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Unravelling Small World Networks

Desmond J. Higham

Department of Mathematics, University of Strathclyde, Glasgow G1 1XH, UK.

Abstract

New classes of random graphs have recently been shown to exhibit the small world
phenomenon—they are clustered like regular lattices and yet have small average
pathlengths like traditional random graphs. Small world behaviour has been ob-
served in a number of real life networks, and hence these random graphs represent
a useful modelling tool. In particular, Grindrod [Range Dependent Random Graphs
and their Applications to Modelling Large Small World Proteome Datasets, Preprint
maths0112, University of Bath, 2001] has proposed a class of range dependent ran-
dom graphs for modelling proteome networks in bioinformatics. A property of these
graphs is that, when suitably ordered, most edges in the graph are short-range,
in the sense that they connect near-neighbours, and relatively few are long-range.
Grindrod also looked at an inverse problem—given a graph that is known to be
an instance of a range dependent random graph, but with vertices in arbitrary or-
der, can we reorder the vertices so that the short-range/long-range connectivity
structure is apparent? When the graph is viewed in terms of its adjacency matrix,
this becomes a problem in sparse matrix theory: find a symmetric row/column re-
ordering that places most nonzeros close to the diagonal. Algorithms of this general
nature have been proposed for other purposes, most notably for reordering to reduce
fill-in and for clustering large data sets. Here, we investigate their use in the small
world reordering problem. Our numerical results suggest that a spectral reordering
algorithm is extremely promising, and we give some theoretical justification for this
observation via the maximum likelihood principle.
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1 Introduction

We consider a graph with vertices labelled vy, vs,...,vx and suppose that
a directed edge connecting v; to v; exists with probability p;; := f(|j — i|)
for some suitable function f. Equivalently, regarding the graph as being de-
fined in terms of its adjacency matrix, we consider matrices A € RV*" such
that, independently for each entry, a;; = 1 with probability f(|j — 4|) and
a;; = 0 otherwise. Such range dependent random graphs were introduced and
analysed by Grindrod [9]. They can exhibit the small world phenomenon—
high local clustering coupled with relatively short expected pathlengths—that
was first studied by Watts and Strogatz [28]. Many real life networks have
been found to exhibit the small world phenomenon [1,8,20,26-28|, and ran-
dom graphs that capture this effect form useful models for simulation and
analysis [3,6,11,12,17,21,24]. Grindrod [9] developed the range dependent ran-
dom graph framework as a means to model the “many to many” connections
that have been observed in experiments on gene to gene and protein to protein
interactions [2,5,10,14-16].

Grindrod focussed on edge probability functions with the power law form

F(k) = aXF, (1)

where «, f € (0, 1] are constants. Under the natural ordering, {vy,vs, ..., vy},
choosing o = 1 forces each pair of neighbours to be connected, and the param-
eter A controls how quickly f(k) decays, that is, how rapidly the probability
of an edge reduces as a function of the distance between vertices.

Grindrod also highlighted a fascinating inverse problem. Suppose we are given
a graph, that is, a list of vertices in arbitrary order and a list of edges, which
is known, or suspected, to be well modelled by the range dependent class.
How can we reorder the vertices in such a way that the range dependent
connectivity is apparent? In the genomics data set context, such a reordering is
extremely valuable, as it reveals key information about functional relationships
between genes (or the proteins for which they code). The corresponding matrix
computation problem is:

Given a sparse matrix, find a symmetric row/column permutation that
forces as many nonzeros as possible to be close to the diagonal.

The problem can be made precise by defining an objective function F' :
RN¥*N s Rt that measures “closeness to the diagonal of elements in a ma-
trix”. In general, minimizing F'(PAP) over all permutation matrices P is, of
course, a very difficult problem in combinatoric optimization. Grindrod out-
lined a heuristic approach where F' is defined via the maximum likelihood



principle. In this work we give a preliminary investigation into the use of ex-
isting algorithms that have been designed for related tasks in sparse matrix
computation.

The basic problem that we are tackling is illustrated in Figure 1. The left-
hand picture shows the nonzeros in an instance of the random graph defined
by (1) with N = 200, A = 0.9 and @ = 1. Note that most nonzeros are
clustered towards the diagonal, but a few ‘long-range’ nonzeros have been
produced. In the right-hand picture we have randomly reordered the vertices;
that is, we show the nonzero pattern in a matrix PAP; where P is an arbitrary
permutation matrix. Given the picture on the right, our task is to find the
reordering that produces something close to the picture on the left.

Original Shuffled

0 50 100 150 200
nz = 3954

Fig. 1. Partially random graph (1) with N = 200, A = .9 and a = 1. Left original,
Right with symmetric row and column shuffling.

In the next section we introduce the reordering algorithms that are to be
tested. §3 gives numerical results. We interpret the results and draw some
conclusions in §4.

2 Algorithms

2.1 Symmetric Reverse Cuthill-McKee and Symmetric Minimum Degree

Reordering to avoid fill-in during subsequent factorizations is a classic issue in
sparse matrix computation. The two algorithms that we consider here, Sym-
metric Reverse Cuthill-McKee and Symmetric Minimum Degree are particu-
larly popular tools. Symmetric Reverse Cuthill-McKee is especially promising
in our context, as it may be regarded as a heuristic attempt to find a reordering
that minimizes the bandwidth, max{|i — j| : a;; # 0}. Since these algorithms
are standard, we do not describe them here. Details can be found, for example
in [22].



2.2 Spectral Reordering

An alternative reordering algorithm for sparse matrices was proposed in [4].
We note that these ideas have been further pursued in [18,23,25]. To describe
the algorithm, we assume that the matrix A is symmetric. The task considered
in [4] is to reduce the envelope, which is defined as the number of nonzeros,
plus the number of zeros on each row that lie between nonzeros; that is 3-,; fi;,
where F' € RV*Y is defined by f;; = 1 if a;; # 0 or if there exist ji, jo such that
J1 < j < jo with a; 5,0, 5, # 0, and f;; = 0 otherwise. However, the algorithm
is motivated in [4] as an attempt to minimize the two-sum

> (i=3)"

{i,5:ai;#0}

We reproduce the argument below, as it is helpful when interpreting the nu-
merical results. Further justification for the algorithm appears in [7].

Using P to denote the set of permutations of the integers {1,2,3,..., N},
reordering to minimize the two-sum means solving

min{ > (zi— x]-)Q} : (2)

zeP .
{i,j:ai;#0}

This can be reduced to the problem

. T
min Qr, (3)

where the Laplacian matriz () is defined by

—1 for ¢ # j and a;; # 0,
gi; =40 for i # j and a;; =0,

Now a heuristic is introduced that makes the problem tractable, at the expense
of computing a guaranteed optimal solution. Instead of minimizing over the
discrete set P, relax the problem (3) to z € RY and factor out the trivial
solutions z = 0 and x = e, where 0 = [0,0,...,0]7 and e = [1,1,...,1]T. This
leads us to

2T Qr, (4)

min
{e€RN T e=0,||l2=1}



which is solved by taking 2 to be the eigenvector z!? corresponding to the
second smallest eigenvalue of Q. Although the “solution”, z[?, is a real-valued
vector rather than a permutation vector, we can use the ordering of the ele-
ments in 2 to induce a permutation vector p € P. So we choose a p € P
such that p; < p; if and only if x£-2] < :1:52]. Applying this reordering to A is
what we mean by the Spectral Reordering algorithm.

3 Numerical Experiments

Now we give some computational results. These were generated with MATLAB
(Version 6.0.0.88 (R12)) [13,19]. We used MATLAB’s built-in implementations
of Symmetric Reverse Cuthill-McKee and Symmetric Minimum Degree, which
are provided through symrcm.m and symmmd.m, respectively. Typing help on
these two functions produces the following descriptions:

>> help symrcm

SYMRCM Symmetric reverse Cuthill-McKee permutation.
p = SYMRCM(S) returns a permutation vector p such that S(p,p)
tends to have its diagonal elements closer to the diagonal than S.
This is a good preordering for LU or Cholesky factorization of
matrices that come from "long, skinny" problems. It works for
both symmetric and asymmetric S.

See also SYMMMD, COLMMD, COLPERM.
>> help symmmd

SYMMMD Symmetric minimum degree permutation.
p = SYMMMD(S), for a symmetric positive definite matrix S,
returns the permutation vector p such that S(p,p) tends to have a
sparser Cholesky factor than S. Sometimes SYMMMD works well
for symmetric indefinite matrices too.

See also COLMMD, COLPERM, SYMRCM.

Each experiment is presented as eight pictures. The top-left picture gives
an adjacency matrix computed as an instance of a range dependent random
graph. The top-right picture shows a shuffled version of the matrix. This is
the data matrix to which the algorithms are applied. The left-hand plot in
the second row shows the data matrix reordered according to the Symmetric
Reverse Cuthill-McKee algorithm. The left-hand plot in the third row com-
pares the ordering produced by this algorithm with the “correct” ordering;



that is the ordering that recovers the original matrix. More precisely, we plot
p(q1),p(q2), ---,p(qn), where p € P represents the original shuffle and ¢ € P
is the permutation from Symmetric Reverse Cuthill-McKee. In MATLAB this
is plot (p(q) ). For this picture a straight line of slope +1 indicates a perfect
reconstruction of the original matrix. Because {N,N —1,N —2,...,1} is as
good as {N,N—1, N —2,...,1} in terms of identifying neighbouring vertices,
a line of slope —1 is equally acceptable. Deviations from a straight line indi-
cate a mismatch between the original shuffling and the unshuffling that was
reverse engineered by the algorithm. Similarly, the remaining pictures in rows
two and three give the same information for Symmetric Minimum Degree and
Spectral Reordering, respectively. Because Spectral Reordering is designed ex-
clusively for symmetric matrices, we applied the algorithm to the matrix B,
where b;; = 1 if and only if either a;; = 1 or aj = 1, where A is the shuffled
data mtarix. To get the right-hand picture in row two, the computed ordering
was applied to A.

In all tests, we used the power law decay form (1) with @« = 1 and took
N =600 vertices. (Formally, we also redefined f(0) = 1, so that probabilities
do not exceed 1.)

Figures 2, 3 and 4 correspond to the cases A = 0.8, A = 0.9 and A = 0.975,
respectively.

It may be argued that typical protein-protein or gene-gene interaction net-
works correspond to undirected graphs, and hence to symmetric adjacency
matrices. To test the algorithms on symmetric versions of range dependent
random graphs, we computed matrices according to the rule a;; = 1 with
probability f(|j — i|) and a;; = 0 otherwise for j < 4, and a;; = a;; for
j > 1. Corresponding results for the parameter values used above appear in
Figures 5-7.

For each experiment, we also computed the bandwidth, envelope and two-sum
of the original matrix and the three matrices resulting from the algorithms.
Tables 1— 3 give the results.

4 Conclusions and Observations

We draw the following points from the numerical results of the previous sec-
tion.

(1) The algorithms behave similarly on symmetric and unsymmetric prob-
lems.
(2) The Symmetric Minimum Degree algorithm is not successful at recover-



Original

0 600
C-McK matrix Min Deg matrix Spectral matrix
0 0 0
200 200} 200
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C-McK ordering Min Deg ordering Spectral ordering
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0 0 0
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Fig. 2. Unsymmetric, A = 0.8. See text for details.

Original Matrix Symm. Rev. C-McK Symm. Min. Deg. Spectral

A = 0.8, Unsymm. 42 31 591 41
A =0.8, Symm. 40 24 599 31
A =0.9, Unsymm. 110 65 599 96
A =10.9, Symm. 78 64 597 69
A =0.975, Unsymm. 455 284 597 442
A =0.975, Symm. 387 285 598 360

Table 1

Bandwidth

(3)

ing the original range dependent connectivity structure in the adjacency
matrix. However, it does seem to pick up some ordering information.
Symmetric Reverse Cuthill-McKee is fairly successful at reproducing the
original data matrix for the smaller A values of 0.8 and 0.9; that is, for
matrices where there are relatively few long-range connections. It is less
successful for the weaker decay rate of A = 0.975, although even in this
case a lot of information is carried through.

Spectral Reordering is the most promising of the three algorithms, and
makes a very accurate job of undoing the initial shuffling.



Original Shuffled
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Fig. 3. Unsymmetric, A = 0.9. See text for details.

Original Matrix Symm. Rev. C-McK Symm. Min. Deg. Spectral

A =0.8, Unsymm. 1.3 1.6 11.7 1.3

A = 0.8, Symm. 1.3 1.6 10.7 1.3

A =0.9, Unsymm. 3.3 4.1 21.4 3.3

A =0.9, Symm. 3.4 4.2 12.6 3.3

A =0.975, Unsymm. 16.8 19.0 33.2 16.6

A = 0.975, Symm. 16.6 19.7 30.5 16.4
Table 2

Envelope, scaled by 10* and rounded to 1 decimal place.

(5) It is clear from the pictures, and from Table 2, that Symmetric Reverse
Cuthill-McKee tends to focus on reducing the envelope at the expense of
generally shepherding all elements towards the diagonal. In our context
the original matrix may well have “outliers” that represent genuine long-
range contacts and hence should be left as such. Since the envelope is not
tolerant to outliers, it is not the most suitable basis for a reordering.

(6) The two-sum appears to be quite a robust objective function for the
range of A values used here, and the relaxation from permutations in (2)



Original

0 600
Min Deg matrix

0 Onmg et
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0 0
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Shuffled
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Fig. 4. Unsymmetric, A = 0.975. See text for details.

Original Matrix Symm. Rev. C-McK Symm. Min. Deg.

A = 0.8, Unsymm. 2.7 5.3

A = 0.8, Symm. 2.7 5.1

A = 0.9, Unsymm. 214 52.8

A =10.9, Symm. 22.5 56.3

A =0.975, Unsymm. 1220.6 2974.3

A =0.975, Symm. 1210.5 3629.8
Table 3

Two-sum, scaled by 10° and rounded to 1 decimal place.

1588.4

1298.9

5339.7

2105.7
17025.6
15922.0

to real vectors in (4) still leads to good solutions. In several cases, Spectral
Reordering pushes the two-sum below its value for the the original matrix,

but produces a very similar ordering.

We point out that these preliminary results are based on single instances of
range dependent graphs. More authoritative conclusions can only be drawn

from a statistical analysis based on many samples.

Spectral
2.6
2.4

20.9
21.1
1212.1
1186.2



Original Shuffled

0 600
C-McK matrix Min Deg matrix Spectral matrix
0 0 7 0
200 200 & 200
400 400 400
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C-McK ordering Min Deg ordering Spectral ordering
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0 0 0
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Fig. 5. Symmetric, A = 0.8. See text for details.

As mentioned in §1, Grindrod [9] suggested using a maximum likelihood ap-
proach in order to obtain an objective function that can be minimized. Given
that the correctly reordered data matrix comes from a range dependent ran-
dom graph generated by a function f, the mazimum likelihood ordering, that
is, the ordering producing a matrix that has the highest probability of arising,
is given by solving

max{ I fle-ahx 11 <1—f<|xi—xj|>>}.

TEP . .
{i,j:a;;7#0} {i,j:a;;=0}

Grindrod noticed that this problem can be re-written

max f(zi — ;) o e
{ T sy < 1O~ I m)}.

T€EP ..
{%,5:a;;#0}

The second product inside the braces is the probability of a null graph, that is,
a graph with no edges, and this is constant for all z € P. Hence, the maximum

10
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Fig. 6. Symmetric, A = 0.9. See text for details.

likelihood ordering can be found by solving

Fjzs = 25 5
£ R G o ©)

(In practice, any edges that exist with probability 1, that is, where f(|z; —
z;|) = 1, would be treated specially.) This approach has the benefit of allowing
the objective function to be tuned to the data. For example, using the class
(1), values for the parameters o and A could be estimated from A. However,
(5) is a hard combinatorial optimization problem, in general. Grindrod [9] out-
lined a hierarchical algorithm, based on iteratively improving a current guess
for the best z, that can be used to tackle the problem directly. An advantage
of the two-sum objective function is that, after relaxation to RY, it reduces to
tractable numerical linear algebra. Of course, the Spectral Reordering solution
could be fed in as an initial guess to Grindrod’s direct method. In fact, the
two approaches, two-sum minimization and maximum likelihood, are not un-
related, and understanding the connection between them gives a useful insight
into the behaviour of Spectral Reordering, as we now show.

Lemma 1 The problem of minimizing the two-sum (2) is equivalent to maz-

11
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Fig. 7. Symmetric, A = 0.975. See text for details.
imum likelihood optimization (5) with
k2
e k
f(k)=71+€_k2, k=0,1,2,... (6)

Proof. Multiplying by —1 in (5), the max becomes a min. Taking logs and
equating the objective function with that in (2) gives the result. O

Lemma 1 shows that, from a maximum likelihood viewpoint, Spectral Re-
ordering postulates an underlying range dependency given by f in (6). As k
increases, this f(k) decays faster than the geometric rate in (1). Figure 8 shows
how f (k) in (6) for £ > 1 compares with (1) using @ = 1 and A = 0.8,0.9, 0.975,
as in our experiments. The very rapid fall-off in (6) suggests that the Spectral
Reordering approach may be less successful on data where either (a) long-
range connections are not so rare or (b) long-range outliers are present due to
experimental noise.

In summary, we hope that this work draws more attention to a challenging
inverse problem that appears to have direct relevance to an extremely impor-
tant and timely application area. There are many ways in which the ideas here
(which themselves draw heavily on [9]) could be pursued. In particular, three

12
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Fig. 8. Plots of f(k) in (1) with @« =1, A = 0.8,0.9,0.975 and in (6).

key topics for reordering algorithms are

e large scale statistical testing on range dependent random graphs,

e experiments on large scale genome datasets,

e development of customized algorithms that combine ideas from graph the-
ory, optimization, sparse matrix theory and statistics.
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