genes or samples. In section 4 we give an alternative derivation. Here, the solution
is expressed as the limit of an iterative procedure that updates the clustering values
based on an easily interpreted rule that measures the relative connectedness of the
data points.

In section 5 we apply the algorithm to some small scale, artificial test data in
order to get a feel for the performance and visualize the output. In section 6 we then
apply the algorithm to a microarray data set of acute leukemia published in [3] and
[7] (http://www.broad.mit.edu/cgi-bin/cancer/datasets.cgi) and interpret the results
biologically.

2. Spectral Bi-Clustering. We are concerned with the case where a number
of microarray samples have been generated for a common set of genes [1], [2], [7].
Typically, samples correspond to different pieces of tissue. For each gene in each
sample, we suppose that a non-negative weight has been recorded to quantify the
activity of the gene in that sample. If there are M genes and N samples, then
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a rectangular matrix W ∈ RM×N stores the weights, with wij ≥ 0 representing the
activity of the ith gene in the jth sample. This data fits into the general framework of
a non-negatively weighted bi-partite graph—nodes can be split into two groups (genes
and samples) such that a weighted edge exists only for pairs of nodes in distinct
groups.

The matrix W is normally long and thin; values such as M ≈ 30, 000 genes and
N ≈ 100 samples are typical. In trying to find easily-summarized structure in the
dataset, a reasonable approach is to bi-cluster simultaneously the genes and samples;
that is,

to partition the genes into two distinct groups, A and B, and simi-
larly, partition the samples into two distinct groups, Â and B̂, where
genes in group A tend to be active in samples Â and inactive in sam-
ples B̂, and similarly, genes in group B tend to be active in samples
B̂ and inactive in samples Â.

The biological motivation behind a search for this pattern is that genes involved in a
common function should be active in a common set samples. Revealing this structure
provides information about sets of genes that take part in a common process and
about samples in which such a process takes place.

This bi-clustering goal has been considered in [11], where justification is given via
existing microarray datasets. Kluger et al. propose the singular value decomposition
(SVD) as a means to bi-cluster, and our main aim here is to provide further theoretical
support and algorithmic insight into the use of the SVD in this respect.

We will focus throughout on the microarray application and refer to ‘genes’ and
‘samples’, but we emphasize that the analysis here is quite general and applies to
any bi-partite graph with weighted edges; in particular, very similar problems arise
in related areas of bioinformatics and in other data mining applications [4], [8], [12],
[14].

3. Optimization Viewpoint. Let pi ∈ {− 1
2 ,

1
2} be an indicator vector com-

ponent that determines whether gene i is placed in group A or B. Similarly, let
qj ∈ {− 1

2 ,
1
2} be an indicator vector component that determines whether sample j is

placed in group Â or B̂. Consider first the problem

min

M∑

i=1

N∑

j=1

(pi − qj)2wij .(3.1)

Here, we seek to minimize the sum of the weights wij that relate non-matching genes
and samples. To avoid the trivial solution where all genes/samples are put into a
single group (with the other group remaining empty), we add the constraints

M∑

i=1

pidgenei ≈ 0 and

N∑

j=1

qjdsamplej ≈ 0,(3.2)

where dgenei :=
∑N

k=1 wik is the total expression weight for gene i and dsamplej :=
∑M

k=1 wkj is the total expression weight for sample j. The constraints (3.2) make sure
that overall expression levels are roughly balanced across the two groups of genes and
across the two groups of samples.

To reduce this discrete optimization task to a tractable problem, we look for a
solution with p ∈ RM and p ∈ RN . The idea is that the real-valued solution vectors
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p and q will have components that fall into distinct groups, and hence will reveal
obvious partitions. This relaxation idea has been successfully used in a number of
data mining applications [4]. After relaxing, to avoid the trivial solution p ≡ 0 and
q ≡ 0 we impose the normalization constraints

M∑

i=1

p2
i dgenei = 1 and

N∑

j=1

q2
j dsamplej = 1.(3.3)

Constraints (3.3) damp down the influence of ‘promiscuous’ genes and samples, that
is, genes and samples with large overall connectivity—a large dgenei or dsamplej value
encourages a pi or qj value close to zero. Having relaxed to real valued indicator
vectors, we may strengthen to exact equality in (3.2), giving

pT dgene = qT dsample = 0.(3.4)

Letting Dgene = diag(dgene) ∈ RM×M and Dsample = diag(dsample) ∈ RN×N , the

two-sum
∑M
i=1

∑N
j=1(pi − qj)2wij expands to pTDgenep + qTDsampleq − 2pTWq and

hence the problem (3.1) under constraints (3.3) and (3.4) may be written

max{pTWq : p ∈ RM , q ∈ RN , pT dgene = qT dsample = 0,

‖D
1
2
genep‖2 = ‖D

1
2

sampleq‖2 = 1}.(3.5)

Theorem 3.4 below solves this problem with the aid of Lemmas 3.1–3.3. First,
we recall that any matrix A ∈ RM×N has SVD of the form A = UΣV T , where
U ∈ RM×M and V ∈ RN×N are orthogonal, and Σ ∈ RM×N is diagonal with entries
σ1 ≥ σ2 ≥ σ3 ≥ · · · ≥ 0 on the diagonal [6]. The columns u(1), u(2), u(3), . . . of U and
the columns v(1), v(2), v(3), . . . of V are known as the left and right singular vectors of
A. The scalars σ1, σ2, . . . are the corresponding singular values.

Lemma 3.1. Let A ∈ RM×N have SVD given by A = UΣV T . Then the problem

max{xTAy : x ∈ RM , y ∈ RN , xTu(1) = yT v(1) = 0, ‖x‖2 = ‖y‖2 = 1}(3.6)

is solved by x = u(2) and y = v(2).
Proof. Let x = Ur and y = V s. Then the problem (3.6) becomes

max{rTΣs : r ∈ RM , s ∈ RN , r1 = s1 = 0, ‖r‖2 = ‖s‖2 = 1},

for which a solution is clearly given by setting the second components of r and s to 1
and all other components to 0.

In Lemmas 3.2 and 3.3, we use 1 to denote a vector with all entries equal to one,
of whatever dimension is appropriate. We also use

√
x for a vector x to mean the

vector whose ith component is
√
xi. We assume throughout that Dgene and Dsample

are nonsingular.
Lemma 3.2. The vectors u =

√
dgene/‖

√
dgene ‖2 and v =

√
dsample/‖

√
dsample ‖2

are left and right singular vectors of D
− 1

2
geneWD

− 1
2

sample with corresponding singular value
equal to 1.

Proof. Given a matrix A ∈ RM×N , if u ∈ RM and v ∈ RN satisfy Av = σu
and ATu = σv for some σ > 0, then u/‖u ‖2 and v/‖ v ‖2 are left and right singular
vectors of A with singular value σ. Since

D
− 1

2
geneWD

− 1
2

sample

√
dsample = D

− 1
2

geneW1 = D
− 1

2
genedgene =

√
dgene,
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and

D
− 1

2

sampleW
TD
− 1

2
gene

√
dgene = D

− 1
2

sampleW
T1 = D

− 1
2

sampledsample =
√
dsample,

the result holds.

Lemma 3.3. We have ‖D−
1
2

geneWD
− 1

2

sample‖2 = 1.
Proof. The symmetric matrix

C =

[
0 W
W T 0

]

satisfies ‖C‖2 = ‖A‖2. Since W → D
− 1

2
geneWD

− 1
2

sample corresponds to

C → C̃ = D−
1
2CD−

1
2 ≡

[
D
− 1

2
gene 0

0 D
− 1

2

sample

] [
0 W
W T 0

][
D
− 1

2
gene 0
0 Dsample− 1

2

]

and D = diag(C1), the problem is now reduced to the symmetric case.

Letting ρ(C̃) denote the spectral radius of C̃, we have

ρ(C̃) = ρ(D−
1
2CD−

1
2 ) = ρ(D−1C) ≤ ‖D−1C‖∞ = 1.

But

C̃ ·D 1
2 1 = D−

1
2CD−

1
2 ·D 1

2 1 = D−
1
2C1 = D−

1
2D1 = D

1
2 1,

so C̃ has an eigenvalue 1. Hence, ρ(C̃) = 1. Since C̃ is symmetric, we have ρ(C̃) =

‖C̃‖2, completing the proof.

Theorem 3.4. The problem (3.5) is solved by taking p = D
− 1

2
geneu(2) and q =

D
− 1

2

samplev
(2), where u(2) and v(2) are second left and right singular vectors of the matrix

D
− 1

2
geneWD

− 1
2

sample.

Proof. Letting p = D
− 1

2
genex and q = D

− 1
2

sampley, the problem (3.5) may be written

max{xTD−
1
2

geneWD
− 1

2

sampley : x ∈ RM , y ∈ RN , xT
√
dgene

‖
√
dgene‖2

=

yT
√
dsample

‖
√
dsample‖2

= 0, ‖x‖2 = ‖y‖2 = 1}.

Using Lemmas 3.2 and 3.3, we see that this is of the form (3.6) with A = D
− 1

2
geneWD

− 1
2

sample.

Hence, x = u(2) and y = v(2) solve the problem, which corresponds to p = D
− 1

2
geneu(2)

and q = D
− 1

2

samplev
(2).

4. Power Method Interpretation. In this section we show that the spectral
algorithm may be interpreted from an iterative viewpoint. This provides a simple
and informative explanation of the algorithm, and also opens up the possibility of
modifications that incorporate problem-specific information.

We will consider the use of the singular vector v(2) to categorize samples. An
entirely analogous explanation applies to the use of u(2) to categorize genes.

We recall that the power method applied to a general square matrix B ∈ RN×N
takes the form [6]
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(1) choose y[0] ∈ RN , set k = 0,
(2) let y[k+1] = By[k]/‖By[k] ‖,
(3) repeat step (2) until some convergence criterion is satisfied.
Our aim is to interpret such an algorithm as an attempt to assign a location on the

real line to each sample, so q
[k]
s represents the location of sample number s at iteration

number k. The locations are updated in a way that takes account of the “connected-
ness” of samples, and the aim is that the final result, q[∞], positions each sample close
to samples that are “strongly connected” to it and far from samples that are only
“weakly connected” to it. Further, we will assume that only the overall ordering of
the samples is important—as in the matrix reordering examples of section 5—so we
will simplify by replacing step (2) with y[k+1] = By[k]. (In practice, of course, normal-
ization is necessary to avoid underflow and overflow, but our aim here is to develop a
new interpretation of the algorithm rather than a practical implementation.)

Making the assumption σ2 > σ3, we begin by noting that v(2) is the subdominant

eigenvector of the matrix
(
D
− 1

2
geneWD

− 1
2

sample

)T (
D
− 1

2
geneWD

− 1
2

sample

)
; that is,

D
− 1

2

sampleWD−1
geneWD

− 1
2

sample. By Lemma 3.2, this matrix has dominant eigenvector√
dsample, corresponding to eigenvalue 1. Normalizing to get Euclidean norm of unity,

we obtain
√
dsample√
Wsum

, where Wsum :=
M∑

i=1

N∑

j=1

wij ,

as the dominant eigenvector. Hence, the deflated matrix

D
− 1

2

sampleWD−1
geneWD

− 1
2

sample −
√
dsample

√
dsample

T

Wsum
,

has dominant eigenvector v(2). It follows that v(2) may be computed by applying
the power method to this matrix. After some manipulation, the iteration for q[k] :=

D
− 1

2

sampley
[k] may be written in the form

q[k+1]
r =

N∑

s=1

(
α[k]
r,s − βs

)
q[k]
s ,(4.1)

where

α[k]
r,s :=

1

(dsample)r

M∑

t=1

wtrwts
(dgene)t

and βs :=
(dsample)s
Wsum

.(4.2)

Several remarks are in order.
1 The iteration (4.1) computes a new location q

[k+1]
r for the rth sample by forming

a weighted sum of all the current locations, q
[k]
s .

2 The quantity α
[k]
r,s in (4.2) may be described as the actual connectivity for sample

s from sample r. It is large if samples r and s have a big percentage of
their weights involved in common genes, and small otherwise. Fixing r, we

compute α
[k]
r,s for the sth sample by running over all genes, t = 1, 2, . . . ,M , and

summing wtrwts/(dgene)t. The quantity wtrwts/(dgene)t measures whether
samples r and s are both strongly connected to gene t, relative to the overall
promiscuity of gene t. Finally, this sum is divided by (dsample)r so that the
overall promiscuity of sample r is taken into account.
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Fig. 5.1. Upper left: data matrix. Upper middle: shuffled. Upper right: reordered by spec-

tral method. Lower pictures show components of the scaled second singular vectors D
− 1

2
geneu

(2) and

D
− 1

2
samplev

(2) of D
− 1

2
geneWD

− 1
2

sample.

3 The quantity βs in (4.2), which is independent of k, may be described as the typical
connectivity for sample s. It measures the weight associated with sample s
relative to the total amount of weight present.

4 Combining points 2 and 3, we see that in the iteration (4.1), the influence of sample
s on the new location of sample r depends on the difference between their

actual and typical connectivities. If α
[k]
r,s > βs then sample r has a strong

connection with sample s and hence a positive weight is used in (4.1), which
tends to bring the locations of samples r and s closer together at the next

iteration. On the other hand if α
[k]
r,s < βs then sample r has a weak connection

with sample s and hence a negative weight is used in (4.1), which tends to
force the locations of samples r and s further apart at the next iteration.

Overall, this interpretation, which does not make use of advanced linear algebra
concepts such as the SVD, shows that the spectral clustering approach may be viewed
as a natural iteration that attempts to shuffle the location of the samples based on
their relative connectedness. In addition to giving insight about the nature of the
algorithm, this iterative viewpoint offers potential for customized versions, where
existing knowledge about the existence of clusters could be built in at each iteration.
This idea will be pursued in further work.

5. Experiments. Figure 5.1 illustrates the spectral algorithm. The top left pic-
ture shows a matrix W ∈ R20×10 with entries computed from pseudorandom number
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Fig. 5.2. Reordering with the specral algorithm. Upper left: data matrix. Upper right:

shuffled. Lower left: reordered by scaled second singular vectors D
− 1

2
geneu

(2) and D
− 1

2
samplev

(2) of

D
− 1

2
geneWD

− 1
2

sample. Lower right: reordered by third scaled singular vectors D
− 1

2
geneu

(3) and D
− 1

2
samplev

(3)

of D
− 1

2
geneWD

− 1
2

sample.

generators according to

wij =





2 + 2rand, for 1 ≤ i ≤ 5, 1 ≤ j ≤ 5,
2 + rand, for 6 ≤ i ≤ 12, 6 ≤ j ≤ 10,
|randn|, otherwise.

Here we follow MATLAB notation [10] so rand and randn denote calls to Uniform
∈ (0, 1) and standard Normal generators, respectively. In summary, W has two blocks
of relatively large entries that are clearly visible as darker pixels in the picture. For
the purpose of visualization, the upper middle picture shows the same matrix with
an arbitrary row and column shuffling. This is the matrix to which the algorithm
is applied. (In practice, the algorithm is insensitive to permutations, but the middle
picture represents the ‘unstructured’ format that would be generated in practice.) The
middle and lower pictures in Figure 5.1 show the entries in the scaled second singular

vectors of D
− 1

2
geneWD

− 1
2

sample, that is D
− 1

2
geneu(2) and D

− 1
2

samplev
(2), where W denotes the

shuffled matrix. We see that the entries of D
− 1

2
geneu(2) fall into three bands and the

entries of D
− 1

2

samplev
(2) fall into two bands. The component indices for the upper and

lower bands in D
− 1

2
geneu(2) match the row indices for the two large blocks in the matrix.

Similarly, the component indices for the two bands in D
− 1

2

samplev
(2) match the column

indices for the two large blocks. To see this, the top right picture shows the matrix

with rows and columns reordered according to the ordering of components in D
− 1

2
geneu(2)
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Fig. 5.3. As for Figure 5.2 except that W is used instead of D
− 1

2
geneWD

− 1
2

sample. Upper left: data

matrix. Upper right: shuffled. Lower left: reordered by second singular vectors u(2) and v(2) of W .
Lower right: reordered by third singular vectors u(3) and v(3) of W .

and D
− 1

2

samplev
(2). We see that the algorithm is able to recover the two blocks of large

entries.
In Figure 5.2, we repeat this exercise for a matrix W ∈ R20×10 with entries

wij =





1.5 + 2.5rand, for 1 ≤ i ≤ 5, 1 ≤ j ≤ 5,
1.5 + 2.5rand, for 7 ≤ i ≤ 15, 8 ≤ j ≤ 10,
4 + 4rand, for i = 18, 1 ≤ j ≤ 10,
4 + 4rand, for 1 ≤ i ≤ 20, j = 6,
|randn|, otherwise.

Overall this matrix has two blocks of slightly larger than average entries, but is dom-
inated by a large row (i = 18) and a large column (j = 6). This represents an
unusually overexpressed gene and an unusually overexpressed sample. The top left
picture shows the original matrix and the top right picture shows a row/column shuf-
fled version, to which the algorithm was applied. The bottom left picture shows the
reordered matrix, as described for Figure 5.1, and we see that the algorithm has suc-
cessully located the two blocks, while placing the promiscuous row and column in the
middle of the ordering. This agrees with the remarks made in sections 3 and 4. The
lower right picture in Figure 5.2 shows the reordering produced by the scaled third

singular vectors of D
− 1

2
geneWD

− 1
2

sample, that is, D
− 1

2
geneu(3) and D

− 1
2

samplev
(3). Here, the re-

ordering is essentially distinguishing the single large row/column from the remainder.
This makes sense—the second singular vectors have picked out the two significant
blocks, so the third singular vectors pick out the only remaining structure in the
data, namely the ‘outlying’ gene/sample pair. (For further discussion about the role
of higher eigenvectors in the M = N case, see [9].)
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In Figure 5.3 we perform the same experiment using the second and third singular

vectors from the SVD of W rather than D
− 1

2
geneWD

− 1
2

sample. Here, we see that reordering

with the second singular values u(2) and v(2) serves only to isolate the outliers. Because
there is no normalization across genes/samples, the algorithm is heavily influenced by
the promiscuous values. However, the third singular vectors do pick out the remaining
structure, namely the existence of the two significant blocks.

Overall, the tests here confirm that the SVD-based algorithm can successfully
reveal the existence of clusters, and also support the earlier arguments that the

normalization D
− 1

2
geneWD

− 1
2

sample will tend to mitigate the influence of promiscuous
genes/samples.

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1
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m
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v(3
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2
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m
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v(2

)
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−2

0

2

4
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/2
sa

m
pl

es
v(3

)

ALL−B

ALL−T

AML

Fig. 6.1. Leukemia: Upper: Scatter plot of the samples Lower pictures show samples ordered
by the second and third singular vectors.

6. Microarray Data. To ilustrate the performance of the spectral algorithm
proposed above we use acute leukemia data as published in [3]. The data set of
bone marrow samples from 38 patients contains the expression intensities for 5000
genes. Twenty seven cases were diagnosed as acute lymphoblastic leukemia (ALL)
and the other eleven as acute myeloid leukemia (AML). The distinction between ALL
and AML, as well as the division of ALL into T and B cell subtypes, is well known.
Several methods have been used to rediscover these differences [3], [5], [11], [13] and
the leukemia data set has become a benchmark in the cancer classification community.

The two lower pictures in Figure 6.1 show the reordering produced by the scaled

second and third singular vectors D
− 1

2

samplev
(2) and D

− 1
2

samplev
(3). We see that the second

singular vector has correctly found the essential AML-ALL distinction. Two ALL
samples are misclassified into the AML group. This happens for most methods and
appears to reflect an inconsistency in the data. The third singular vector picks out the
next important structure in the data—distinction between ALL-B and ALL-T. The
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upper part of Figure 6.1 shows a plot of the second versus the third scaled singular
vectors. Leukemias are here clustered into the three main biological classes.

7. Conclusion. We have given theoretical support for the use of the SVD by
deriving a spectral clustering method from two alternative viewpoints. Both deriva-
tions give insights into the performance of the method and suggest that it will be
insensitive to the presence of outliers. We focused on the application of co-clustering
microarray data sets and showed that there is a natural way to normalize expression
levels across genes and samples. Results on a publicly available leukemia data set
demonstrated how the algorithm can be used to characterize different types of cancer.
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