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Abstract.

The stochastic theta method gives a computational procedure for simulating ordinary
stochastic differential equations. The method involves a free parameter, 8. Here, we
characterise the precise value of § beyond which the region of linear asymptotic stability
of the method becomes unbounded. The cutoff point is seen to differ from that in the
deterministic case. Computations that suggest further results are also given.

AMS subject classification: 60H10, 656C20, 65U05, 65L.20.
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1 Introduction

We consider the numerical solution of autonomous scalar Itd stochastic differ-
ential equations (SDES)

(1.1) dX (t) = f(X()dt + g(X(t))dW(t), t>0, X(0)= X,

driven by the standard Wiener process W (t) [4, 5]. In particular, we study
the stochastic theta method (sTM) class, which is also known as the family of
implicit Euler methods [3, 4, 6]. Applying the STM with fixed stepsize At > 0
produces approximations X, ~ X (t,), with ¢, = nAt, of the form

(12)  Xpp1=Xp+ (1= 0)ALF(Xn) + 0ALF(Xnp1) + At2g(X,) V.

Here each Vj, is an independent Normal(0,1) random variable, so that At3V;,
represents the Brownian path increment W (t,41) — W(t,). Specifying a value
of 6 determines a particular sSTM. We restrict ourselves to the standard range
6 € [0,1]. For § = 0 we recover the explicit Euler-Maruyama method and for
6 > 0 the method is implicit.

We focus on the stability of the method (1.2) on the linear, multiplicative
noise, test equation

(1.3) dX (t) = AX (£)dt + pX ()dW (1), t>0, X(0)= Xo,
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where A\, u € R are constants and we assume that Xo 7 0 with probability one.
For our stability analysis, we may also assume without loss of generality that
1> 0. The sDE (1.3) may be said to be asymptotically stable if lim;_,, X (t) =
0 with probability one. It is known [5] that asymptotic stability for (1.3) is
equivalent to

(1.4) A= <.

Analogously, the numerical solution X, arising when the sT™ (1.2) is applied to
(1.3) may be said to be asymptotically stable if lim,, , ., X, = 0 with probability
one, [3].

Applying the method (1.2) to the test problem (1.3) produces the recurrence

(1.5) Xnt1 = (a+bV,) X,

with L+ (1) \/_
+(1-0)x Y

1. = 7 ==

(1.6) @ 1—6z ° b 1-—6z’

where we have defined z := At and y := Atu?, and we have assumed that
1 — 0z # 0. We will define the stability region S? C R? by

S? := {(z,y) : 2 # 1/8,y > 0 and STM is asymptotically stable}.

Note that in the (z,y) variables the SDE asymptotic stability condition (1.4)
becomes y > 2z.

From a numerical analysis perspective, it is of interest to compare the asymp-
totic stability properties of the SDE and numerical solution. So far, mean-square
stability studies have proved more popular [2, 4, 6], largely because the anal-
ysis is more tractable. However, asymptotic stability is at least as relevant as
mean-square stability in many modelling contexts [5]. Higham [3] recently gave
a characterisation of the asymptotic stability region S and our main purpose
here is to show how that can be used to determine precisely when S is bounded.
We also present some numerical computations that suggest further results.

2 Stability Result

The following characterisation of S¢ comes directly from [3, Lemma 5.1].
LEMMA 2.1.
(2.1) (z,y) €S’ < E(logla+bV,|) <0,

where E(-) denotes the expected value.
We note that for a # 0, the inequality in (2.1) may be written

(2.2) log|a| +v(c) <0,
where ¢ :=b/a and v(c) := E(log |1 + ¢V,|), so that

o) 1.2
(2.3) v(e) := V%‘/ioologﬂ + csle™2% ds.

We also note that y(c) = v(—c¢). A plot of v(c) for ¢ > 0 is given in solid linetype
in Figure 2.1. We have added a plot of log |¢| to the picture, since the following
asymptotic result is used in our analysis.
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Figure 2.1: Plot of y(c) := E(log |1 + ¢V,|) (solid) and log |¢| (dashed) for ¢ > 0.

LEMMA 2.2. As |c| = oo, v(c) — log|c| tends to the constant

2 [ 2
(2.4) R:= \/j/ s%(logs — 1)67%8 ds ~ —0.635.
T™Jo

Proor. We have

1 > 1 2
v(e) = \/T_w/ (loglc| + log|s + E|)e_%8 ds = log|c| + R(c),
—0o0

where
1 ° 1 102
R(c) = — log|s + =|)e™2% ds
© = —= [ Gogls+2)
— L(/Oo log(s + 1)e_%szds+/oo log(s — 1)e_%szds)
B \/27'[' 71/6 g C 1/C g C )
Hence,

2 < 162 2 [ 12
lim R(c =—/ logse 2% d8=\/j/ s(slogs — s)e 25 ds.
lim R(c) = —= | 1o x ), sloes—s)
0

Our concern here is to determine when the STM has an unbounded asymptotic
stability region, S?. (We say that SY is unbounded if, given any p > 0, there
exist (z,y) such that (z,y) € S with |z| + |y| > p.) First, we note that taking
y = 0 (that is, g = 0 in (1.3)), we recover the traditional linear stability interval
of the theta method for ordinary differential equations (ODEs), [1]. Since this
interval is infinite for # >1, we immediately conclude that SY is unbounded for
6 >1. However, the ODE theory does not tell us whether S? is unbounded for
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0 < 1. The following theorem fully resolves the boundedness question and shows
that the SDE case is genuinely different.
THEOREM 2.3. SY is unbounded < 6 > H—%’ where D := —min.cg y(c).
PRrOOF. We first consider the case 8 > H% Let ¢* > 0 be the point where
¥(c¢*) = v(—=c*) = =D. Let \/y = —c*(1 + (1 — 0)z) and = < 0. The stability

condition
1+(1-0)z

2. 1 -D
(2.5) og‘ - <0

from (2.2) then reduces to
z(0(1+eP)—1) <1+ €P.

By inspecting the signs of the individual factors, we see that this inequality holds
for all # < 0. Hence, we have constructed arbitrarily large (x,y) in S?.

Now we consider the case 0 < 8 < ﬁ First, we suppose that z # —1/(1 —
8), so a # 0 in (1.6). Since y(c) > —D for all ¢ € R, the condition (2.5) is
necessary for stability. For 1 — 62 > 0, this necessary condition implies that
z > —(1+eP)/(1—6(1+eP)). On the other hand, for 1 —#z < 0 the necessary
condition implies that z < —(1+eP)/(1—6(1+€P)), which contradicts 1—6z < 0.
Overall, we find that

D41 1
(2.6) ¢+

1-6(eP +1) ST<%

is necessary for stability, and hence x must be bounded. Now, from Lemma, 2.2

we see that for large y
VY
~1
7 (1+(1—0)x °8

A r

1—0x

1+(1-6)z
lo ‘ 1-6z

Hence, in order for the stability condition (2.2) to hold for large y we must have

VY
1-—0x

log

+r<1

say, which implies
(2.7) VU < |1 — 6zl ~E.

It follows that stability cannot hold for arbitrarily large y. The case where
z = —1/(1 — ) can also be dealt with by (2.7).

Finally, for # = 0, boundedness of z follows directly from (2.2). Then, from
(2.7), stability for arbitrarily large y leads to the contradictory inequality \/y <
el=F. 0

We found numerically that D & 0.2454, ¢* ~ 0.7695 and the cutoff value for 8
is 7750 ~ 0.4390. The left-hand picture in Figure 2.2 gives the boundary of S
for 8 = 0,0.15,0.25,0.3. These boundaries were computed via a contour plotting
routine by regarding them as zero-level curves of the function log|a| + v(c)
in (2.2), with y(¢) approximated using quadrature. The boundary y = 2z of
the SDE stability region is also shown. We note that in these pictures the S?
regions increase monotonically with 6, and all are strictly contained in the SDE
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stability region. The right-hand picture in Figure 2.2 shows S? for § = 0.45,
a value between H—% and 1. Note the axis scaling has changed. In this case
the intersection of S? with the z axis is finite, but, from Theorem 2.3, the
region is unbounded. The proof of Theorem 2.3 showed that the curve \/y =
—c*(14 (1 —6)2) lies in SY for z < 0. This curve is plotted in the picture as a
dash-dotted line in order to confirm this behaviour. By mimicking the analysis
used in the proof of Theorem 2.3 it can also be shown in this case that the curve
VY =c*(1+ (1 = 6)z) lies in S? for  >> 0. This curve is plotted in the picture
as a dashed line, and we see that it is indeed contained in SY for large .
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Figure 2.2: Left: boundary of S? for § = 0,0.15,0.25,0.3. Right: portion of
boundary of S? for 6 = 0.45.

3 Milstein Version

The strong order of the STM can be increased from 1 to 1 by adding Milstein’s
correction to the stochastic increment [4]. Applying the corresponding method
to the test equation (1.3) leads to the recurrence

X1 = @+ bV, + V)X,
where

L 14+(1A=-0)x—y/2 ~ Sy - y/2
(3.1) a:= - , b'_l—Gm and ¢:= 1

Mean-square stability properties of this recurrence were studied in [2]. From [3,
Lemma 5.1], asymptotic stability is characterised by

E(log|a + bV;, +€V}2|) < 0.

Since the Milstein version is higher order than the basic STM, we may ex-
pect the resulting stability region to be smaller. However, Figure 3.1, which
was computed in a similar way to Figure 2.2, shows that this is not the case.
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For the explicit Euler versions, where § = 0, the left-hand picture shows that
the Milstein method asymptotic stability region is not strictly contained in the
Euler-Maruyama region, and seems to be drawn towards the underlying SDE
stability boundary y = 2x. The right-hand picture in Figure 3.1 shows further
asymptotic stability boundaries for the Milstein version with 8 = 0,0.15.0.25,0.3.
We see that monotonicity with respect to 6 no longer holds.
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Figure 3.1: Left: 8 = 0 versions of sSTM and Milstein. Right: Milstein for
6 =0,0.15.0.25,0.3.
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