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Ergodicity For SDEs and Approximations:

Locally Lipschitz Vector Fields

And Degenerate Noise
?

J.C. Mattingly1, A.M. Stuart2 and D.J. Higham3.

Abstract

The ergodic properties of SDEs, and various time discretizations for SDEs, are studied. The ergodicity
of SDEs is established by using techniques from the theory of Markov chains on general state spaces.
Application of these Markov chain results leads to straightforward proofs of ergodicity for a variety of
SDEs, in particular for problems with degenerate noise and for problems with locally Lipschitz vector
fields. The key points which need to be verified are the existence of a Lyapunov function inducing
returns to a compact set, a uniformly reachable point from within that set, and some smoothness of
the probability densities; the last two points imply a minorization condition. Together the minorization
condition and Lyapunov structure give geometric ergodicity. Applications include the Langevin equation,
the Lorenz equation with degenerate noise and gradient systems. The ergodic theorems proved are strong,
yielding exponential convergence of expectations for classes of measurable functions restricted only by
the condition that they grow no faster than the Lyapunov function.

The same Markov chain theory is then used to study time-discrete approximations of these SDEs. It
is shown that the minorization condition is robust under approximation. For globally Lipschitz vector
fields this is also true of the Lyapunov condition. However in the locally Lipschitz case the Lyapunov
condition fails for explicit methods such as Euler-Maruyama; it is, in general, only inherited by specially
constructed implicit discretizations. Examples of such discretization based on backward Euler methods
are given, and approximation of the Langevin equation studied in some detail.
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1 Introduction

The primary objective of this paper is to study ergodicity of dynamical systems subject to noise, especially
stochastic differential equations (SDEs) with additive noise and their time discretizations. In particular, we
are interested in problems where the noise is degenerate and the vector field governing the deterministic flow
is not necessarily globally Lipschitz. Such situations arise frequently in applications. A secondary objective
is to develop a framework for establishing ergodicity which is both simple and, at the same time, sufficiently
adaptable to allow application to both SDEs and their time-discretizations, especially those appropriate for
computer simulation. We show that explicit methods such as Euler-Maruyama can fail to be ergodic, even
when the underlying SDE is ergodic; we introduce variants of the backward Euler method which overcome
this difficulty.

To fulfill the secondary objective, section 2 contains the statement of a theory of geometric ergodicity for
Markov chains. (We use the term geometric ergodicity to mean the existence of an invariant measure π to
which there is exponentially fast convergence.) No essentially new ideas are presented in section 2, but the
treatment is self-contained and applicable in a straightforward way to both continuous and discrete time;
in addition it is unencumbered by machinery required for situations more general than those of interest to
us. Our treatment is influenced by the work of Meyn and Tweedie ([16, 17]), Durrett [3] and Has’minskii
([9]). Indeed many of the ergodicity results in this paper could be proved by combining various results in
[16, 17]. However, by stating and proving a theorem tailored to our needs, we believe that the subsequent
material is made more accessible; we prove the theorem with a straightforward coupling argument given in
the Appendix. Our approach, when proving ergodicity for SDEs, is to use knowledge of the deterministic
flow explicitly. Restricting to globally Lipschitz drift terms and a non-degenerate diffusion matrix, it is
possible to prove ergodicity with little knowledge of the flow. Yet many interesting equations which do not
meet these stringent conditions are nonetheless tractable, given a little knowledge of the underlying noise
free dynamics; this is the case for non-linear stochastic equations that have deterministic counterparts for
which the geometry of the phase space is well understood.

Sections 3, 4 and 5 are devoted to a variety of applications. In all cases, the noise free equations are
dissipative in the general sense of [8]. The Lyapunov functions used to prove this dissipativity are natural
candidates for establishing the supermartingale structure (outside a compact set) which underlies the theory
of geometric ergodicity in section 2; see [5] for a treatise on the use of Lyapunov functions to study the
ergodicity of countable state-space Markov chains. Our results are complementary to the work of Kleimann
[1, 11] where invariant control sets are used to partition the state space, and Markov chain properties studied
on these distinct control sets. We essentially work in settings where there is exactly one invariant control
set.

Section 3 is concerned with the Langevin equation, describing the motion of a particle subject to a cen-
tral force and interacting with a heat bath [6]. The noise is degenerate because it acts directly only on the
momentum co-ordinates and not positions. We generalize previous results in [31] where semigroup tech-
niques were employed. Section 4 is concerned with monotone and dissipative problems where the underlying
deterministic flow has an equilibrium point with non-trivial stable manifold. The basic idea for monotone
problems comes from [4] where it is used to study Galerkin approximations of the Navier-Stokes equation at
arbitrary Reynolds number and subject to degenerate noise. In the Navier-Stokes equations, the underlying
deterministic flow is monotone; here the approach is generalized considerably to allow study of a variety of
dissipative problems, including the Lorenz equations subject to degenerate noise. Ideas similar to those in
section 4 are employed in section 5 to study gradient systems with, possibly degenerate, noise. Gradient
systems with non-degenerate noise are thoroughly investigated in [20] where, confusingly in the context of
this paper, such problems are referred to as Langevin diffusions; here we reserve the terminology Langevin
diffusions for the particle-in-a-heat-bath models of section 3, noting that in the absence of inertia these
models reduce to the gradient problems of section 5.

Our presentation rests on two fundamental assumptions. The first is the existence of a Lyapunov function.
This implies that outside some compact region C in the center of the phase space the dynamics move inward
on average. Loosely, this allows us to restrict our attention to this central compact region. Secondly, there
exists a neighborhood N of some distinguished point in C which is uniformly reachable from inside C and
the probability densities are smooth in C; this leads to a minorization condition. In sections 3,4 and 5
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we basically verify these two assumptions for a variety of SDEs so that the induced measures converge
exponentially to the stationary distribution. Polynomial rates of convergence are obtained under a range of
conditions in [32].

The remaining sections study the effect of time-discretization on the problems in sections 3, 4 and 5.
Since the noise may be degenerate, and the vector fields not globally Lipschitz, existing theories establishing
ergodicity of numerical methods [28, 29, 7] do not apply. We show that the geometric ergodicity theory of
section 2 can be used to prove ergodicity of a variety of approximation methods applied to these problems.
The key points to understand are how time-discretization affects a minorization condition and how it effects
a Lyapunov structure. The former is robust to a wide range of approximations (see section 6), being a
property on a compact set. The Lyapunov condition, however, is more sensitive: by constructing examples,
we show that explicit methods such as Euler-Maruyama are transient, and hence not ergodic, for any choice
of time-step; related examples may be found in [20, 30]. In section 7 we study globally Lipschitz diffusions
where the Lyapunov structure is inherited by a wide range of approximations, including Euler-Maruyama.
In section 8 we study locally Lipschitz diffusions, showing that certain implicit numerical methods can be
constructed to inherit a Lyapunov structure; this work builds on related studies of deterministic problems
(see [27, Chapters 4 and 5]). Some illustrative numerical experiments are described in Section 9. Detailed
conclusions about numerical approximation are summarized at the start of Section 6.

2 Geometric Ergodicity

In this section we state Theorem 2.5, guaranteeing geometric ergodicity, which is sufficiently general to
enable application to both a variety of SDEs (possibly with degenerate noise) and various time-discrete
approximations. The proof is inspired and guided by those in [3, 16, 17] but is self-contained and tailored
to our specific needs; it is given in the Appendix.

Consider a Markov process x(t) (t ∈ R+) or a Markov chain x(t) (t ∈ Z+) on a state space (Rd,B(Rd)).
Here B(Rd) denotes the Börel σ-algebra on Rd. To help combine our treatment of continuous and discrete
time, we set T = R

+ (resp. Z+) for the Markov process (resp. chain) case. Throughout the remainder of the
paper Bδ(x) denotes the open ball of radius δ centered at x. We denote the transition kernel of the Markov
process or chain by

Pt(x,A) def= P(x(t) ∈ A|x(0) = x), t ∈ T, x ∈ Rd, A ∈ B(Rd) .

Assumption 2.1 The Markov chain or process {x(t)} with transition kernel Pt(x,A) satisfies, for some
fixed compact set C ∈ B(Rd), the following:

i) for some y∗ ∈ int(C) there is, for any δ > 0, a t1 = t1(δ) ∈ T such that

Pt1

(
x,Bδ(y∗)

)
> 0 ∀x ∈ C;

ii) for t ∈ T the transition kernel possesses a density pt(x, y), precisely

Pt(x,A) =
∫
A

pt(x, y)dy ∀x ∈ C, A ∈ B(Rd) ∩ B(C),

and pt(x, y) is jointly continuous in (x, y) ∈ C × C.

Consider the Markov chain formed by sampling at the rate T ∈ T, with the kernel P (x,A) def= PT (x,A).
Let {xn}n∈Z+ be the Markov chain generated by this kernel. We use a Lyapunov function to control the
return times to C. In the following Fn denotes the σ-algebra of events up to and including the nth iteration.

Assumption 2.2 There is a function V : Rd → [1,∞), with lim
x→∞

V (x) = ∞, and real numbers α ∈ (0, 1),

and β ∈ [0,∞) such that

E[V (xn+1)|Fn] ≤ αV (xn) + β.
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The basic conclusion of the next lemma, whose proof is given in the Appendix, is known as the minoriza-
tion condition.

Lemma 2.3 Let Assumption 2.1 hold. There is a choice of T ∈ T, an η > 0, and a probability measure ν,
with ν(Cc) = 0 and ν(C) = 1, such that

P (x,A) ≥ ην(A) ∀A ∈ B(Rd), x ∈ C.

Throughout this paper we will study the following SDE and its approximations:

dx = Y (x)dt+ ΣdW, x(0) = y, (2.1)

where x ∈ Rd, Y : Rd → R
d and W is a standard m-dimensional Brownian motion for some m ≤ d. The

fixed matrix Σ is in Rd×m and is assumed to have linearly independent columns. We use Ey to denote
expectation under (2.1), with the given initial data. To establish geometric ergodicity for this SDE we may
use the following assumption which implies Assumption 2.2.

Assumption 2.4 There is a function V : Rd → [1,∞), with limx→∞ V (x) = ∞, and real numbers a ∈
(0,∞), d ∈ (0,∞) such that

A{V (x)} ≤ −a{V (x)}+ d, (2.2)

where A is the generator for (2.1) given by

Ag =
d∑
i=1

Yi
∂g

∂xi
+

1
2

d∑
i,j=1

[
ΣΣT

]
ij

∂2g

∂xi∂xj
. (2.3)

This is just the infinitesimal version of Assumption 2.2. To see this note that, by the Itó formula,

dV = A{V }dt+ Martingale

so that, if Fs is the σ−algebra of all events up to time s, it follows that

E
y{V (x(t))|Fs} ≤ e−a(t−s)V (x(s)) +

d

a
[1− e−a(t−s)] . (2.4)

If xn = x(nT ), so that {xn}∞n=0 is a Markov chain, then (2.4) shows that Assumption 2.2 holds for this
Markov chain: with α = e−aT and β = d/a.

In what follows, we will use the shorthand notation |f | ≤ V to mean |f(x)| ≤ V (x) for all x.

Theorem 2.5 Let x(t) denote the Markov chain or process with transition kernel Pt(x,A). Let {xn}n∈Z+

denote the embedded Markov chain with transition kernel P (x,A) = PT (x,A). There is a T > 0 for which
the following holds. Let the Markov chain {xn}n∈Z+ satisfy the minorization condition (or Assumption 2.1)
and Assumption 2.2 (or Assumption 2.4 when xn = x(nT ) for (2.1)) with C given by

C =
{
x : V (x) ≤ 2β

γ − α

}
(2.5)

for some γ ∈ (α
1
2 , 1). Then there exists a unique invariant measure π. Furthermore there is r(γ) ∈ (0, 1)

and κ(γ) ∈ (0,∞) such that for all measurable f : |f | ≤ V

|Ex0f(xn)− π(f)| ≤ κrnV (x0).
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3 The Langevin Equation

In this section we prove geometric ergodicity of the Langevin equation. The ergodicity of this equation is
established in [31] by semigroup methods, but under somewhat restrictive hypotheses on the drift, requiring
its first and second derivatives to be globally bounded, and on the class of functions whose expectations
converge to values under the limit measure; furthermore, no rate of convergence is given. By employing the
Markov chain techniques of section 2, we obtain geometric convergence, for a large class of test function,
under considerably weaker conditions on the drift. This result is stated in Theorem 3.2. A concurrent recent
study of a specific instance of this problem is taken up in [30].

Let W be a standard d-dimensional Brownian Motion, F : Rd → R, σ ∈ Rd×d and ρi ∈ Rd be the ith
column of σ; we assume that the ρi are linearly independent so that σ is invertible. Consider the Langevin
SDE for q, p ∈ Rd the position and momenta of a particle of unit mass, namely

dq = pdt, (3.1)
dp = −γpdt−∇F (q)dt+ σdW. (3.2)

In the case d = σ = 1, for example, there is a known invariant measure with density

ρ(p, q) = exp{−γ[
p2

2
+ F (q)]}.

We apply the theory of section 2 to prove ergodicity of (3.1)–(3.2) under the following condition:

Condition 3.1 The function F ∈ C∞(Rd,R) and satisfies

• F (q) ≥ 0 for all q ∈ Rd .

• There exists an α > 0 and β ∈ (0, 1) such that

1
2
〈∇F (q), q〉 ≥ βF (q) + γ2 β(2− β)

8(1− β)
||q||2 − α

A polynomial F growing at infinity like ‖q‖2l, with l a positive integer, will satisfy the assumptions; a
simple example for expository purposes is

F (q) =
1
4

(‖q‖2 − 1)2 . (3.3)

Under Condition 3.1 it is possible, using the Lyapunov function V below, to prove global in time existence
and uniqueness of solutions to (3.1)–(3.2) – see Chapter III, Theorem 4.1 in [9]. It is expedient to write
(3.1)–(3.2) in the abstract form (2.1) where now

x =
(
q
p

)
∈ R2d, W =

W1

...
Wd

 ∈ Rd, Y (x) =
(

p
−γp−∇F (q)

)
, Σ =

(
O
σ

)
. (3.4)

Here each Wi is an independent standard one-dimensional Brownian motion and O ∈ Rd×d is the zero matrix.
Note that we may write

ΣdW =
d∑
i=1

XidWi, Xi =
(

0
ρi

)
, 0 ∈ Rd and ρi ∈ Rd . (3.5)

For (3.1)–(3.2), it is useful to define the Lyapunov function

V (x) def=
1
2
||p||2 + F (q) +

γ

2
〈p, q〉+

γ2

4
||q||2 + 1 (3.6)

with which we define

Gl = {measurable g : R2d → R with |g| ≤ V l}. (3.7)
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Theorem 3.2 Let Condition 3.1 hold. Then the SDE (3.1)–(3.2) with x(t) = (q(t)T , p(t)T )T has a unique
invariant measure π on R2d. Fix any l ≥ 1. If x(0) = y then there exists C = C(l) > 0, λ = λ(l) > 0 such
that, for all g ∈ Gl, ∣∣Eyg(x(t))− π(g)

∣∣ ≤ CV (y)le−λt for all t ≥ 0. (3.8)

Proof The result follows from an application of Theorem 2.5. First note that

V (x) ≥ 1 +
1
8
||p||2 +

γ2

12
||q||2, (3.9)

using Condition 3.1(i). Thus V (x)l → ∞ as ||x|| → ∞. Lemma 3.3 shows that if A is the generator of the
process governed by (3.1)–(3.2), that is,

Ag =
2d∑
i=1

Yi
∂g

∂xi
+

1
2

2d∑
i,j=1

[
ΣΣT

]
ij

∂2g

∂xi∂xj
(3.10)

then

A{V (x)l} ≤ −al{V (x)l}+ dl

for some al, dl > 0. Thus, by the discussion at the end of section 2, Assumption 2.2 holds for the time T
sampled chain xn = x(nT ).

To verify Assumption 2.1(ii), we define

L = Lie{Y,X1, . . . , Xd},

namely the Lie algebra generated by {Y,X1, . . . , Xd}. Let L0 be the ideal in L generated by {X1, . . . , Xd}.
By results in [2, 18, 13], it suffices to show that L0 spans R2d to verify Assumption 2.1(ii). Note that

Xi =
(

0
ρi

)
& [Xi, Y ] = DYXi =

(
0 I

−d2F (q) −γI

)(
0
ρi

)
=
(

ρi
−γρi

)
Thus, since σ has linearly independent columns {ρi}di=1,

{X1, . . . , Xd, [X1, Y ], . . . , [Xd, Y ]}

span R2d as required.
Lemma 3.4, found at the end of this section, proves that, in any positive time, any open set may be reached

with positive probability. Thus Assumption 2.1(i) holds with any choice of C and y∗. Hence Theorem 2.5
shows that for some r ∈ (0, 1) and κ > 0∣∣Eyg(xn)− π(g)

∣∣ ≤ κrnV l(y),

where xn = x(nT ), any T > 0. To complete the proof we use an argument from [17]. Let tn = nT + δ,
δ ∈ [0, T ). Then, by conditioning on Fδ,∣∣Eyg(x(tn))− π(g)

∣∣ =
∣∣Eyg(x(nT + δ)

)
− π(g)

∣∣ ≤ κrnEyV (x(δ))l.

Applying (2.4) gives ∣∣∣∣Eyg(x(tn)
)
− π(g)

∣∣∣∣ ≤ κrn [e−alδV (y)l +
dl
al

]
;

defining λ by e−λ = r1/T we obtain the required result by re-defining κ→ κ(1 + dl/al)eλT :∣∣Eyg(x(tn))− π(g)
∣∣ ≤ κe−λtn[1 + V (y)l

]
where e−λ = r1/T . The proof is complete. 2

The previous theorem rested on two lemmas which we now establish.
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Lemma 3.3 Let Condition 3.1 hold. For every l ≥ 1, there exists al ∈ (0,∞) and dl ∈ (0,∞) such that, for
equation (3.1)–(3.2) with A given by (3.10),

A{V (x)l} ≤ −al{V (x)l}+ dl .

Proof We do the case l = 1 first. Let

Yi(x) = pi, i = 1, · · · , d

Yi(x) = −γpi −
∂F

∂qi
(q), i = d+ 1, ..., 2d

∂V

∂xi
=
∂F

∂qi
(q) +

γ

2
pi +

γ2

2
qi, i = 1, . . . , d

∂V

∂xi
= pi +

γ

2
qi i = d+ 1, . . . , d

The following inequality, proved in Lemma 2.2 of [23] as a consequence of Condition 3.1, will be useful to us:

−1
2
‖p‖2 − 1

2
〈∇F (q), q〉 ≤ α− β[V (x)− 1]. (3.11)

Using (3.11) to bound the inner-product we obtain

2d∑
i=1

Yi
∂V

∂xi
=〈p,∇F (q)〉+

γ

2
‖p‖2 +

γ2

2
〈p, q〉

− γ||p||2 − 〈p,∇F (q)〉 − γ2

2
〈p, q〉 − γ

2
〈q,∇F (q)〉

=− γ

2
||p||2 − γ

2
〈q,∇F (q)〉

≤ γ
[
α− β(V − 1)

]
= γ[α+ β]− γβV .

Also,

ΣΣT =
(

0 0
0 σσT

)
and thus

2d∑
i,j=1

[ΣΣT ]ij
∂2V

∂xi∂xj
=

d∑
i,j=1

[σσT ]ij
∂2V

∂xd+i∂xd+j
=

d∑
i=1

[σσT ]ii
∂2V

∂p2
i

.

But
∂2V

∂p2
i

= 1 &
1
2

d∑
i=1

[σσT ]ii =
1
2

d∑
i,j=1

σ2
ij =

1
2
‖σ‖2F

def= E ,

where ‖ · ‖F is the Frobenius norm on matrices. Combining, we have

AV (x) ≤ γ[α+ β +
E
γ
− βV ],
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as required. Now we calculate A{V (x)l}. To this end, note that

∂

∂xi

{
V (x)l

}
= l{V (x)}l−1 ∂V

∂xi
∂2

∂xi∂xj

{
V (x)l

}
=

∂

∂xj

{
l{V (x)}l−1 ∂V

∂xi

}
,

and A{V (x)l} = l{V (x)}l−1AV +
1
2

d∑
i,j=1

[σσT ]ij l(l − 1)V (x)l−2 ∂V

∂pi

∂V

∂pj
.

But
∂V

∂pi
= pi +

γ

2
qi

and hence, by using (3.9), we obtain

1
2
l(l − 1)

d∑
i,j=1

[σσT ]ij
∂V

∂pi

∂V

∂pj
≤ χV (x)

for some χ > 0. Thus

AV (x)l ≤ lV (x)l−1AV (x) + χV (x)l−1 .

By the calculation for l = 1,

AV (x)l ≤ lV (x)l−1[d− aV (x)] + χV (x)l−1

= −alV (x)l + (ld+ χ)V (x)l−1.

By choosing al < al and dl sufficiently large we obtain

AV (x)l ≤ −alV (x)l + dl

as required. 2

Lemma 3.4 Let Condition 3.1 hold. For all x ∈ R2d, t > 0 and open O ⊂ R2d, the transition kernel for
(3.1)–(3.2) satisfies Pt(x,O) > 0.

Proof It suffices to consider the probability of hitting an open ball of radius δ, Bδ, centered at y+. Consider
the associated control problem, derived from (3.1)–(3.2),

dX

dt
= Y (X) + Σ

dU

dt
. (3.12)

For any t > 0, any y ∈ R2d, and any y+ ∈ R2d, we can find smooth U ∈ C1([0, t],Rd) such that (3.12) is
satisfied and x(0) = y, x(t) = y+. To see this set x = (QT , dQdt

T
)T and note that

d2Q

dt2
+ γ

dQ

dt
+∇F (Q) = σ

dU

dt
.

Choose Q to be a C∞ path such that, for the given t > 0,(
Q(0)
dQ
dt (0)

)
= y,

(
Q(t)
dQ
dt (t)

)
= y+.

This can be achieved, for example, by polynomial interpolation between the end points, using a cubic in
time with vector coefficients in Rd. Since σ is invertible, dUdt is defined by substitution and will be as smooth
as ∇F – hence C∞. Also U(0) can be taken as 0.
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Now

x(t) = y +
∫ t

0

Y (x(s))ds+ ΣW (t)

X(t) = y +
∫ t

0

Y (X(s))ds+ ΣU(t) .

Note that the event

sup
0≤s≤t

||W (t)− U(t)|| ≤ ε

occurs with positive probability for any ε > 0, since the Weiner measure of any such tube is positive (Theorem
4.20 of [26]). Assuming this event occurs, note that

||x(t)−X(t)|| ≤
∫ t

0

||Y (x(s))− Y (X(s))||ds+ ||Σ||ε .

Since F is locally Lipschitz so is Y and thus it follows that

sup
0≤t≤T

||x(t)−X(t)|| → 0 as ε→ 0 .

By choice of ε, we can hence ensure ||x(t)−X(t)|| ≤ δ and the result follows. 2

4 Monotone and Dissipative Problems

We now consider the SDE (2.1) where again x ∈ Rd,W ∈ Rm, Y : Rd → R
d and Σ ∈ Rd×m,m ≤ d. The

columns of Σ, {ρj}mj=1 are assumed to be linearly independent. We prove geometric ergodicity in Theorem
4.4 under the following dissipativity condition concerning the deterministic flow.

Condition 4.1 The function Y ∈ C∞(Rd,Rd) and ∃α, β > 0 :

〈Y (x), x〉 ≤ α− β‖x‖2.

This condition means that, sufficiently far from the origin, the Markov process defined by (2.1) moves inward
on average. For the deterministic counterpart (Σ ≡ 0), it implies dissipativity in the sense of [8]. If m = d
the work of [9] implies ergodicity under this condition. Below we add a further condition ((4.3)) which will
enable us to establish ergodicity even when m < d. Calculations analogous to those in Lemma 3.3 enable
proof of the following:

Lemma 4.2 Let Condition 4.1 hold. For every l ≥ 1 there exists al ∈ (0,∞) and dl ∈ (0,∞) such that, for
equation (2.1) with A given by (2.3),

A{‖x‖2l} ≤ −al{‖x‖2l}+ dl.

From (2.4) it follows that

E{‖x(t)‖2l|Fs} ≤ e−al(t−s)‖x(s)‖2l +
dl
al

[1− e−al(t−s)]

so that

E{[1 + ‖x(t)‖2l]|Fs} ≤ e−al(t−s)[1 + ‖x(s)‖2l] +
dl + al
al

[1− e−al(t−s)]. (4.1)

Theorem 3.6 in [14, Chapter 2] establishes global existence and uniqueness for (2.1), under Condition 4.1.
By the discussion at the end of section 2 we deduce that Assumption 2.2 holds for the time T sampled SDE.
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We now make assumptions that, when combined with the Lyapunov structure (4.1), will induce ergodicity.
The assumptions are stated entirely in terms of the dynamics of the deterministic counterpart of (2.1) (Σ ≡ 0)
and the vectors ρi forming the columns of Σ. Under Condition 4.1 equation (2.1) without noise must have
at least one equilibrium point. Without loss of generality, we place this at the origin. We let φ(·, t) denote
the deterministic flow for (2.1) with Σ = 0 and denote by S the stable manifold of 0. The next condition
encodes the basic idea that, if by a combination of alternating pure noise and pure deterministic flow we can
reach S, it will be possible to satisfy Assumption 2.1(i).

Condition 4.3 For some fixed R, T1 > 0 the following holds: given any δ > 0 and any x ∈ BR(0) there
exists an integer N , and a sequence of non-negative τi with

∑N
i=1 τi < T1, and {ai,j}N,mi,j=1 with ai,j ∈ R, so

that φ(zN (x), t) ∈ Bδ(0) for all t ∈ [0, T1]. Here zN (x) is defined by

z0 = x

zn+1 = φ(zn, τn+1) +
m∑
j=1

an+1,jρj , n = 0, . . . , N − 1.

Define

Gl = {measurable g : Rd → R with |g(x)| ≤ 1 + ‖x‖2l}.

Let T = T1 and define, for γl ∈ (α
1
2
l , 1),

βl =
dl + al
al

, αl = e−alT , rl =
2βl

γl − αl
.

Theorem 4.4 Let Conditions 4.1, 4.3 hold with R chosen so that {x : 1 + ‖x‖2l ≤ rl} ⊆ BR(0), some l > 0.
If the transition kernel for (2.1) has density pt(x, y) which is jointly continuous in (x, y) for every fixed t > 0
then (2.1) has a unique invariant measure π and, if x(0) = y then there exists κ = κ(l) > 0 and λ = λ(l) > 0
such that, for all g ∈ Gl, ∣∣Eyg(x(t))− π(g)

∣∣ ≤ κ[1 + ‖y‖2l]e−λt for all t ≥ 0. (4.2)

Proof We use Theorem 2.5. Lemma 4.2 (equation (4.1)) implies that Assumption 2.2 holds with V (x) =
1 + ‖x‖2l. We have assumed Assumption 2.1(ii), so it remains to show part (i) of that assumption. Define
T0 =

∑N
i=1 τi noting that T0 < T1. The set C is {x : V (x) ≤ rl} ⊆ BR(0). Now for any δ1 < T1 − T0 define

U(t) by, for l = 1, . . . , N ,

U(t) =


0 t ∈ I−l

def= [tl−1, tl−1 + τl)
N

δ1

m∑
j=1

al,jρj t ∈ I+
l

def= [tl−1 + τl, tl)

0 t ∈ [tN , T1]

where

tl =
lδ1
N

+
l∑

j=1

τj , |I−l | = τl, |I+
l | =

δ1
N
.

Notice that by construction tN ≤ T0 + δ1 and hence tN < T1. If

X(t) = x+
∫ t

0

Y (X(s))ds+ U(t)

then by choosing δ1 sufficiently small, so that the effect of U dominates the drift Y for t ∈ I+
l , we have

that X(t) ∈ B3δ/2(0) for t ∈ [tN , tN + T1] and any initial x ∈ C. Since tN < T1 ≤ T1 + tN we have that
X(T1) ∈ B3δ/2(0) for any initial x ∈ C.
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By continuity, there is some tube about U(t) so that the system forced by a Brownian motion in that
tube will have X(T1) ∈ B2δ(0). Since the Weiner measure of any such tube is positive (Theorem 4.20 of [26])
Assumption 2.1(i) is proven.

Thus we have proved geometric ergodicity for the Markov chain found by sampling the SDE at rate
T = T1. To obtain convergence for the continuous time Markov process from that of the embedded chain we
proceed as in Theorem 3.2 for the Langevin equation. 2

Remark It is worth noting that a similar theorem could be proved whenever, in the absence of noise, one
has some globally attracting compact structure. Here we consider the simplest case when the structure is a
point. Similar ideas can be used when, for example, there is an attracting periodic orbit in the deterministic
flow, such as in the Van Der Pol oscillator. 2

Example If φ(·, t) is exponentially monotone so that, for some c > 0

〈Y (a), a〉 ≤ −c‖a‖2 ∀a ∈ Rd,

then Condition 4.1 holds with α = 0 and β = c. Also

‖φ(x, t)‖ ≤ e−ct‖x‖

and so Condition 4.3 holds for any 0 < δ < R with N = 1, τ1 = 1
c ln(R/δ) and a1,j ≡ 0. Any T1 > τ1 can be

used. This is independent of the form of the noise which can hence be degenerate, provided the underlying
smooth density assumption can be satisfied. As a specific instance of this example consider the problem

dy = [−y + yz]dt + dw.
dz = [−z − y2]dt.

Here ρ1 = (1, 0)T , [[Y, ρ1], ρ1] = (0,−2)T and so smoothness follows from [13], recalling the definition and
significance of L0 from section 3. Geometric ergodicity follows from Theorem 4.4. This approach is used to
establish the ergodicity of arbitrary Galerkin approximations of the Navier Stokes equations (at any Reynolds
number) in [4]. 2

Example Consider a problem in the form

dv = a(v, z)dt + σdw.
dz = [−bz + c(v, z)]dt,

where b > 0. We assume that, for each t, v ∈ Rd, w ∈ Rd and z ∈ R, whilst σ ∈ Rd×d is invertible; we
also assume that (v, z) = (0, 0) is an equilibrium point of the deterministic flow φ(·, t) (σ ≡ 0) and that
a(0, z) ≡ 0 and c(0, z) ≡ 0. Clearly v ≡ 0 is part of the stable manifold of (0, 0). To establish Condition 4.3
the idea is to choose noise to move onto the stable manifold and then flow to the origin without noise. As σ
is invertible then Condition 4.3 can be realized with N = 2, τ1 = 0 and τ2 = 1

b ln(R/δ); there exists p ∈ Rd
such that σp = −v(0) and then (a1,1, a1,2)T = p whilst (a2,1, a2,2)T = 0. Any T1 > τ2 can be used.

This approach applies to the Lorenz equations

dx = [σ(y − x)]dt + dW1

dy = [rx− y − xz]dt + dW2

dz = [xy − bz]dt
(4.3)

with v = (x, y). Condition 4.1 holds here for a range of parameter values (including those where chaos is
observed, see [25]) and (recalling the definition and significance of L0 from section 3), for ρ1 = (1, 0, 0)T and
ρ2 = (0, 1, 0) we have [[Y, ρ2], ρ1] = (0, 0, 1)T so that the density is smooth [13]. Hence the equations are
geometrically ergodic by Theorem 4.4. 2

5 Gradient Systems

In this section we study equation (2.1) in the case where Y (x) = −∇F (x) and is hence a gradient. Specifically
we consider the problem

dx = −∇F (x)dt+ ΣdW, x(0) = x0, (5.1)
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where x ∈ Rd,W ∈ Rm, F : Rd → R,Σ ∈ Rd×m and m ≤ d. The columns of Σ are assumed to be linearly
independent. We also define B = ΣΣT ∈ Rd×d. This problem is studied in [20] by use of the theory of
geometrically ergodic Markov chains, as we do in this paper. In that work m = d (non-degenerate noise)
and the Lyapunov function used is V (x) = exp{ζF (x)} for some ζ ∈ (0, 1). Here we allow degenerate noise
and use V (x) = 1 + F (x)l leading to weaker dependence of the time to equilibrium on initial data than in
[20], but also to correspondingly smaller classes of allowable test function; however in some cases the overall
bounds may lead to improved estimates of the necessary time to approximate a stationary distribution. We
make the following conditions concerning F :

Condition 5.1 The function F satisfies:

• F ∈ C∞(Rd,R), F ≥ 0, F (a)→∞ as |a| → ∞.

• For all l > 0 there are α′l > 0, β′l > 0 with

|∇F (a)|2 + α′l ≥
1
2
B : ∂2F (a) +

(l − 1)
2F (a)

(∇F (a)∇F (a)T ) : B + β′lF (a).

In the preceding, the colon denotes the inner-product on matrices which induces the Frobenius norm.
The conditions are satisfied if, for example, F (x) is smooth, bounded below and, as ‖x‖ → ∞, grows as
follows, for some integer p ≥ 1 :

F (x) ∼ ‖x‖2p

∇F (x) ∼ ‖x‖2p−1 as ‖x‖ → ∞.

∂2F (x) ∼ ‖x‖2p−2

The next lemma is the key result that follows from these conditions.

Lemma 5.2 Let Condition 5.1 hold. Then, for equation (5.1) with A given by (2.3),

A{F (x)l} ≤ l{αl − βlF (x)l}

for all l > 0. Thus, for any l > 0,

E{F (x(t))l|Fs} ≤
αl
βl

[1− e−lβl(t−s)] + e−lβl(t−s)F (x(0))l.

Proof Straightforward calculation shows that

A{F (x)l} =
∑d
i=1 lF (x)l−1 ∂F

∂xi
[− ∂F

∂xi
]

+ 1
2

∑d
i,j=1{lF (x)l−1 ∂2F

∂xi∂xj
Bij + l(l − 1)F l−2 ∂F

∂xi
∂F
∂xj

Bij}.

The first result follows, by use of Condition 5.1(ii) and the fact that

α′xl−1 − β′xl ≤ α− βxl ∀x ≥ 0

for suitably chosen α, β. The second follows from the discussion at the end of section 2. 2

As in the previous section, we now make Condition 4.3 which, when combined with the Lyapunov
structure of Lemma 5.2, will induce ergodicity. Also we define

Gl = {measurable g : R2d → R with |g(x)| ≤ 1 + F (x)l}.

The following theorem may be proved in exactly the same way that Theorem 4.4 is proved, with rl as defined
there:
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Theorem 5.3 Let Conditions 5.1, 4.3 hold with R chosen so that {x : 1 + F (x)l ≤ rl} ⊆ BR(0) for some
l > 0. If the transition kernel for (5.1) has density pt(x, y) which is jointly continuous in (x, y) for every
fixed t > 0 then (5.1) has a unique invariant measure π and, if x(0) = y then there exists κ = κ(l) > 0 and
λ = λ(l) > 0 such that, for all g ∈ Gl,∣∣Eyg(x(t))− π(g)

∣∣ ≤ κ[1 + F (y)l]e−λt for all t ≥ 0. (5.2)

Example Let d = 2, x = (u, v) and

F (x) =
1
4

(1− u2)2 +
v2

2
.

Clearly Condition 5.1(i) is satisfied and a little calculation reveals that Condition 5.1(ii) can be satisfied.
Thus, to apply Theorem 5.3, it remains to check the smoothness condition on the transition kernel together
with Condition 4.3. It is useful here to recall the definition of the ideal L0(x) from section 3 and that
existence and smoothness of the transition kernel density pt(x, y) follows if L0 has full rank at all points. In
this example this condition requires that rank(L0(x)) = 2 for all x. If m = 1 and Σ = (a, b)T then three
cases arise:

• a = 0, b = 1. In this case, the smoothness fails because L0 is spanned by (0, 1)T as is apparent from the
fact that no noise enters the u equation. Furthermore there is no point reachable from the whole space
R

2 with positive probability: u(0) > 1 (resp. < −1) implies u(t) > 1 (resp. < −1) with probability
one. Hence the problem cannot be ergodic on R2.

• a = 1, b = 0. In this case, the smoothness fails because L0 is spanned by (1, 0)T as is apparent from
the fact that no noise enters the v equation. However, Condition 4.3 can be satisfied here, using
(u, v) = (1, 0) in place of the origin, taking N = 1 and then τ1 = 0. The problem is ergodic, but the
invariant measure is singular in v and so Theorem 5.3 does not apply.

• a 6= 0 and b 6= 0. The same argument as in the previous case shows that Condition 4.3 holds. Smooth-
ness of pt(x, y) is also satisfied since {Σ, [Y,Σ], [[Y,Σ],Σ]} spans R2 at each x = (u, v). Hence the
problem is geometrically ergodic in this case. 2

6 Time Discretization

6.1 Introduction

Our primary objective in this, and subsequent sections, is to study the ergodic properties of discretizations
of the SDE (2.1). Recall that the case of degenerate noise, m < d, is allowed. We will make a variety
of assumptions about Y and Σ that imply the geometric ergodicity of the SDE. Our aim is then to study
whether discretizations provided by numerical methods have an analogous property. We study an abstract
family of approximations and focus on three specific numerical methods. With the notation

∆Wn
def= W (tn+1)−W (tn), tn = n∆t, Xn ≈ x(tn) (6.1)

we see that the ∆Wn form an i.i.d. family distributed as
√

∆tN (0, I), with I the m×m identity.
The first scheme, known as the forward Euler or Euler–Maruyama scheme, is as follows [12]:

Xn+1 = Xn + ∆tY (Xn) + Σ∆Wn. (6.2)

The second, which we call the stochastic Backward Euler method, is

Xn+1 = Xn + ∆tY (Xn+1) + Σ∆Wn. (6.3)

The third, which we call the split-step stochastic Backward Euler method, is

X? = Xn + ∆tY (X?),
Xn+1 = X? + Σ∆Wn. (6.4)
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Note that (6.2) is an explicit method, whereas (6.3) and (6.4) are implicit, requiring the solution of a
(generally) nonlinear equation at each step. All the methods are examples of the general family

Xn+1 = H(Xn,∆Wn), X0 = y; (6.5)

solvability of the implicit equations must be established for the implicit methods to be written in this form.
We briefly summarize our results for the numerical approximation of (2.1).

• The two keys points in our approach to proving ergodicity are the existence of a minorization condi-
tion on a compact set C, together with a Lyapunov function inducing repeated returns into C. The
minorization condition tends to persist for all reasonable approximations, relying on properties on a
compact set (established later in this section). The Lyapunov condition, since it is a property on
non-compact sets, is more sensitive to the choice of discretization and is inherited only by specially
constructed methods.

• If the vector field Y is not globally Lipschitz then the Euler–Maruyama scheme does not preserve
ergodicity, in general. We give an example of an ergodic SDE whose Euler–Maruyama approximation
tends to infinity for any ∆t > 0, with positive probability (established later in this section).

• If the vector field Y is globally Lipschitz and the Lyapunov function is essentially quadratic (a term
defined below) then any reasonable method, including (6.2), (6.3) and (6.4), will inherit ergodicity of
(2.1) for time-steps below a sufficiently small level that is independent of initial data. The key point is
that all reasonable methods inherit the Lyapunov structure under these conditions on the vector field
and the Lyapunov function for the SDE (section 7).

• Under a variety of natural structural assumptions, for which Y is not necessarily globally Lipschitz,
one or other of the stochastic backward Euler methods may be proved ergodic, for sufficiently small
time-step independent of initial data. The key point is to find methods which replicate the Lyapunov
structure (section 8).

• In many cases where the numerical method is ergodic, the invariant measure for the method converges
to that for (2.1), in a metric closely related to that induced by a (Lyapunov-function) weighted total
variation norm, as the time-step converges to zero (sections 7 and 8).

Related issues have arisen in [20] where it was shown that the Euler-Maruyama scheme can be transient
when applied to geometrically ergodic SDEs as we do here. However, rather than studying the use of
implicit schemes to overcome this, the authors studied ”Metropolis-adjusted” algorithms based on the Euler-
Maruyama method with possible step rejection.

Our basic tool for proving ergodicity is Theorem 2.5. Its proof relies on two key facts concerning a Markov
chain {xn}n∈Z+ with transition kernel P (x,A). Assumption 2.1 implies (see Lemma 2.3) the minorization
condition: ∃η > 0 and a probability measure ν with ν(C) = 1− ν(Cc) = 1 satisfying

P (x,A) ≥ ην(A) ∀A ∈ B(Rd), x ∈ C. (6.6)

Assumption 2.2 is the Lyapunov condition. Thus understanding the effect of numerical approximation of
an SDE on ergodicity boils down, in this context, to understanding how the minorization and Lyapunov
conditions are affected by approximation. We will see that the former is rather insensitive, since it is a
property on a compact set C, whilst the latter can be destroyed unless special discretizations are employed,
since it is a property on the whole space.

6.2 The Minorization Condition

Let {x(t)}t∈R+ be a Markov process generated by (2.1) and let {Xn}n∈Z+ be a strong approximation gener-
ated by the numerical method (6.5), constructed so that Xn ≈ x(n∆t). Define

Pt(x,A) def= P(x(t) ∈ A|x(0) = x)

Pn,∆t(x,A) def= P(Xn ∈ A|X0 = x).
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The following condition holds for a wide variety of numerical methods, including those of interest to us,
when applied to a wide variety of SDEs. In particular the convergence criterion is a consequence of standard
strong convergence results, which are uniform across compact sets of initial data.

Condition 6.1 Fix n∆t = t and then the following hold for all ∆t sufficiently small. For any open set O
and compact C

sup
x∈C
|Pn,∆t(x,O)− Pt(x,O)| → 0

as ∆t→ 0. Furthermore, for n ≥ n0, Pn,∆t has a density pn,∆t, so that

Pn,∆t(x,A) =
∫
A

pn,∆t(x, y)dy,

and pn,∆t(x, y) is differentiable in (x, y) with derivative bounded independently of ∆t sufficiently small, for
n∆t fixed.

Theorem 6.2 Let Assumption 2.1 hold for x(t) solving (2.1) and assume, in addition, that the density
pt(x, y) is jointly continuous in (t, x, y) ∈ T × C × C. Assume also that Condition 6.1 holds. Then there is
a choice of M ∈ Z+ such that the minorization condition holds for the chain {XnM}n∈Z+ generated by the
numerical method (6.5).

Proof Assumption 2.1(i), together with continuity of the density in t, implies that

Pt(y∗,Bδ′(y∗)) ≥ γ > 0 ∀t ∈ [t2 −∆, t2 + ∆].

Hence, for all t ∈ [t2 −∆, t2 + ∆], there is a z∗ ∈ Bδ′(y∗) such that

pt(y∗, z∗) ≥ 2ε > 0.

Thus, for the same interval of t, Assumption 2.1(ii) implies that there exists z∗, ε1, ε2 > 0 such that,

pt(y, z) ≥ ε > 0 for all y ∈ Bε1(y∗) and z ∈ Bε2(z∗). (6.7)

By reduction of ε2 if necessary, we may ensure that Bε2(z∗) ⊂ C. Let n ≥ n0 and assume for contradiction
that for n∆t = t there exists y ∈ Bε1(y∗) such that

pn,∆t(y, z) ≤
1
2
ε for all z ∈ Bε2(z∗).

This implies that

inf
y∈Bε1 (y∗)

Pn,∆t(y,Bε2(z∗)) ≤ 1
2
ε2ε

whereas (6.7) gives
inf

y∈Bε1 (y∗)
Pn∆t(y,Bε2(z∗)) ≥ ε2ε.

Reduction of ∆t, and use of Condition 6.1, gives a contradiction. Thus, provided

n∆t ∈ [t2 −∆, t2 + ∆],∆t ≤ ∆tc, n ≥ n0 (6.8)

we deduce that there exists z̄ ∈ Bε2(z∗):

pn,∆t(y∗, z̄) ≥
1
2
ε

and then, by continuity, that

pn,∆t(y, z) ≥
1
4
ε for all y ∈ Bδ1(y∗) and z ∈ Bδ2(z̄).
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Note that δ1, δ2 and z̄ may depend upon ∆t but that we can assume Bδ2(z̄) ⊂ C without loss of generality,
and that δ1, δ2 > 0 uniformly for ∆t sufficiently small, because of the derivative conditions on the density
for the method.

Thus, assuming (6.8),

Pn,∆t(y,A) =
∫
A

pn,∆t(y, z)dz

≥
∫
A∩Bδ2 (z̄)

pn,∆t(y, z)dz

≥ 1
4
ελ(A ∩ Bδ2(z̄))

for all y ∈ Bδ1(y∗). (Here λ(·) is Lebesgue measure on Rd).
By Assumption 2.1(i), we know that t1 may be chosen so that

Pt1(x,Bδ1(y∗)) > 0 ∀x ∈ C.

The continuity of p·(·, y) can be transfered to P·(·, A) by dominated convergence. Hence we have, since C is
compact,

inf
x∈C

Pt(x,Bδ1(y∗)) ≥ γ > 0

for all t ∈ [t1 − ∆, t1 + ∆], possibly by reduction of ∆. By approximation, reducing ∆tc if necessary and
using Condition 6.1, we deduce that

inf
x∈C

Pn,∆t(x,Bδ1(y∗)) ≥ 1
2
γ > 0

for all n,∆t satisfying

n∆t ∈ [t1 −∆, t1 + ∆], ∆t ≤ ∆tc, n ≥ n0.

By reducing ∆ further so that it is less than ∆tc we can find, for all ∆t ≤ ∆tc, integers ni such that

ni∆ti ∈ [ti −∆, ti + ∆], i = 1, 2.

Now set M = n1 + n2 and note that, for all x ∈ C,

PM,∆t(x,A) ≥
∫
Bδ1 (y∗)

pn1,∆t(x, y)Pn2,∆t(y,A)dy

≥ 1
4
ελ(A ∩ Bδ2(z̄))

∫
Bδ1 (y∗)

pn1,∆t(x, y)dy

=
1
4
ελ(A ∩ Bε2(z̄))Pn1,∆t(x,Bδ1(y∗))

≥ 1
8
εγλ(Bδ2(z̄))ν(A),

where ν(·) is Lebesgue measure restricted to Bδ2(z̄) and normalized to be a probability measure. Thus we
have

PM,∆t(x,A) ≥ ην(A) ∀A ∈ B(Rd)

and x ∈ C where η = 1
8εγλ(Bδ2(z̄)). Since Bδ2(z̄) ⊂ C, we have ν(Cc) = 0 and ν(C) = ν(Bδ2(z̄)) = 1, as

required. 2

Note that, alternatively, the minorization condition can often be established directly, by mimicking the
techniques used for the SDE; we do this in sections 7 and 8.
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6.3 The Lyapunov Condition

Although the minorization condition is robust to discretization, the Lyapunov condition is not. Consider
the SDE (2.1) with d = 1, Y (x) = −x3 and Σ = 1 so that

dx = −x3dt+ dW. (6.9)

From section 4 we know that this SDE is ergodic and, for example, V (x) = 1 + x2 is a Lyapunov function
since

Ax2 = −2x4 + 1 ≤ −4x2 + 3.

When the Euler–Maruyama method (6.2) is applied to (6.9) this Lyapunov structure is lost, as Lemma 6.3
shows: it follows from Lemma 6.3(i) that the numerical solution is not ergodic in the sense we have used it so
far—namely exponential convergence of induced measures to a unique limit—and from Lemma 6.3(ii) that it
is not ergodic in a second commonly used sense—namely almost sure convergence of time-averages to a limit
independent of the sample path. Hence the lemma shows that, in the case of non-globally Lipschitz vector
fields, numerical methods do not automatically preserve ergodicity, even for small stepsizes. The example
motivates the work in section 8 where positive results about ergodicity are proved for certain implicit methods.
Note, however, that if the Lyapunov function V is quadratic, and the vector field Y globally Lipschitz, then
the Lyapunov condition is preserved for all reasonable approximations, not just specially constructed ones –
see section 7.

Lemma 6.3 Consider the SDE (6.9), noting that it is geometrically ergodic (see section 4). When the
Euler–Maruyama method (6.2) is applied to the SDE, the following results hold.

(i) If E[X2
0 ] ≥ 2

∆t then E[X2
n]→∞ as n→∞.

(ii) For any X0 ∈ R and any ∆t > 0

P

(
|Xn| ≥

2n√
∆t

, ∀ n ≥ 1
)
> 0.

Proof (i) We have

Xn+1 = Xn(1−∆tX2
n) + ∆Wn. (6.10)

Squaring and taking expected values gives

E[X2
n+1] = E[X2

n(1− 2∆tX2
n + ∆t2X4

n)] + ∆t. (6.11)

Since 1− 2z + z2 ≥ −1 + 1
2z

2 for all z ∈ R, we may weaken (6.11) to

E[X2
n+1] ≥ E[−X2

n + 1
2∆t2X6

n] + ∆t = −E[X2
n] + 1

2∆t2E[X6
n] + ∆t. (6.12)

We have
(
E[X2

n]
)3 ≤ E[X6

n] from Jensen’s inequality, and hence,

E[X2
n+1] ≥ E[X2

n]
(

1
2∆t2E[X2

n]2 − 1
)

+ ∆t. (6.13)

Now if E[X2
0 ] ≥ 2

∆t then we see from (6.13) that E[X2
1 ] ≥ E[X2

0 ] + ∆t and iterating this argument we find
that

E[X2
n] ≥ E[X2

0 ] + n∆t.

Hence E[X2
n]→∞ as n→∞. This proves (i).

(ii) We deal first with the case where |X0|2 < 4
∆t . Assume that the following events arise:

|∆W0| ≥
4√
∆t

+ ∆t
(

2√
∆t

)3

, (6.14)

|∆Wn| ≤
2n√
∆t

, for n ≥ 1. (6.15)

17



Since |X0|2 < 4
∆t , it follows from (6.14) that

|∆W0| ≥
2√
∆t

+ |X0|+ ∆t|X0|3.

Hence, using (6.10),

|X1| ≥ |∆W0| − |X0| −∆t|X0|3 ≥
2√
∆t

. (6.16)

Now, consider the induction hypothesis

|Xk| ≥
2k√
∆t

, 1 ≤ k ≤ n, (6.17)

which, from (6.16), holds for n = 1. Using (6.17) gives

[1−∆tX2
n] ≤ 1− 22n ≤ 1− 4 = −3,

and hence, from (6.10), (6.15),

|Xn+1| ≥
2n√
∆t

3− |∆Wn| ≥
2n+1

√
∆t

.

So, by induction, (6.17) holds for all n.
It remains to show that the events (6.14)–(6.15) occur with positive probability. (Recall that the ∆Wn

are independent, N (0,∆t) random variables.) Clearly (6.14) occurs with positive probability. Now, for some
constants D, E and n̂ we have, for n ≥ n̂,

P

(
|∆Wn| ≤

2n√
∆t

)
= 1− 2√

2π∆t

∫ ∞
2n√
∆t

exp(−x2/(2∆t)) dx

= 1−D
∫ ∞

2n√
2∆t

exp(−y2) dy

≥ 1−D
∫ ∞

2n√
2∆t

exp(−y) dy

≥ 1−D exp(−2nE).

By increasing n̂ if necessary we have

log (1−D exp(−2nE)) ≥ −2D exp(−2nE) ≥ −Frn, n ≥ n̂,

for constants F and r with 0 < r < 1. It follows that

log

∏
n≥n̂

P

(
|∆Wn| ≤

2n√
∆t

) ≥ −∑
n≥n̂

Frn = −G,

for some finite constant G > 0. Hence,∏
n≥n̂

P

(
|∆Wn| ≤

2n√
∆t

)
≥ exp(−G) > 0.

Since each of the finite number of independent events |∆Wn| ≤ 2n+1
√

∆t
for n < n̂ has positive probability, the

result follows.
In the case where |X0|2 ≥ 4

∆t a similar approach can be used, based on the events

|∆Wn| ≤
2n√
∆t

, for n ≥ 0.

2

A rather general, but less detailed, analysis of similar issues may be found in section 3 of [20]. (We retain
our explicit calculations with a concrete example as they are instructive for intuition.) Furthermore a similar
result to our Lemma 6.3 (i) is also contained in the recent paper [30].
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7 Globally Lipschitz Vector Fields

We assume that, by appropriate choice of t1, t2 etc. the transition kernel Pt(x,A) for the SDE (2.1) satisfies
Assumptions 2.1 and 2.2. Theorem 2.5 then implies that the SDE is geometrically ergodic. We would like to
establish conditions under which the same can be said of the three numerical methods (6.2), (6.3) and (6.4).
We do this by appealing to Theorem 2.5. However, we start simply by considering the effect of approximation
on Lyapunov conditions.

We consider the general family of methods (6.5) for (2.1) and then look at the three Euler methods as
special cases. Writing xn = x(n∆t), where x(t) solves (2.1), we consider the following conditions concerning
(6.5) and its relation to (2.1).

Condition 7.1 The function H ∈ C∞(Rd × Rm,Rd) and satisfies:

(i) there exist c1 > 0, s > 0 such that E‖X1 − x1‖2 ≤ c1[1 + ‖y‖2]∆ts+2 for all y ∈ Rd;

(ii) there exists c2 = c2(r) > 0 such that E‖X1‖r ≤ c2[1 + ‖y‖r], for all r ≥ 1 and y ∈ Rd;

The next result gives conditions under which the numerical method (6.5) inherits a Lyapunov function
from the SDE (2.1). We say that V is essentially quadratic if there exist Ci > 0 so that

C1[1 + ||x||2] ≤ V (x) ≤ C2[1 + ||x||2], |∇V (x)| ≤ C3[1 + ‖x‖]. (7.1)

Theorem 7.2 Let Assumption 2.4 hold for (2.1) with V → V l, l ≥ 1 and let V be essentially quadratic. If
Condition 7.1 holds, then Assumption 2.2 holds for (6.5) with V → V l.

Proof We have that
E{V (X1)l} ≤ E{V (x1)l}+ E|V (X1)l − V (x1)l|.

Assumption 2.4 implies that

E{V (x(t))l} ≤ e−altV (x(0))l +
dl
al

[1− e−alt].

Since V (x) is essentially quadratic it follows from (7.1) that there are cl > 0 such that

E‖x(t)‖2l ≤ c+l [1 + ‖y‖2l]. (7.2)

Thus, by Assumption 2.4 with V → V l and since ∇V is linearly bounded and V quadratically bounded,

E{V (X1)l} ≤ e−al∆tV (y)l +
dl
al

+ E
∫ 1

0

|〈∇V l(sX1 + (1− s)x1), X1 − x1〉|ds

≤ e−al∆tV (y)l +
dl
al

+ k1E{[1 + ‖X1‖2l−1 + ‖x1‖2l−1]‖X1 − x1‖}

≤ e−al∆tV (y)l +
dl
al

+ k2{E[1 + ‖X1‖4l−2 + ‖x1‖4l−2]} 1
2 {E‖X1 − x1‖2}

1
2 .

Using, (7.2), Condition 7.1 (ii) to bound E‖x1‖4l−2, E‖X1‖4l−2 and Condition 7.1 (i) to bound E‖X1−x1‖2,
we find from (7.1) that

E{V (X1)l} ≤ e−al∆tV (y)l +
dl
al

+ k3{1 + ‖y‖4l−2} 1
2 {1 + ‖y‖2} 1

2 ∆t1+s/2

≤ e−al∆tV (y)l +
dl
al

+ k4{1 + ‖y‖2l}∆t1+s/2

≤ [e−al∆t + k5∆t1+s/2]V (y)l +
dl
al

+ k6∆t1+s/2.
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Thus, for ãl ∈ (0, al),

E{V (X1)l} ≤ e−ãl∆tV (y)l +
dl
ãl

(7.3)

by choice of ∆t sufficiently small. This is the desired result. 2

If Condition 7.1 holds then we may prove the following result, which employs the definition (3.7) and

G′l = {g ∈ Gl : |g(a)− g(b)| ≤ k[1 + ‖a‖2l−1 + ‖b‖2l−1]‖a− b‖ ∀a, b ∈ Rd}.

Theorem 7.3 Let Assumptions 2.1 and 2.4 hold,, with V → V l, l ≥ 1, and let V be essentially quadratic.
Thus Theorem 2.5 holds and (2.1) is geometrically ergodic with invariant measure π. If Condition 7.1 holds
and if the numerical method (6.5) satisfies the minorization condition when sampled at rate M , then for
all ∆t sufficiently small, the method has a unique invariant measure π∆t on Rd. For l ≥ 1 there exists
C̃ = C̃(l,∆t) > 0 and λ̃ = λ̃(l,∆t) > 0 such that, for all g ∈ Gl,

|Eg(Xn)− π∆t(g)| ≤ C̃V (y)le−λ̃n∆t, ∀n ≥ 0.

If, in addition,

E‖Xn − xn‖2 ≤ c3e2c4T [1 + ‖y‖2]∆ts, for all 0 ≤ n∆t ≤ T, (7.4)

then there is K = K(l) > 0 and ξ ∈ (0, 1/2) independent of l such that, for all g ∈ G′l,

|π(g)− π∆t(g)| ≤ K∆tsξπ(V l). (7.5)

Proof Condition 7.1 implies the Lyapunov condition and we have assumed the minorization condition
holds for the sampled chain {XnM}. Thus, by Theorem 2.5, the sampled chain is geometrically ergodic:

|Eyg(XlM )− π(g)| ≤ κθl[1 + V (y)l].

From this we deduce that the unsampled chain is ergodic since, if n = lM + j for integer j ∈ [0,M − 1],
conditioning on Fj gives, for all g ∈ Gl,

|Eyg(XlM+j)− π(g)| ≤ κθl[1 + EyV (Xj)l].

Using (7.3) gives the desired result

|Eyg(Xn)− π(g)| ≤ κ1θ
n
1 [1 + EyV (X0)l]

for all g ∈ Gl.
To obtain the second result on convergence of invariant measures we apply Theorem 3.3 in [24]. We need

only show
|Eyg(x(n∆t)− Eyg(Xn)| ≤ CeηtV (y)l∆ts, 0 ≤ n∆t ≤ t,

for all g ∈ G′l . Now, for 0 ≤ n∆t ≤ t,

E|g(x(n∆t))− g(Xn)| ≤ CE{[1 + ‖x(n∆t)‖2l−1 + ‖Xn‖2l−1]‖x(n∆t)−Xn‖}
≤ CE{1 + ‖x(n∆t)‖4l−2

+ ‖Xn‖4l−2} 1
2E{‖x(n∆t)−Xn‖2}

1
2 ,

so that, by (7.1), (7.2), Condition 7.1 (ii) and (7.4),

|Eg(x(n∆t))− Eg(Xn)| ≤ C[1 + ‖y‖2l−1]ec4n∆t[1 + ‖y‖]∆ts/2

≤ C4e
ηtV (y)l∆ts/2.

The required result follows. 2
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Remark If (7.5) holds for all g ∈ Gl then it states that π and π∆t are close in a total variation norm,
weighted according to the Lyapunov function. The additional constraints implied by requiring g ∈ G′l lead
to a more complex metric. 2

The essential point of this theorem is that approximation properties alone allow us, in the case of globally
Lipschitz Y (which suffices to establish Condition 7.1) and essentially quadratic V , to deduce ergodicity
for the numerical method; this is since they imply both the minorization and Lyapunov conditions. Recall,
however, that it is sometimes straightforward to deduce the minorization condition directly for the numerical
method, without resort to approximation, and that we will use this approach in what follows for the Langevin
equation; for other problems, however, it may sometimes be easier to use approximation.

We now give two examples where Condition 7.1 holds, and hence Theorem 7.3 applies, for the three nu-
merical methods defined above. The first example involves the Langevin equation. Note that the hypotheses
on F in Corollary 7.4 below are automatically satisfied if F is a positive definite quadratic form. In this case,
an appropriate choice for V , which ensures that Assumption 2.4 holds, is (3.6). Using this V , the equation
(3.1)–(3.2) is proved to be geometrically ergodic in section 3.

Corollary 7.4 Consider the Langevin equation (3.1)–(3.2) where F : Rm → R is essentially quadratic and
σ ∈ Rm×m. Suppose that the columns of σ are linearly independent, and that F has the following properties:

(i) F ∈ C∞(Rm,R);

(ii) ∇F is globally Lipschitz;

(iii) F (q) ≥ 0;

(iv) there exists an α > 0 and β ∈ (0, 1) such that

1
2
〈∇F (q), q〉 ≥ βF (q) + γ2 β(2− β)

8(1− β)
||q||2 − α.

For ∆t sufficiently small the three numerical methods (6.2), (6.3) and (6.4) satisfy Condition 7.1, the mi-
norization condition when sampled at rate M = 2 and (7.4) and hence Theorem 7.3 applies.

Proof We begin with the Euler–Maruyama scheme (6.2), which gives

Qn+1 = Qn + ∆tPn, (7.6)
Pn+1 = Pn −∆tγPn −∆t∇F (Qn) + σ∆Wn. (7.7)

Here Qn ≈ q(n∆t) and Pn ≈ p(n∆t). Because σ is invertible it follows that Pn(y,A) has C∞ density for
n ≥ 2. Explicit construction shows that ∆W0, ∆W1 can be chosen to ensure that (QT2 , P

T
2 )T = y+ for any

starting value y: note that Q1 is fixed independently of the noise and hence P1 is forced to ensure Q2 takes
the required value. This value for P1 determines ∆W0 uniquely and then ∆W1 is determined uniquely to
ensure the desired value of P2. Thus Assumption 2.1 holds, and hence the minorization condition by Lemma
2.3.

Considered as an approximation to (2.1), the Euler–Maruyama method may be written as

Xn+1 = Xn + ∆tY (Xn) + Σ∆Wn.

Here Y is globally Lipschitz. Also

x(∆t) = y +
∫ ∆t

0

Y (x(τ))dτ + ΣW (∆t).

Subtracting we find that

‖x(∆t)−X1‖ ≤
∫ ∆t

0

L‖x(τ)− y‖dτ
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so that

E‖x(∆t)−X1‖2 ≤ ∆tL2

∫ ∆t

0

E‖x(τ)− y‖2dτ.

Further calculation shows that

E‖x(τ)− y‖2 ≤ Cτ [1 + y2]

and Condition 7.1 (i) follows with s = 1.
For (ii) notice that

‖X1‖p ≤ C[‖y‖p + ∆tp‖Y (y)‖p + ‖Σ∆W1‖p]
≤ C[‖y‖p + ∆tp[‖Y (0)‖+ L‖y‖]p + ‖Σ∆W1‖p]
≤ C[1 + ‖y‖p + ‖σ∆W1‖p]

and taking expectations gives the desired result. Condition (7.4) is established in [24] with s = 1. Theorem 7.3
thus applies with V given by (3.6).

Applying the split-step stochastic backward Euler method (6.4) to (3.1)–(3.2) gives

Qn+1 = Qn + ∆tP? (7.8)
P? = Pn −∆tγP? −∆t∇F (Qn+1) (7.9)

Pn+1 = P? + σ∆Wn. (7.10)

By the techniques described in subsection 8.1 it is possible to show that, for all ∆t sufficiently small, the
map (Qn, Pn)→ (Qn, P?) is uniquely defined, whatever values Qn, Pn and ∆Wn take. Indeed we may write

Qn+1 = Qn + ∆tf(Qn, Pn)
Pn+1 = f(Pn, Qn) + σ∆Wn.

Here f is smooth in both arguments and f(q, ·) is invertible for all q ∈ Rd. Thus the method is well-defined.
Analysis very similar to that above for the Euler–Maruyama scheme shows that Condition 7.1 holds, together
with the minorization condition for the chain sampled at rate M = 2. The stochastic backward Euler method
(6.3) for (3.1)–(3.2) can be analyzed similarly. 2

Our second example where Theorem 7.3 applies involves a dissipativity condition.

Corollary 7.5 Consider (2.1) in the case where m = d, Y is globally Lipschitz and the following properties
hold

(i) Y ∈ C∞(Rd,Rd),

(ii) ∃α, β > 0 such that 〈Y (x), x〉 ≤ α− β‖x‖2 for all x ∈ Rd.

For ∆t sufficiently small, the three numerical methods (6.2), (6.3) and (6.4) satisfy Condition 7.1, the
minorization condition when sampled at rate M = 1 and (7.4) and hence Theorem 7.3 applies.

Proof Note that for this SDE, an appropriate choice for the Lyapunov function V is V (x) = ‖x‖2 + 1;
see section 4, where the equation is proved to be geometrically ergodic. Since the columns of Σ span Rd

in this case it follows every point y+ is reachable from y in just one step (N = 1) by appropriate choice of
∆W0. Thus minorization is easily verified for all three methods. The remaining arguments follow as in the
Langevin case. 2

Corollary 7.5 is essentially proved in [28] for the Euler–Maruyama scheme though, in that paper, certain
higher order methods are also studied and, furthermore, the rates of convergence of π∆t to π is optimal. In
contrast the use of [24] to prove convergence gives suboptimal rates in this case; it does, however, apply to
a different set of test functions.
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8 Locally Lipschitz Vector Fields

We now consider the equation (2.1) without the condition that Y is globally Lipschitz. To be concrete we
study the Langevin equation (3.1)–(3.2) but similar issues arise for other problems and we briefly outline
generalizations at the end of the section.

8.1 The Langevin Equation

For the Langevin problem we impose the structural property that

∃c > 0 : 〈∇F (a)−∇F (b), a− b〉 ≥ −c‖a− b‖2. (8.1)

This is a one-sided Lipschitz condition on ∇F and it implies that

F (a)− F (b) ≤ 〈∇F (a), a− b〉+ c‖a− b‖2. (8.2)

In this subsection we replace condition (ii) of Corollary 7.4 by the one-sided Lipschitz condition. The
function (3.3) is a prototypical example that satisfies conditions (i), (iii) and (iv) of Corollary 7.4 and
(8.1). Analysis similar to that in the previous section shows that the Euler-Maruyama approximation of this
problem is not ergodic in general. Here we study the split-step backward Euler method.

Abusing notation and setting V (p, q) = V (x) for x = (qT , pT )T (with V given by (3.6)) we define

V∆t(p, q)
def= V (p, q) +

∆tγ
4
‖p‖2. (8.3)

The following lemma is key to what follows:

Lemma 8.1 Let (8.1) hold and let ∆t ≤ ∆tc where c∆t2c = 1+γ∆tc. Then the map (Qn, Pn)→ (Qn+1, P?)
given by (7.8)–(7.9) is uniquely defined for all Qn, Pn and ∆Wn. Furthermore, if ∆t ≤ εγβ

8c for some
ε ∈ (0, 1), then we have

V∆t(P?, Qn+1)− V∆t(Pn, Qn) ≤ γ∆tα− γ(1− ε)∆tβV∆t(P?, Qn+1).

2

Proof Solvability is equivalent to finding P? such that

P? − Pn + γ∆tP? + ∆t∇F (Qn + ∆tP?) = 0,

and hence to making

1
2
‖P? − Pn‖2 +

γ∆t
2
‖P?‖2 + F (Qn + ∆tP?)

stationary. Since F is smooth and bounded below at least one such point must exist. For uniqueness,
consider two solutions p1 and p2 given (Pn, Qn) = (p, q). Then

(1 + γ∆t)pi + ∆t∇F (q + ∆tpi) = p.

Subtracting and using (8.1) gives

0 ≥ (1 + γ∆t− c∆t2)‖p1 − p2‖2

and uniqueness follows under the required condition on ∆t.
For the properties of V define Vn = V (Pn, Qn) and Vn+1 = V (P?, Qn+1); note that

Vn+1 − Vn =
1
2
〈P? − Pn, P? + Pn〉+ F (Qn+1)− F (Qn)

+
γ

2
〈P? − Pn, Qn+1〉+

γ

2
〈Pn, Qn+1 −Qn〉

+
γ2

4
〈Qn+1 −Qn, Qn+1 +Qn〉.
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From this it may be shown that

Vn+1 − Vn ≤ 〈−γ∆tP? −∆t∇F (Qn+1), P?〉+ F (Qn+1)− F (Qn)

+
γ

2
〈−γ∆tP? −∆t∇F (Qn+1), Qn+1〉

+
γ

2
〈Pn,∆tP?〉+

γ2

4
〈∆tP?, Qn+1 +Qn〉.

Thus

Vn+1 − Vn ≤ [c∆t2 − γ2∆t2

4
− γ∆t

2
]‖P?‖2 +

∆tγ
2
〈Pn − P?, P?〉

− γ∆t
2
〈∇F (Qn+1), Qn+1〉.

Using the fact that

〈a− b, b〉 ≤ 1
2
‖a‖2 − 1

2
‖b‖2

and (3.11) we see that

V∆t(P?, Qn+1)− V∆t(Pn, Qn) ≤ [c∆t2 − γ2∆t2

4 − γ∆t
2 ]‖P?‖2 − γ∆t

2 〈∇F (Qn+1), Qn+1〉

≤
(
c∆t2 − γ2∆t2

4

)
‖P?‖2 + γ∆t[α− βV (P?, Qn+1)]

≤
(
c∆t2 − γ2∆t2

4 + γ2∆t2β
4

)
‖P?‖2 + γ∆t[α− βV∆t(P?, Qn+1)].

Since β ∈ (0, 1) it follows that, using V∆t(p, q) ≥ 1
8‖p‖

2,

V∆t(P?, Qn+1)− V∆t(Pn, Qn) ≤
(
c∆t2 − ε∆tβγ

8

)
‖P?‖2 + γ∆tα

− γ(1− ε)∆tβV∆t(P?, Qn+1)

and the required result follows. 2

Corollary 8.2 Consider the Langevin equation (3.1)–(3.2) under the assumptions of Corollary 7.4 with part
(ii) of the conditions on F replaced by (8.1). Let

∆t ≤ min{∆tc,
εγβ

8c
,

2
γ
},

where ∆tc is as given in Lemma 8.1. Then the split-step stochastic Backward Euler method is geometrically
ergodic and the conclusions of Theorem 2.5 apply.

Proof By (3.6) and (8.3) we see that, for Xn = (QTn , P
T
n )T ,

V∆t(Xn+1) = V∆t(P?, Qn+1) + (1 + ∆tγ/2)〈P?, σ∆Wn〉

+
1
2

(1 +
∆tγ

2
)‖σ∆Wn‖2 +

γ

2
〈σ∆Wn, Qn+1〉.

Thus, assuming that ∆tγ < 2 to simplify the constants and noting that P∗, Qn+1 are independent of ∆Wn,

E{V∆t(Xn+1)|Fn} = E{V∆t(P?, Qn+1)|Fn}+ E‖σ∆Wn‖2.

Hence, if ∆tζ = 1
2E‖σ∆Wn‖2, we have upon application of Lemma 8.1,

E{V∆t(Xn+1)|Fn} =
V∆t(Xn) + ∆t[γα+ 2ζ(1 + γ(1− ε)∆tβ)]

1 + γ(1− ε)∆tβ
.

Hence Assumption 2.2 holds. Smoothness of the density and reachability of any y+ from any y in N = 2 steps
can be established as in section 6, yielding Assumption 2.1. This proves ergodicity for the chain sampled
every 2 steps. An argument similar to that used in Theorem 7.3 to similar effect, gives ergodicity for the
unsampled chain {Xn}n∈Z+ . 2
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8.2 Dissipative Problems

Throughout this subsection we assume that Condition 4.1 holds. The split-step stochastic backward Euler
method applied to (2.1) gives (6.4). Standard calculations (see [27, Chapter 5]) using conditions (i) and (ii)
of Corollary 7.5 show that

‖X?‖2 ≤ {1 + ∆tβ}−1{‖Xn‖2 + α∆t}

and so

E{‖Xn+1‖2|Fn} ≤ (1 + ∆tβ)−l{‖Xn‖2 + α∆t+ E‖Σ∆Wn‖2}.

Since E‖Σ∆Wn‖2 = O(∆t) we have the required Lyapunov function structure. Thus, provided that the
desired minorization condition can be proved, either by approximation or directly, geometric ergodicity
follows for this approximation method whenever the underlying SDE (2.1) is geometrically ergodic and
satisfies conditions (i) and (ii) of Corollary 7.5.

A Lyapunov function for the stochastic Backward Euler method (6.3) follows from the preceding analysis.
If Xn solves (6.3) then

Zn
def= Xn −∆tY (Xn)

solves (6.4). Thus, since 1 + ‖Zn‖2 is a Lyapunov function for (6.4), we see that

V (x) def= 1 + ‖x−∆tY (x)‖2

is a Lyapunov function for (6.3). That V (x)→∞ as ‖x‖ → ∞ follows under Condition 4.1.

8.3 Gradient Systems

For gradient problems it is often the case that the dissipativity structure exploited in the previous subsection
also prevails and then the split-step backward Euler method can be shown to be ergodic when applied to
geometrically ergodic gradient systems perturbed by noise. However there are examples where this is not the
case. Although the ultimate boundedness of F (Xn) implies the ultimate boundedness of ‖Xn‖2, exponential
dissipation in F (Xn) does not imply exponential dissipation in ‖Xn‖, as shown by the example

F : R2 → R
+, F (a1, a2) = (|a1|+ log |a2|)2

.

It is therefore possibly useful to find numerical methods which preserve the expected Lyapunov structure
which we exploited in studying gradient systems in section 5. However, whilst this is possible by use of ideas
in [27], we have been unable to find Lyapunov structures which are well-behaved in the limit ∆t → 0; this
is aesthetically unsatisfactory and means that, in principle, the geometric rates of convergence may depend
badly on ∆t → 0 [21]. In practice we do not believe that this occurs and numerical experiments like those
in the next section substantiate this claim.

9 Numerical Experiments

We now give some numerical results that are relevant to the foregoing analysis. We use FE, BE and SSBE
to denote the Forward Euler method (6.2), the Backward Euler method (6.3) and the split-step Backward
Euler method (6.4), respectively. We consider four problems that illustrate results in (sub)sections 7, 8.1,
8.2 and 8.3 respectively.

Lang-Global: the Langevin equation (3.1)–(3.2) with m = 1, F (q) = q2/2 − (log(q2 + 1))/2, γ = 1 and
σ = 1, and initial data p0 = q0 = 1

2 . Here, the deterministic vector field is globally Lipschitz.

Lang-Local: the Langevin equation (3.1)–(3.2) with m = 1, F (q) = 1
4 (q2 − 1)2, γ = 1 and σ = 1, and

initial data p0 = q0 = 1
2 . Here, the deterministic vector field is only locally Lipschitz. In this case, the

condition (8.1) holds with c = 1, and hence Corollary 8.2 applies for SSBE.
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Lorenz: the Lorenz equations (4.3) with ρ = 10, r = 28 and b = 8/3 and initial data x0 = y0 = z0 = 0.5.
This problem is dissipative in the sense of section 4 and hence both BE and SSBE have a Lyapunov
function (see subsection 8.2).

Grad-Diss: the gradient system (5.1) with d = 2, F (x1, x2) = 1
2 (exp(x2

1) + x2
2), σ = I, and initial data

x1(0) = x2(0) = 0.5. The problem is also dissipative in the sense of section 4 and our calculations of
subsection 8.2 apply for BE and SSBE.

Computations are performed in Matlab [15] using the function randn to generate independent N (0, 1)
samples. To apply BE to Lang-Global and Lang-Local, we first eliminate Pn+1, leaving a cubic for Qn+1.
We take Qn+1 to be the real root closest to Qn, and then substitute this value to give Pn+1. Similarly, we
apply SSBE to Lang-Global and Lang-Local by solving a cubic polynomial for Qn+1. The same technique
is used for the Lorenz equations (4.3); the nonlinearity in the implicit equations for BE and SSBE can be
reduced to a cubic polynomial in Yn+1 for BE and in Y? for SSBE. For Grad-Diss, we implement BE and
SSBE by applying a quasi-Newton type nonlinear equation solver.

In all tests, we monitor an approximation to E‖Xn‖2 that is found by averaging over 1000 paths, using
the same paths for each of the three methods. Here, Xn denotes the numerical solution at t = tn and ‖ · ‖
denotes the L2 norm. We apply the methods over 0 ≤ t ≤ 64 with four different stepsizes.

The Lang-Global results are given in Figure 9.1. Here, we use ∆ti = 2−i, for i = 1, 2, 3, 4. We see that
all three methods are well behaved for these stepsizes. The long-time second moments appear to converge
to a common limit as ∆t→ 0, with BE and SSBE settling down more quickly than FE.

Figure 9.1: Problem Lang-Global: E‖Xn‖2 against tn.

Figure 9.2 relates to Lang-Local, using the same ∆ti values as the previous example. Note that in these
(and subsequent) figures the vertical axis for the FE picture uses exponential scaling. We see that the FE
solution behaves poorly for ∆t = ∆t1,∆t2, suggesting unboundedness of E‖Xn‖2 as n → ∞. The BE and
SSBE solutions behave better, having second moments that are bounded, and appear convergent as ∆t→ 0
in the large-time regime. The FE results for ∆t = ∆t3,∆t4 are compatible with those of BE and SSBE.
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Figure 9.2: Problem Lang-Local: E‖Xn‖2 against tn.

Results for the Lorenz equations are given in Figure 9.3. Here, we use ∆ti = 2−i−2, for i = 1, 2, 3, 4. FE
gives unbounded second moments for ∆t1, ∆t2 and ∆t3. For BE and SSBE, this quantity is always bounded
and appears convergent to, approximately, the same limit.

Figure 9.4 gives results for Grad-Diss, with ∆ti = 2−i, for i = 1, 2, 3, 4. In this case, FE has unbounded
second moments for all stepsizes used. In contrast, BE and SSBE perform well, and convergence in ∆t is
particularly fast for BE. In further tests with smaller ∆t and the same initial data, FE appeared to recover
the good behaviour of BE and SSBE, as for the other examples.

The first common theme of all the experiments is that FE blows up unless the time-step is small; we
conjecture that, however small the time-step, this method will eventually blow-up, given a long enough time
interval. The second common theme is that both BE and SSBE behave well – they produce moments which
appear to converge, as n→∞, to a limiting value which itself converges as ∆t→ 0.

Acknowledgements The authors would like to thank Gérard Ben Arous, Amir Dembo, Persi Diaconis,
Weinan E and George Papanicolaou for useful discussions.
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Figure 9.3: Problem Lorenz: E‖Xn‖2 against tn.
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A Appendix: Proof of Theorem 2.5

Our proof of Theorem 2.5 proceeds in two steps. In Step 1, relying on Assumption 2.1 (and its consequence
the minorization condition), we use a standard construction to find a chain, equivalent in law to Pt(x,A),
which makes explicit some uniform behavior.

In Step 2 we use a Lyapunov function to show that the chain repeatedly returns to a region in which
the uniform behavior is valid. Together the two steps give ergodicity.

Step 1 It is straightforward to see that Assumption 2.1 gives the following lemma.

Lemma A.1 Let Assumption 2.1 hold. Then there is a t2 ∈ T and a δ′ > 0 such that

• Bδ′(y∗) ⊆ C and

• Pt2
(
y∗,Bδ′(y∗)

)
> 0.

We now derive the minorization condition on C, the basic conclusion of Lemma 2.3, which is used to
characterize and quantify the uniform motion on the set C. Minorization essentially means that the Markov
Chain restricted to C satisfies the classical Doeblin condition. The general theory of Markov chains (see
[19], [16]) proceeds by use of a deep result which shows that the minorization condition can be satisfied for
some sampled version of {x(t)}, given irreducibility. However, under our assumptions, which are natural for
certain dynamical systems perturbed by noise, we can deduce the minorization condition directly. Since this
gives rise to more transparent proofs and builds intuition, it is the approach we take here.

Recall that we study the Markov chain {xn} formed by sampling at the rate T ∈ T, with the kernel
P (x,A) = PT (x,A).

Proof (Lemma 2.3) Lemma A.1 implies that Pt2(y∗,Bδ′(y∗)) > 0 and it follows from the existence of a
density that there is a z∗ ∈ Bδ′(y∗) ⊆ C such that for some ε > 0

pt2(y∗, z∗) ≥ 2ε > 0.

By Assumption 2.1(ii), there exist ε1, ε2 > 0 such that

pt2(y, z) ≥ ε > 0 for all y ∈ Bε1(y∗) and z ∈ Bε2(z∗).

By reducing ε2 if necessary, we may ensure that Bε2(z∗) ⊂ C.
Now

Pt2(y,A) =
∫
A

pt2(y, z)dz ≥
∫
A∩Bε2 (z∗)

pt2(y, z)dz ≥ ελ(A ∩ Bε2(z∗))

for all y ∈ Bε1(y∗). (Here λ(·) is Lebesgue measure on Rd).
By Assumption 2.1(i), we know that t1 may be chosen so that Pt1(x,Bε1(y∗)) > 0 for any x ∈ C. The

continuity of pt1(·, y) given by Assumption 2.1(ii) can be transfered to Pt1(·, A) by dominated convergence.
Hence we have, since C is compact,

inf
x∈C

Pt1(x,Bε1(y∗)) ≥ γ

for some γ > 0. Now let T = t1 + t2. Then, for all x ∈ C,

P (x,A) = PT (x,A) ≥
∫
Bε1 (y∗)

pt1(x, y)Pt2(y,A)dy

≥ ελ(A ∩ Bε2(z∗))
∫
Bε1 (y∗)

pt1(x, y)dy

= ελ(A ∩ Bε2(z∗))Pt1(x,Bε1(y∗))
≥ εγλ(Bε2(z∗))ν(A),
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where ν(·) is Lebesgue measure restricted to Bε2(z∗) and normalized to be a probability measure. If η =
εγλ(Bε2(z∗)) then we have P (x,A) ≥ ην(A) for all A ∈ B(Rd) and x ∈ C. Since Bε2(z∗) ⊂ C, we have
ν(Cc) = 0 and ν(C) = ν(Bε2(z∗)) = 1, as required. 2

We now use the preceding lemma to build an equivalent Markov chain where the uniform part of the
motion is explicit. Recall that we study the Markov chain {xn} formed by sampling at the rate T ∈ T, with
the kernel P (x,A) = PT (x,A). Because our objective is primarily the study of a noisy dynamical system,
we present our proof of ergodicity using random iterated functions [10], although we emphasize that this
approach is not necessary; it is possible to work entirely with transition kernels.

We assume that the original chain {xn}x∈Z+ , with kernel P (x,A), is generated by

xn+1 = h(xn, wn), (A.1)

with x0 given. Here the ωn ∈ Ω are i.i.d. random variables and we have P{xn+1 ∈ A |xn} = P (xn, A). Now
define a new transition kernel

P̃ (x,A) =

{
P (x,A) ∀x ∈ Cc,

1
1−η [P (x,A)− ην(A)] ∀x ∈ C.

(A.2)

(Note that the minorization condition ensures that this kernel is well-defined). We may assume that P̃ is
generated by iteration of the random family

h̃(x̃, w̃) with x̃ ∈ Rd, ω̃ ∈ Ω̃, (A.3)

again appealing to the construction in [10]. Then we define the new Markov chain

x′n+1 = h′(x′n, ω
′
n). (A.4)

Here ω′n ∈ Ω′ are i.i.d. random variables defined below. The function h′ is defined by

h′(x′, ω′) = 1C(x′)[φh̃(x′, ω̃) + (1− φ)ξ] + [1− 1C(x′)]h̃(x′, ω̃) . (A.5)

The random variable ω′1 is distibuted as ω′ = (ω̃, φ, ξ) where ω̃, φ, and ξ are independent and ω̃ is distributed
as for (A.3), P(φ = 1) = 1 − η, P(φ = 0) = η, and ξ is distributed as ν. Straightforward calculations show
that P(x′n+1 ∈ A |xn) = P (x,A) so that (A.1) and (A.4) are equivalent in law.

The advantage of working with (A.4) is that it contains an atom-like structure: if any two independent
realizations of the chain lie in C at a time n, and if φn = 0 for both realizations, then both chains pick
their next value at random according to the law of ξ1 and hence the laws of the random variables given by
sampling either chain at any time after n are the same.

To prove ergodicity we will use a coupling argument and hence, simultaneously, we consider a second
copy of this chain whose noise is constructed to be advantageously correlated with that of the x′ chain,
namely

y′n+1 = h′(y′n, η
′
n), η′n = (W̃n, φn, ξn).

Here the φn and ξn are the same random variables used to construct ω′n. The W̃n are a new i.i.d sequence
distributed in the same way as, but independently from, the ω̃n. Notice that the x′n and y′n dynamics are
independent until x′n, y

′
n ∈ C and φn = 0. Then they both move to ξn. This is the key feature of this

construction. When φn = 0, the entire set C acts as an atom. Movement out of C is uniform irrespective
of the point in C. Notice also that, if P (x,C) = 1, then the marginals of x and y will converge towards
each other exponentially fast because the chance of not coupling is (1 − η)n; such issues are discussed for
Monte-Carlo Markov-chain techniques in [22].

Step 2 It is hopefully intuitively reasonable that, if the assumption P (x,C) = 1 is removed and instead it
is simply assumed that the chain spends a lot of time in the set C, then the distributions of the two chains
will still converge exponentially. We will make this precise shortly. First we develop the estimates that show
that the chain visits C regularly.

We use the Lyapunov function from Assumption 2.2 to control the return times to C. Straightforward
calculation shows that this assumption implies the following, at times more computationally useful, condition.
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Lemma A.2 Let Assumption 2.2 hold and let γ ∈ (α, 1), s ∈ [1,∞). If

c(s) =
sβ

γ − α
, C(s) = {x : V (x) ≤ c(s)}

then

E[V (xn+1)|Fn] ≤ γV (xn) + sβ1C(s)(xn). (A.6)

In the following we let c = c(2) and C = C(2). Furthermore we use κ to denote a constant independent
of initial data for the Markov chain under consideration and independent of any time index n, k . . . etc.
However the actual value of κ may change from occurence to occurence. The following amounts to the
Optional Stopping lemma adapted to our setting. Since it is short we include the proof for completeness. It
is the key estimate needed to complete the ergodic result.

Lemma A.3 Let N be any stopping time and fix an n ≥ 0. Under Assumption 2.2,

E {V (xn)1N>n} ≤ E {V (xn)1N≥n} ≤ κγn
V (x0) + E{

n∧N∑
j=1

γ−j1C(xj−1)}

 ≤ κ[γnV (x0) + 1]
1− γ

.

At first glance this lemma may seem rather technical. However it gives immediately that the return time to
the set C has exponential tails and, with some appeals to the standard theory, the existence of an invariant
measure. We defer the proof of the lemma until after these two useful corollaries.

Corollary A.4 Assume the conditions of Lemma A.3 hold. If τC = inf{n > 0 : xn ∈ C} then for n > 0
and γ ∈ (α, 1) it follows that

P{τC > n} ≤ κγn[V (x0) + 1]

and

E

(
1
γ

)τC
≤ κ[V (x0) + 1].

Proof (Corollary A.4) The definition of τC implies that

n∧τC∑
j=1

γn−j1C(xj−1) = γn−11C(x0);

also

E {V (xn)1τC>n} ≥ cE {1τC>n} = cP{τC > n}.

Using these estimates in Lemma A.3 gives the first result. For the second result notice that

E

(
1
γ

)τC
=
∞∑
n=1

(
1
γ

)n
P(τc = n)

≤
∞∑
n=1

(
1
γ

)n
P(τc > n− 1).

Since γ ∈ (α, 1) we can employ the first result with γ → γ′ ∈ (α, γ) to give the desired estimate. 2

Corollary A.5 Under Assumption 2.2, the system possesses an invariant probability measure.
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Proof (Corollary A.5) If we take the deterministic stopping time N = n then Lemma A.3 implies that
supn≥0 E{V (xn)} <∞. Fixing an x0, Chebychev’s inequality tells us that the measures defined by

µn(A) def=
1
n

n∑
k=0

P

{
xk ∈ A

}
are a tight sequence of measures since the level sets of V bound compact subsets of phase space. Hence once
can extract a subsequence which converges to an invariant measure. See [10, 16] for more details. Since the
total mass of each µn is bounded by one, any limiting measure will be finite and hence can be normalized
into a probability measure. 2

Proof (Lemma A.3) Begin by noticing that the third inequality follows from the second because

n∧N∑
j=1

γn−j1C(xj) ≤
n∑
j=1

γn−j ≤ 1
1− γ

.

The first inequality holds because V (xn)1N>n ≤ V (xn)1N≥n for every realization. To see the second claim,
define F (x, n) = γ−nV (x) and observe that

F (xN∧n, N ∧ n) =F (x0, 0) +
N∧n∑
j=1

[
F (xj , j)− F (xj−1, j − 1)

]
=F (x0, 0) +

n∑
j=1

1N>j−1

[
F (xj , j)− F (xj−1, j − 1)

]
.

Since the event {N > j − 1} ∈ Fj−1, F (x0, 0) = V (x0), and

E

{
F (xj , j)

∣∣Fj−1

}
≤ γ−j [γV (xj−1) + 2β1C(xj−1)] = F (xj−1, j − 1) + 2γ−jβ1C(xj−1)

we have

EF (xN∧n, N ∧ n) =V (x0) + E
n∑
j=1

1N>j−1E
{
F (xj , j)− F (xj−1, j − 1)

∣∣Fj−1

}
≤V (x0) + 2βE

n∑
j=1

γ−j1N>j−11C(xj−1).

Now observe that EF (xN∧n, N ∧ n) = E

{
γ−nV (xn)1n≤N

}
+ E

{
γ−NV (xN )1n>N

}
. Since V is positive we

can neglect the second of the terms to obtain

E

{
V (xn)1n≤N

}
≤ γnEF (xN∧n, N ∧ n) ≤ γnV (x0) + 2βE

n∧N∑
j=1

γn−j1C(xj−1)

as required. 2

With the estimates of Steps I and II, we are now ready to attack the principle result of this section.

Proof (Theorem 2.5) We abuse notation and take Fn to be the σ-algebra generated by both the {x′n}n≥0

and {y′n}n≥0 chains simultaneously. In the following E with no superscript denotes expectation for the
product chain {(x′n, y′n)} with possibly random data (x′0, y

′
0). Any test function f can be decomposed into

two nonnegative functions f+ and f− with disjoint support so that f = f+ − f−. Thus

|Ef(x′n)− Ef(y′n)| ≤
∣∣Ef+(x′n)− Ef+(y′n)

∣∣+
∣∣Ef−(x′n)− Ef−(y′n)

∣∣ .
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We will deal with the two terms on the right hand side simultaneously.
Define the coupling time by

ζ = inf
n≥0
{(x′n, y′n) ∈ C × C, φn = 0}.

Observe that

Ef±(x′n) =Ef±(x′n)1n≥ζ + Ef±(x′n)1n<ζ

and since Ef±(x′n)1n≥ζ = Ef±(y′n)1n≥ζ ≤ Ef±(y′n) and f± ≤ V we obtain

Ef±(x′n) ≤Ef±(y′n) + EV (x′n)1n<ζ .

Reversing the roles of x′n and y′n produces a second inequality which when combined with the first yields∣∣Ef±(x′n)− Ef±(y′n)
∣∣ ≤ max

{
EV (x′n)1n<ζ ,EV (y′n)1n<ζ

}
and hence

|Ef(x′n)− Ef(y′n)| ≤ 2 max
{
EV (x′n)1n<ζ ,EV (y′n)1n<ζ

}
. (A.7)

The next lemma, proved at the end of the section, gives the desired control of the right hand side of the
above inequality.

Lemma A.6 In the setting of Theorem 2.5, for any γ ∈ (α
1
2 , 1) there exists r ∈ (0, 1) so that

max
{
EV (x′n)1n<ζ ,EV (y′n)1n<ζ

}
≤ κ [E(V (x0) + V (y0)) + 1] rn.

Note that γ enters the result through the definition of C, and hence ζ. Using this estimate, we conclude
the proof of Theorem 2.5. To obtain convergence to the invariant measure, we start the y′ chain with an
invariant distribution π. Then Ef(y′n) =

∫
f(y)dπ(y) def= π(f) for all n. We have from (A.7) and Lemma A.6,

starting with product measure δx0 × π on the (x′, y′) chain,

|Ex0f(xn)− π(f)| = |Ef(x′n)− Ef(y′n)| ≤ 2κ [V (x0) + π(V ) + 1] rn.

Since π(V ) <∞, the result follows.

We conclude this section with the proof of the Lemma A.6 which is the heart of the proof of Theorem
2.5.

Proof (Lemma A.6) Instead of determining when both x′n and y′n are in C directly, we define a new
Lyapunov function to control V (x′n) and V (y′n) simultaneously. Set V ′(x, y) = V (x) + V (y). If the original
chain satisfies Assumption 2.2 then

E

[
V ′(xn+1, yn+1)

∣∣Fn] ≤ αV ′(xn, yn) + 2β (A.8)

where, recall, Fn now refers to the σ−algebra of events up to the nth for the product chain. Hence Lemma
A.2 with s = 1 and V → V ′ implies, for any γ ∈ (α, 1),

E

[
V ′(xn+1, yn+1)

∣∣Fn] ≤ γV ′(xn, yn) + 2β1C′((xn, yn))

where

C ′ =
{

(x, y) : V ′(x, y) ≤ 2β
γ − α

}
.

Clearly if (x′n, y
′
n) ∈ C ′ then (x′n, y

′
n) ∈ C × C. Let

ζ ′ = inf
n≥0
{(x′n, y′n) ∈ C ′, φn = 0} ,
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noting that ζ ≤ ζ ′. Also observe that

max
{
EV (x′n)1n<ζ ,EV (y′n)1n<ζ

}
≤ EV (x′n)1n<ζ + EV (y′n)1n<ζ
= EV ′(x′n, y

′
n)1n<ζ

≤ EV ′(x′n, y′n)1n<ζ′ .

Intuitively there are two types of trajectories contributing to EV ′(x′n, y
′
n)1n<ζ′ : those which spend a typical

amount of time in C ′ and those that manage not to visit C ′ often. The first type contribute little when n
is large because it is unlikely that φj 6= 0 for all of the visits to C ′. This is the same reasoning used when
one has the simple Doeblin condition. The other paths contribute little to the expectation when n is large
because, by Corollary A.4, it is unlikely that a trajectory stays out of C ′ for very long. We now make these
ideas more precise.

Let τk be the time of the kth visit to C ′. For notational convenience we define τs for any real s by
τs = τdse and define τ0 = 0. Fixing an a ∈ (0, 1), we split EV ′(x′n, y

′
n)1n<ζ′ into two terms as follows:

EV ′(x′n, y
′
n)1n<ζ′ =EV ′(x′n, y

′
n)1n<ζ′1τan<n+ EV ′(x′n, y

′
n)1n<ζ′1τan≥n

=EV ′(x′n, y
′
n)1n<ζ′1τan<n+

dane−1∑
k=0

EV ′(x′n, y
′
n)1n<ζ′1τk<n1τk+1≥n

= (I) + (II) (A.9)

Here n ≥ 1. The first term represents typical behavior, in terms of the number of returns to C ′, when a is
small enough; here we rely on the chance of coupling to dominate. The second term corresponds to unusual
behavior of the trajectories and hence will be small. In the following it is convenient to define

V
def= sup

(x′,y′)∈C′
V ′(x′, y′), V ′0

def= V ′(x′0, y
′
0).

For (I) note that, by Lemma A.3,

EV ′(x′n, y
′
n)1τan<n1n<ζ′ ≤ EV ′(x′n, y′n)1τan<n1τan<ζ′

= E

{
V ′(x′n, y

′
n)1τan<ζ′

∣∣τan < n
}
P{τan < n}

= E

{
1τan<ζ′E

{
V ′(x′n, y

′
n)
∣∣τan < n,Fτan

} ∣∣τan < n
}
P{τan < n}

≤ E
{

1τan<ζ′κ[V̄ + 1]
∣∣∣τan < n

}
P{τan < n}

= κ[V̄ + 1]E {1τan<ζ′1τan<n} ≤ κ[V̄ + 1]E {1τan<ζ′}
≤ κ[V̄ + 1](1− η)an

For (II) let γ ∈ (α
1
2 , 1) so that γ2 ∈ (α, 1). For k = 0 we have, by Lemma A.3,

EV ′(x′n, y
′
n)1n<ζ′1τ0<n1τ1≥n ≤ EV ′(x′n, y′n)1τ1≥n ≤ κγnV ′0 . (A.10)

For k ≥ 1, again using Lemma A.3,

EV ′(x′n, y
′
n)1τk+1≥n1τk<n1n<ζ′ ≤EV ′(x′n, y′n)1τk+1≥n1τk<n1τk<ζ′

=E
{
1τk<ζ′E{V ′(x′n, y′n)1τk+1≥n|Fτk , τk < n}

∣∣τk < n
}
P {τk < n}

≤E
{
1τk<n1τk<ζ′κγ

n−τk [V + 1]
}

≤γnκ[V + 1]{E1τk<ζ′Eγ
−2τk} 1

2

≤γnκ[V + 1](1− η)k/2{Eγ−2τk} 1
2 .

Now

Eγ−2τk =Eγ−
∑k
l=1 2(τl−τl−1)

=E
k∏
l=1

{(
1
γ2

)(τl−τl−1)
}

def= Pk
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Corollary A.4 gives, by conditioning on Fτk−1 and since γ2 ∈ (α, 1),

Pk ≤ κ[V + 1]Pk−1.

As P1 ≤ κ[V ′0 + 1] it follows that

Eγ−2τk = Pk ≤ κk[V + 1]k−1[V ′0 + 1].

Combining terms produces, for k ≥ 1 and some R ≥ 1,

EV ′(x′n, y
′
n)1τk+1≥n1τk<n1n<ζ′ ≤ (1− η)k/2Rk[V ′0 + 1]

1
2 γn ≤ (1− η)k/2Rk

√
2V ′0γ

n (A.11)

since 1 + x ≤ 2x2 for all x ≥ 1.
With the estimates (A.10), (A.11) in hand we turn to term (II), obtaining

(II) =
dane−1∑
k=0

EV ′(x′n, y
′
n)1n<ζ′1τk<n1τk+1≥n

≤
√

2V ′0

dane−1∑
k=0

(1− η)k/2γnRk

≤
√

2V ′0γ
nRan

∞∑
k=0

(1− η)k/2 ≤
√

2V ′0γ
nRan

1
η′

where 1− η′ =
√

(1− η).
Combining our estimates of (I) and (II), we obtain the desired result since γ ∈ (0, 1), and we may choose

a sufficiently small so that γRa < 1.
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