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Convergence of Monte Carlo Simulations
involving the Mean-Reverting Square Root

Process∗

Desmond J. Higham† Xuerong Mao‡

November, 2004

Abstract

The mean-reverting square root process is a stochastic differential equa-
tion (SDE) that has found considerable use as a model for volatility, interest
rate, and other financial quantities. The equation has no general, explicit,
solution, although its transition density can be characterized. For valuing
path-dependent options under this model, it is typically quicker and sim-
pler to simulate the SDE directly than to compute with the exact transition
density. Because the diffusion coefficient does not satisfy a global Lipschitz
condition, there is currently a lack of theory to justify such simulations. We
begin by showing that a natural Euler–Maruyama discretization provides
qualitatively correct approximations to the first and second moments. We
then derive explicitly computable bounds on the strong (pathwise) error
over finite time intervals. These bounds imply strong convergence in the
limit of the timestep tending to zero. The strong convergence result can be
used to justify the method within Monte Carlo simulations that compute
the expected payoff of financial products. We spell this out for a bond with
interest rate given by the mean-reverting square root process, and for an
up-and-out barrier option with asset price governed by the mean-reverting
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square root process. We also prove convergence for European and up-and-
out barrier options under Heston’s stochastic volatility model—here the
mean-reverting square root process feeds into the asset price dynamics as
the squared volatility.

Keywords barrier option, Cox, Ingersoll and Ross (CIR) model, diffusion limit,
Euler–Maruyama, Lipschitz condition, mean-reversion, square root process, stochas-
tic volatility, strong convergence.

1 The Mean-Reverting Square Root Process

We consider the mean-reverting square root process in the form of an Itô stochas-
tic differential equation (SDE)

dS(t) = λ (μ − S(t)) dt + σ
√

S(t)dW (t). (1)

Here λ, μ and σ are positive constants and W (t) is a scalar Brownian motion. We
assume that the initial condition S(0) is independent of the Brownian motion and
has bounded second moment. We also assume that S(0) ≥ 0 with probability 1.
It is known that a unique strong solution exists for (1), and that nonnegativity
of the initial data is preserved:

S(t) ≥ 0 for all t ≥ 0, with probability 1. (2)

Further, the solution may attain the value zero only if σ2 > 2λμ. See, for example,
[24, Section 9.2] or [23, Section 7.1.5] for more details.

The SDE (1) is widely used in mathematical finance as an alternative to geometric
Brownian motion. Most notably it was proposed by Cox, Ingersoll and Ross [7]
as an interest rate model and it forms the stochastic volatility component of
Heston’s asset price model [17]. The idea of taking the diffusion coefficient to be
proportional to the square root of the solution can be traced as least as far back
as [8].

There are numerous examples in the literature where authors discretize the mean-
reverting square root process, typically with an Euler-type scheme. In the finance
context, there are two main motivations for such simulations:

• using a Monte Carlo approach to compute the expected value of a function
of S(t), for example to value a bond or to find the expected payoff of an
option, [1, 2, 3, 4, 5, 14, 28],
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• generating time series in order to test parameter estimation algorithms
[11, 12, 13].

We also note that the texts [6, 9, 15] include examples of numerical simulations
on SDEs of the form (1) and [25] derives a method that applies to a subclass of
(1).

The motivation for our work is that the SDE (1) is nonlinear and non-Lipschitzian.
Thus we cannot appeal to standard convergence theory for numerical simulations,
as typified by Theorem 9.6.2 of [22], to deduce that the numerically computed
paths are accurate for small stepsizes. Nor can we appeal to linear stability
analysis, such as that in [18, 27], to obtain qualitative information about the
behavior of numerical methods over long time intervals. In this work, we address
both issues, giving a customized analysis of the simplest and most widely used
numerical method. Our results are positive, and they thus justify the type of
numerical simulations that are done by researchers and practitioners, as cited
above.

A numerical method applied to (1) may break down due to negative values being
supplied to the square root function. A natural fix, which we adopt in this work,
is to replace the SDE (1) by the equivalent, but computationally safer, problem

dS(t) = λ (μ − S(t)) dt + σ
√

|S(t)|dW (t). (3)

Given a stepsize Δt > 0, the Euler–Maruyama (EM) method applied to (3) sets
s0 = S(0) and computes approximations sn ≈ S(tn), where tn = nΔt, according
to

sn+1 = sn(1 − λΔt) + λΔtμ + σ
√
|sn|ΔWn, (4)

where ΔWn = W (tn+1) − W (tn).

The next section looks at qualitative behavior. We analyze the ability of the
method to reproduce the mean-reverting property of the SDE and to pick up the
correct second moment limit. Section 3 deals with the strong error of the method
over finite time intervals. We show in sections 4 and 5 how the results can be used
to deduce convergence of Monte Carlo simulations for computing the expected
payoff from a bond and an up-and-out call option, respectively. These give clear
examples of cases where strong (as opposed to weak) convergence is required from
a discretization method. In section 6 we consider coupled equations where the
mean-reverting square root process models a stochastic volatility term, and show
that expected payoffs may also be computed accurately.

Although there appears to be no explicit solution for the SDE (1), its transition
density can be characterised. Given S(u), for t > u the distribution of S(t)
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is, within a scaling, noncentral chi-square; see, for example, [15, Section 3.4].
This gives an alternative means to simulate the process. We study the direct
discretization method for a number of reasons.

(a) It is widely used in practice.

(b) In general it is computationally faster than simulating the transition density
in cases where the path must be sampled at finely spaced points in order
to approximate a path-dependent payoff. Direct discretization requires a
single normal sample per step. The alternative of using the exact transition
density with the method in [15, Figure 3.5], for example, involves sampling
a chi-square random variable. The number of degrees of freedom of the chi-
square random variable, and hence the computational expense, depends
upon 4μλ/σ2 and so is strongly problem dependent. This argument carries
further weight in the case where the mean-reverting square root process is
used within Heston’s model. Here, Broadie and Kaya [5] have shown how to
simulate from the exact asset price distribution, but for typical parameter
values ([5, Table 1]) an Euler step is many times faster than an exact sample.
Hence, while exact simulation will be superior for European-style options
and for options whose payoff depends on the asset price at only a widely-
spaced, discrete set of times, for fully path-dependent options, where both
approaches require the time horizon to be broken into a large number of
subintervals, the Euler version remains attractive.

(c) It forms an interesting test case for proving convergence results where there
is no global Lipschitz condition for the diffusion term (as mentioned, for
example, in [5] and [15, page 357]).

Further, looking to future work, direct discretization adapts easily to changes in
the model, such as time-dependency of λ, μ and σ, where the analytical transition
density is not available.

We also note that our convergence results in section 4, section 5 and (for inde-
pendent W1(t) and W2(t)) section 6 apply automatically to the case where the
transition density for the mean-reverting square root process is simulated ex-
actly, rather than via discretization; here the discretization errors referred to in
Corollaries 3.1 and 3.2 become zero for all Δt.

To conclude this section, we mention that although this work is presented from
a numerical simulation viewpoint, it could also be regarded as a contribution to
the literature on diffusion limits of discrete models. Nelson [26] showed that a
range of ARCH models converge in distribution to SDEs, and the particular case
of a mean-reverting square root process has been identified in [21] as the limit
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for a CEVGARCH(1,1) process. Our work deals with strong convergence, in L1

and L2 senses, of the discrete process (4) to the SDE (3) as Δt → 0.

2 First and Second Moment Stability

We begin this section by stating how the first and second moments of the SDE
behave.

Theorem 2.1. For SDE (3), E [S(t) − μ] = e−λt (E(S0) − μ), so that

lim
t→∞

E [S(t)] = μ, (5)

and E

[
S(t)2 − μ2 − σ2μ

2λ

]
= (2μ+σ2

λ
)(E(S0)−μ)e−λt+

(
E(S2

0) + (μ + σ2

2λ
)(μ − 2E(S0))

)
e−2λt,

so that

lim
t→∞

E
[
S(t)2

]
= μ2 +

σ2μ

2λ
. (6)

Proof. The first moment result follows immediately from taking expectations in
(1). The second moment result can be obtained by applying the Itô formula to
S(t)2 and taking expectations, using the result for E(S(t)).

The properties (5) and (6) may be used to estimate the type of stepsize needed
to obtain qualitatively correct solutions.

Theorem 2.2. For the method (4) we have

E(sn) = (1 − λΔt)n (E(s0) − μ) + μ,

and hence

• for Δt < 2/λ, E(sn) → μ as n → ∞,

• for Δt = 2/λ, E(sn) = (−1)n
E(s0) + ((−1)n+1 + 1)μ,

• for Δt > 2/λ, |E(sn)| → ∞ as n → ∞.

Proof. The proof follows trivially after taking expected values in (4).

Theorem 2.2 shows that in the tn → ∞ limit, we recover the correct mean if and
only if the stepsize satisfies the constraint Δt < 2/λ. This constraint corresponds
precisely to the linear stability constraint for deterministic problems [16]. We now
consider the second moment behavior in this stable regime.
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Theorem 2.3. For the method (4) with Δt < 2
λ

we have

lim inf
n→∞

E(s2
n) ≥ μ2 + σ2μ

2λ
− λΔtμ2

2

1 − λΔt
2

=: L(λ, μ, σ; Δt),

where this limiting lower bound thus satisfies

L(λ, μ, σ; Δt) = μ2 +
σ2μ

2λ
+ O(Δt), as Δt → 0.

Further, given any α > 0, if (1 − λΔt)2 + Δtσ2α/2 < 1, then

lim sup
n→∞

E(s2
n) ≤ μ2 + σ2

4λα
− λΔtμ2

2

1 − λΔt
2

− σ2α
4λ

=: U(λ, μ, σ; Δt),

where this limiting upper bound thus satisfies

U(λ, μ, σ; Δt) =
μ2 + σ2

4λα

1 − σ2α
4λ

+ O(Δt), as Δt → 0.

Proof. Our proof makes use of the readily established fact that a real-valued
sequence of the form

yk+1 = ayk + b + crk, (7)

where a, b, c, r are constants with |a| < 1 and |r| < 1, satisfies

lim
n→∞

yn =
b

1 − a
. (8)

Squaring and taking expected values in (4) gives

E(s2
n+1) = (1−λΔt)2

E(s2
n)+2λΔtμ(1−λΔt)E(sn)+λ2Δt2μ2+σ2ΔtE(|sn|). (9)

Now we replace E(|sn|) in (9) by E(sn) to obtain the sequence {zn} with z0 =
E(s2

0) and

zn+1 = (1 − λΔt)2zn + 2λΔtμ(1 − λΔt)E(sn) + λ2Δt2μ2 + σ2ΔtE(sn),

for which E(s2
n) ≥ zn for all n. Inserting the expression for E(sn) from Theo-

rem 2.2 we obtain a sequence of the form (7) with

a = (1 − λΔt)2, (10)

r = 1 − λΔt, (11)

b = 2λΔtμ2(1 − λΔt) + λ2Δt2μ2 + σ2Δtμ. (12)
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Using the expression (8) for the limit then gives the lim inf bound for E(s2
n).

For an upper bound, we note that for any α > 0

ΔtE(|sn|) ≤ Δt
√

E(s2
n) = 2

√
Δt

2α

√
ΔtαE(s2

n)

2
≤ Δt

2α
+

ΔtαE(s2
n)

2
.

Hence, from (9), letting ẑ0 = E(s2
0) and

ẑn+1 = (1 − λΔt)2ẑn + 2λΔtμ(1 − λΔt)E(sn) + λ2Δt2μ2 + σ2

(
Δt

2α
+

Δtαẑn

2

)
,

we have E(s2
n) ≤ ẑn for all n. Inserting the expression for E(sn) from Theorem 2.2

we obtain a sequence of the form (7) with

a = (1 − λΔt)2 +
σ2αΔt

2
, (13)

r = 1 − λΔt, (14)

b = 2λΔtμ2(1 − λΔt) + λ2Δt2μ2 + Δt
σ2

2α
. (15)

Using the expression (8) for the limit then gives the lim sup bound for E(s2
n).

Theorem 2.3 shows that in the stable regime Δt < 2/λ the method has a bounded
second moment. The lower bound L(λ, μ, σ; Δt) is close to the exact limiting
second moment in Theorem 2.1 for small Δt. The bounds are tight when the
volatility parameter σ is not too large. For example, if λ > σ2/(8μ) then we may
take α = 1/(2μ) for all small Δt to get

U(λ, μ, σ; Δt) =
μ2 + σ2μ

2λ

1 − σ2

8λμ

+ O(Δt), as Δt → 0.

3 Strong Convergence

This section deals with the regime where the integration interval, [0, T ], is fixed.
We consider the error in the numerical solution, measured in strong L1 and L2

senses.

In our convergence analysis we find it convenient to work with the continuous-
time approximation s(t) defined by

s(t) := sn + (t− tn)λ(μ− sn) + σ
√

|sn|(W (t)−W (tn)), for t ∈ [tn, tn+1). (16)
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A more useful characterization of s(t) for the purpose of analysis is

s(t) := s0 +

∫ t

0

λ(μ − s(r))dr + σ

∫ t

0

√
|s(r)|dW (r), (17)

where the “step function” s(t) is defined by

s(t) := sn, for t ∈ [tn, tn+1). (18)

Note that s(t) and s(t) coincide with the discrete solution at the gridpoints;
s(tn) = s(tn) = sn. In order to obtain positive results about the ability of the
discrete method (4) to approximate the true solution at the discrete points {tn},
we will prove positive results about the ability of s(t) to approximate S(t). A
similar approach was taken in [19] for a different class of SDEs.

Our first step is to bound the second moment of the discrete numerical solution
over finite time.

Lemma 3.1. For any Δt < 1
2λ

,

E(s2
k) ≤ E(s2

0)+3μ2+
σ4

2λ2
+2λμT |E(s0−μ)| =: C

(
λ, μ, σ; E(s0), E(s2

0)
)
, 0 ≤ kΔt ≤ T.

Proof. Following the proof of Theorem 2.3 we have E(s2
k) ≤ ẑk, where ẑk satisfies

a recurrence of the form (7) with (13), (14), (15) and

c = 2λΔtμ(1 − λΔt) (E(s0) − μ) .

Choosing α = 2λ/σ2, we have a = 1 − λΔt + λ2Δt2 and hence 3/4 < a < 1.
Solving the recurrence, we find that

ẑn ≤ ẑ0 +
b

1 − a
+ |c| (an−1 + ran−2 + r2an−3 + · · ·+ rn−1

)
≤ ẑ0 +

b

1 − a
+ |c|n. (19)

Now

b

1 − a
=

2λΔtμ2(1 − λΔt) + σ4Δt
4λ

+ λ2Δt2μ2

λΔt(1 − λΔt)

= 2μ2 +
σ4

(1 − λΔt)4λ2
+

λΔtμ2

1 − λΔt

≤ 3μ2 +
σ4

2λ2
. (20)

Also,
|c|
Δt

T = 2λμT (1 − λΔt)|E(s0) − μ| ≤ 2λμT |E(s0) − μ|. (21)

The result follows by inserting (20) and (21) into (19).
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Next, we derive a bound for the L2 difference between the two continuous-time
approximations.

Lemma 3.2. For Δt < 1
2λ

sup
0≤t≤T

E
(
(s(t) − s(t))2

) ≤ Δt
[

1
2
λ(μ2 + 2μ(|E(s0)| + 2μ) + C(λ, μ, σ; E(s0), E(s2

0))

+ σ2
√

C(λ, μ, σ; E(s0), E(s2
0))
]

=: Δt D(λ, μ, σ; E(s0), E(s2
0)),

where C is defined in Lemma 3.1.

Proof. Suppose t ∈ [kΔt, (k + 1)Δt). Then

E
[
(s(t) − s(t))2

]
= E

[(
(t − tk)λ(μ − sk) + σ

√
|sk|(w(t) − w(tk))

)2
]

= (t − tk)
2λ2

E((μ − sk)
2) + σ2

E(|sk|)(t − tk)

≤ Δt2λ2
E((μ − sk)

2) + σ2Δt
√

E(s2
k)

≤ Δt

[
1
2
λ(μ2 + 2μ|E(sk)| + E(s2

k)) + σ2
√

E(s2
k)

]
.

The result follows using Lemma 3.1 and the bound |E(sk)| ≤ |E(s0)| + 2μ that
follows from Theorem 2.2.

Our first main result is an explicit bound for the strong L1 error.

Theorem 3.1. For Δt < 1
2λ

and any integer k ≥ 1 we have

sup
0≤t≤T

E|S(t) − s(t)| ≤ eλT

[
e−k(k−1)/2 +

σ2T

k
+

(
σ2T

ke−k(k+1)/2
+ λT

)√
DΔt

]
,

where D = D(λ, μ, σ; E(s0), E(s2
0)) is defined in Lemma 3.2.

Proof. The first step is to construct a sequence of C2 smooth functions, ψk(x),
with uniformly bounded first derivative, that approximate |x|. As k increases,
the approximation quality improves, at the expense of a larger second derivative
bound.

Let a0 = 1 and ak = e−k(k+1)/2 for k ≥ 1, so that
∫ ak−1

ak

du
u

= k. For each k ≥ 1,

there clearly exists a continuous function ψk(u) with support in (ak, ak−1) such
that

0 ≤ ψk(u) ≤ 2

ku
for ak < u < ak−1
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and
∫ ak−1

ak
ψk(u) du = 1. Define

φk(x) =

∫ |x|

0

dy

∫ y

0

ψk(u) du.

Then
φk ∈ C2(R, R), φk(0) = 0,

|φ′
k(x)| ≤ 1, for all x ∈ R, (22)

|φ′′
k(x)|

{ ≤ 2
k|x| , for ak < |x| < ak−1

= 0, otherwise,
(23)

and, moreover,
|x| − ak−1 ≤ φk(x) ≤ |x|, for all x ∈ R. (24)

Now, note that

S(t) − s(t) = −λ

∫ t

0

(S(r) − s(r)) dr + σ

∫ t

0

(√
|S(r)| −

√
|s(r)|

)
dW (r).

Applying the Itô formula gives

Eφk(S(t) − s(t)) = −λE

∫ t

0

φ′
k(S(r) − s(r))(S(r) − s(r)) dr

+ 1
2
σ2

E

∫ t

0

φ′′
k(S(r) − s(r))(

√
|S(r)| −

√
|s(r)|)2 dr

≤ λ

∫ t

0

E|S(r) − s(r)| dr + 1
2
σ2I(t),

where, using (22), (23) and Lemma 3.2,

I(t) = E

∫ t

0

φ′′
k(S(r) − s(r))(

√
|S(r)| −

√
|s(r)|)2 dr

≤ E

∫ t

0

φ′′
k(S(r) − s(r))|S(r)− s(r)| dr

≤ E

∫ t

0

φ′′
k(S(r) − s(r))|S(r)− s(r)| dr + E

∫ t

0

φ′′
k(S(r) − s(r))|s(r)− s(r)| dr

≤ E

∫ t

0

2

k
1{ak<|S(r)−s(r)|<ak−1} dr + E

∫ t

0

2

kak
|s(r) − s(r)| dr

≤ 2T

k
+

∫ T

0

2

kak

E|s(r) − s(r)| dr

≤ 2T

k
+

2T

kak

√
DΔt.
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T = 1/12 T = 3/12 T = 6/12 T = 9/12 T = 12/12
Δt = 10−1 0.08 0.14 0.24 0.34 0.44
Δt = 10−2 0.06 0.08 0.11 0.14 0.18
Δt = 10−3 0.05 0.06 0.07 0.08 0.10
Δt = 10−4 0.04 0.05 0.06 0.07 0.07

Table 1: Error bound for sup0≤t≤T E|S(t) − s(t)| from Theorem 3.1 for λ = 0.1,
μ = 1, σ = 0.1, E(s0) = 1, E(s2

0) = 1 and various T and Δt (optimized over k).

Using Lemma 3.2 again, we obtain

Eφk(S(t) − s(t)) ≤ λ

∫ t

0

E|S(r) − s(r)| dr + λ

∫ t

0

E|s(r) − s(r)| dr

+
σ2T

k
+

σ2T

kak

√
DΔt

≤ λ

∫ t

0

E|S(r) − s(r)| dr +
σ2T

k
+

(
σ2T

kak

+ λT

)√
DΔt.

But, from (24),

Eφk(S(t) − s(t)) ≥ E|S(t) − s(t)| − ak−1.

So

E|S(t)−s(t)| ≤ ak−1+
σ2T

k
+

(
σ2T

kak
+ λT

)√
DΔt+λ

∫ t

0

E|S(r)−s(r)| dr, 0 ≤ t ≤ T.

Applying the Gronwall inequality, see for example, [24, Chapter 1], gives the
required bound.

Theorem 3.1 provides an explicit, computable bound for the L1 error. To illus-
trate this, Table 1 shows the bound in the case λ = 0.1, μ = 1, σ = 0.1, E(s0) = 1
and E(s2

0) = 1 for a range of T and Δt values. In each case, we optimized over
k. (Typically k = 3 gives the minimum.) We note that sampling errors from a
Monte Carlo simulation usually restrict accuracy to one or two digits, irrespective
of the timestepping accuracy. So, for these parameters, our bound proves that
the numerical method offers sufficient accuracy for a practical choice of Δt.

Corollary 3.1 below shows that in addition to providing an explicit bound, The-
orem 3.1 implies strong L1 convergence as Δt → 0.

Corollary 3.1.
lim

Δt→0
sup

0≤t≤T
E|S(t) − s(t)| = 0.
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Proof. Given any ε > 0, we may choose k ≥ 1 such that

eλT

[
ak−1 +

σ2T

k

]
< 1

2
ε,

and then choose Δt > 0 such that

eλT

[
σ2T

kak
+ λT

]√
DΔt < 1

2
ε.

From Theorem 3.1, this ensures that sup0≤t≤T E|S(t)− s(t)| < ε, as required.

Next, we derive a bound for a stronger form of the error. This version uses an
L2 measure and places the supremum over time inside the expectation operation.
The resulting bound, in Theorem 3.2 below, involves the L1 error which is explic-
itly bounded in Theorem 3.1 and hence is also computable. Corollary 3.2 shows
that convergence as Δt → 0 also follows.

Theorem 3.2. For Δt < 1
2λ

we have

E

[
sup

0≤t≤T
(S(t) − s(t))2

]
≤ e2λ2T 2

(
2λ2T 2DΔt + 8σ2T

√
DΔt + 8σ2T sup

0≤t≤T
E|S(t) − s(t)|

)
,

where D = D(λ, μ, σ; E(s0), E(s2
0)) is defined in Lemma 3.2.

Proof. For any 0 ≤ t ≤ T , using the Cauchy-Schwarz inequality we have

(S(t)−s(t))2 ≤ 2λ2T

∫ t

0

(S(r)−s(r))2 dr+2σ2

(∫ t

0

(
√

|S(r)| −
√

|s(r)|) dW (r)

)2

.

Applying the Doob martingale inequality, see for example, [24, Chapter 1], we
find that for any t1 ∈ [0, T ]

E

[
sup

0≤t≤t1

(S(t) − s(t))2

]
≤ 2λ2T E

∫ t1

0

(S(r) − s(r))2 dr + 8σ2
E

∫ t1

0

(
√
|S(r)| −

√
|s(r)|)2 dr

≤ 2λ2T

∫ t1

0

(
E(S(r) − s(r))2 + E(s(r) − s(r))2

)
dr

+ 8σ2
E

∫ t1

0

|S(r) − s(r)| dr

≤ 2λ2T

∫ t1

0

E(S(r) − s(r))2 dr + 2λ2T 2DΔt

+ 8σ2

∫ T

0

E|S(r) − s(r)| dr + 8σ2

∫ T

0

E|s(r) − s(r)| dr

≤ 2λ2T

∫ t1

0

E

[
sup

0≤t≤s
(S(t) − s(t))2

]
ds + 2λ2T 2DΔt

+ 8σ2T
√

DΔt + 8σ2T sup
0≤t≤T

E|S(t) − s(t)|.

12



An application of the Gronwall inequality completes the proof.

Corollary 3.2.

lim
Δt→0

E

[
sup

0≤t≤T
(S(t) − s(t))2

]
= 0.

Proof. The proof follows immediately from Corollary 3.1 and Theorem 3.2.

4 A Bond

In the case where S(t) in (1) models short-term interest rate dynamics, it is
pertinent to consider the expected payoff

Bond := E exp

(
−
∫ T

0

S(t) dt

)
(25)

from a bond. A natural approximation based on (4) is

BondΔt := E exp

(
−Δt

N−1∑
n=0

|sn|
)

, (26)

where NΔt = T ; see, for example, [15, Section 6.2.3]. It is convenient to rewrite
this as

BondΔt = E exp

(
−
∫ T

0

|s(t)| dt

)
,

using the step function s(t) in (18). The following result shows that the strong
convergence of the SDE approximation confers convergence in this scenario.

Theorem 4.1. In the notation above,

lim
Δt→0

|Bond − BondΔt| = 0.

Proof. Using e−|x| − e−|y| ≤ |x − y| and the non-negativity of S(t), we have

|Bond − BondΔt| = E

[
exp

(
−
∫ T

0

S(t) dt

)
− exp

(
−
∫ T

0

|s(t)| dt

)]
≤ E

∣∣∣∣∫ T

0

S(t) dt −
∫ T

0

|s(t)| dt

∣∣∣∣
≤ E

∫ T

0

|S(t) − |s(t)|| dt

≤ E

∫ T

0

|S(t) − s(t)| dt

≤ T sup
[0,T ]

E |S(t) − s(t)| .

13



But Lemma 3.2 and Corollary 3.2 imply that sup[0,T ] E |S(t) − s(t)| → 0, com-
pleting the proof.

5 A Path-Dependent Option

We now consider the case where the mean-reverting square root process (1) mod-
els a financial quantity, such as the short-term interest rate, on which an option
has been written, see for example, [20, Section 21.5]. In this case the expected
payoff from the option is of relevance.

We consider an up-and-out call option, which, at expiry time T , pays the Euro-
pean value if S(t) never exceeded the fixed barrier, B, and pays zero otherwise.
We suppose that the expected payoff is computed from a Monte Carlo simula-
tion based on the method (4). Here, using the discrete numerical solution to
approximate the true path gives rise to two distinct sources of error:

• a discretization error due to the fact that the path is not followed exactly—
the numerical solution may cross the barrier at time tn when the true solu-
tion stays below, or vice versa,

• a discretization error due to the fact that the path is only approximated at
discrete time points—for example, the true path may cross the barrier and
then return within the interval (tn, tn+1).

The following theorem uses the strong convergence property to show that the
expected payoff from the numerical method converges to the correct expected
payoff as Δt → 0. Note that using the step function s(t) in (28) is equivalent to
using the discrete solution.

Theorem 5.1. For the mean-reverting square root process (1) and numerical
method (18), define

V := E
[
(S(T ) − E)+1{0≤S(t)≤B, 0≤t≤T}

]
, (27)

V Δt := E
[
(s(T ) − E)+1{0≤s(t)≤B, 0≤t≤T}

]
, (28)

where the exercise price, E, and barrier, B, are constant. Then

lim
Δt→0

|V − V Δt| = 0.

Proof. Let A := {0 ≤ S(t) ≤ B, 0 ≤ t ≤ T} and AΔt := {0 ≤ s(t) ≤ B, 0 ≤ t ≤
T}. Making use of the inequality

|(S(T ) − E)+ − (s(T ) − E)+| ≤ |S(T ) − s(T )|,

14



we have

|V − V Δt| ≤ E
∣∣(S(T ) − E)+1A − (s(T ) − E)+1AΔt

∣∣
≤ E

(∣∣(S(T ) − E)+ − (s(T ) − E)+
∣∣1A∩AΔt

)
+ E

(
(S(T ) − E)+1A∩A

c
Δt

)
+ E

(
(s(T ) − E)+1Ac∩AΔt

)
≤ E

(|S(T ) − s(T )|1A∩AΔt

)
+ (B − E)P(A ∩ A

c

Δt) + (B − E)P(Ac ∩ AΔt).

Now, from Corollary 3.1, we have limΔt→0 E (|S(T ) − s(T )|) = 0. Hence, our
proof is complete if we can show that

lim
Δt→0

P(A ∩ A
c

Δt) = 0 (29)

and
lim

Δt→0
P(Ac ∩ AΔt) = 0. (30)

For any sufficiently small δ, we have

A = { sup
0≤t≤T

S(t) ≤ B}
= { sup

0≤t≤T
S(t) ≤ B − δ} ∪ {B − δ < sup

0≤t≤T
S(t) ≤ B}

⊆ { sup
0≤kΔt≤T

S(kΔt) ≤ B − δ} ∪ {B − δ < sup
0≤t≤T

S(t) ≤ B}

=: A1 ∪ A2.

Hence,

A ∩ A
c

Δt ⊆ (A1 ∩ A
c

Δt) ∪ (A2 ∩ A
c

Δt)

⊆ { sup
0≤kΔt≤T

|S(kΔt) − s(kΔt)| ≥ δ} ∪ A2.

So,

P(A ∩ A
c

Δt) ≤ P( sup
0≤kΔt≤T

|S(kΔt) − s(kΔt)| ≥ δ) + P(A2)

≤ 1

δ2
E

(
sup

0≤kΔt≤T
(S(kΔt) − s(kΔt))2

)
+ P(A2).

Now, for any ε > 0, we may choose δ so small that

P(A2) < 1
2
ε

and then choose Δt so small that

1

δ2
E

(
sup

0≤kΔt≤T
(S(kΔt) − s(kΔt))2

)
< 1

2
ε,
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whence P(A ∪ A
c

Δt) < ε. This confirms (29).

Now, for any δ > 0, we write

Ac = { sup
0≤t≤T

S(t) > B}
= { sup

0≤t≤T
S(t) > B + δ} ∪ {B < sup

0≤t≤T
S(t) ≤ B + δ}

=: A3 ∪ A4.

So

P(Ac ∩ AΔt) ≤ P(A3 ∩ AΔt) + P(A4 ∩ AΔt)

≤ P( sup
0≤t≤T

|S(t) − s(t)| > δ) + P(A4). (31)

Define

s�(t) =
∞∑

k=0

S(kΔt)1[kΔt,(k+1)Δt)(t), 0 ≤ t ≤ T,

and note that

{ sup
0≤t≤T

|S(t) − s(t)| > δ} ⊆ { sup
0≤t≤T

|S(t) − s�(t)| > 1
2
δ} ∪ { sup

0≤t≤T
|s�(t) − s(t)| > 1

2
δ}

= { sup
0≤kΔt≤T

sup
kΔt≤t≤(k+1)Δt

|S(t) − S(kΔt)| > 1
2
δ}

+ { sup
0≤kΔt≤T

|S(kΔt) − s(kΔt)| > 1
2
δ}.

Thus

P( sup
0≤t≤T

|S(t) − s(t)| > δ} ≤ P( sup
0≤kΔt≤T

sup
kΔt≤t≤(k+1)Δt

|S(t) − S(kΔt)| > 1
2
δ)

+
4

δ2
E( sup

0≤kΔt≤T
(S(kΔt) − s(kΔt))2). (32)

Because S(t) is a continuous process in t ∈ [0, T ], almost every sample path of
S(·) is uniformly continuous on [0, T ]. This immediately implies

lim
Δt→0

P( sup
0≤kΔt≤T

sup
kΔt≤t≤(k+1)Δt

|S(t) − S(kΔt)| > 1
2
δ) = 0.

We also know from Corollary 3.2 that

lim
Δt→0

E( sup
0≤kΔt≤T

(S(kΔt) − s(kΔt))2) = 0.

Hence, from (32), for any δ > 0,

lim
Δt→0

P( sup
0≤t≤T

|S(t) − s(t)| > δ) = 0.
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Now, recalling the definition of A4, we see that for ε > 0 we can find a δ >
0 sufficiently small for P(A4) < 1

2
ε and then choose Δt sufficiently small for

P(sup0≤t≤T |S(t)−s(t)| > δ) < 1
2
ε. Substituting this into (31) yields P(Ac∪AΔt) <

ε, for sufficiently small Δt, confirming (30).

6 Options under Stochastic Volatility

In this section we consider the case where the mean-reverting square root process
is used to represent volatility. We study the Heston [17] model

dX(t) = λ1 (μ1 − X(t)) dt + σ1X(t)
√
|V (t)|dW1(t), (33)

dV (t) = λ2 (μ2 − V (t)) dt + σ2

√
|V (t)|dW2(t). (34)

Here, V (t) is the squared volatility that feeds into the asset price X(t). The
Brownian motions W1(t) and W2(t) may be correlated. Because of the application
to asset pricing, we make the assumption that X(0) and V (0) are constant and
positive. We remark that the results in Theorems 6.1 and 6.2 may be derived in
a similar manner for the “additive noise” alternative

dX(t) = λ1 (μ1 − X(t)) dt + σ1

√
|V (t)|dW1(t), (35)

dV (t) = λ2 (μ2 − V (t)) dt + σ2

√
|V (t)|dW2(t). (36)

which has been proposed for multi-factor interest rates, [23, Section 7.1.7].

We begin with a lemma showing that the positivity in the initial data is preserved
for (33)–(34).

Lemma 6.1.

lim
k→∞

P(k−1 ≤ X(t) ≤ k for all 0 ≤ t ≤ T ) = 1. (37)

Proof. For sufficiently large k, define the stopping time

ρk = inf{t ≥ 0 : X(t) > k or X(t) < 1/k}.
Also define

U(x) = x − 1 − log x, for x > 0.

By the Itô formula, we have

EU(X(T ∧ ρk)) = U(X(0)) + E

∫ T∧ρk

0

([
1 − 1

X(t)

]
λ1(μ1 − X(t)) +

σ2
1

2
|V (t)|

)
dt

≤ U(X(0)) + λ1(μ1 + 1)T +
σ2

1

2

∫ T

0

E|V (t)|dt.
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But it is easy to show that

E|V (t)| = EV (t) = e−λ2tV (0) + μ2(1 − e−λ2t) ≤ V (0) + μ2.

Thus

EU(X(T ∧ ρk)) ≤ U(X(0)) + λ1(μ1 + 1)T +
σ2

1

2
(V (0) + μ2)T. (38)

Now we note that for any ω ∈ {ρk ≤ T}, either X(ρk(ω), ω) = k or X(ρk(ω), ω) =
1/k. Hence,

U(X(ρk(ω), ω) ≥ (k − 1 − log k) ∧ (k−1 − 1 + log k),

and so, dropping the ω for brevity,

EU(X(T ∧ ρk)) ≥ E
[
1{ρk≤T}U(X(ρk))

]
≥ E

[
1{ρk≤T}[(k − 1 − log k) ∧ (k−1 − 1 + log k)]

]
.

Thus, using (38),

P(ρk ≤ T )
[
(k − 1 − log k) ∧ (k−1 − 1 + log k)

] ≤ U(X(0)) + λ1(μ1 + 1)T

+
σ2

1

2
(V (0) + μ2)T.

Letting k → ∞ yields
lim
k→∞

P(ρk ≤ T ) = 0

and the assertion (37) follows.

As a by-product, this lemma confirms that X(t) > 0 a.s. for all t ≥ 0.

Using the Euler–Maruyama method (4) for the volatility equation (34) gives

vn+1 = vn(1 − λ2Δt) + λ2Δtμ2 + σ2

√
|vn|ΔW2,n, (39)

where ΔW2,n = W2(tn+1) − W2(tn), and using this approximation in the asset
equation (33) gives

xn+1 = xn(1 − λ1Δt) + λ1Δtμ1 + σ1xn

√
|vn|ΔW1,n, (40)

where ΔW1,n = W1(tn+1)−W1(tn). We also use the corresponding step functions

x(t) := xn and v(t) := vn, for t ∈ [tn, tn+1), (41)
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to define the continuous-time approximations

x(t) := x0 +

∫ t

0

λ1(μ1 − x(r))dr + σ1

∫ t

0

x(r)
√
|v(r)|dW1(r), (42)

v(t) := v0 +

∫ t

0

λ2(μ2 − v(r))dr + σ2

∫ t

0

√
|v(r)|dW2(r). (43)

We now prove two lemmas before giving our convergence results for option valu-
ation.

Lemma 6.2.

E

(
sup

0≤t≤T
|v(t)|

)
≤ (v(0) + λ2μ2T +

9

2
σ2

2)e
(λ2+ 1

2
)T . (44)

Proof. Note that for 0 ≤ t1 ≤ T ,

v(t1) = v(0) +

∫ t1

0

λ2(μ2 − v̄(r))dr + σ2

∫ t1

0

√
|v̄(r)|dW2(r).

By the Burkholder-Davis-Gundy inequality [10, Theorem 3.14], we derive that
for 0 ≤ t ≤ T ,

E

(
sup

0≤t1≤t
|v(t1)|

)
≤ v(0) + λ2μ2T + λ2

∫ t

0

E|v̄(r)|dr + 3σ2E

[( ∫ t

0

|v̄(r)|dr
)1/2]

≤ v(0) + λ2μ2T +
9

2
σ2

2 + (λ2 + 1
2
)

∫ t

0

E

(
sup

0≤t1≤r
|v(t1)|

)
dr.

An application of the Gronwall inequality yields the assertion (44).

Lemma 6.3. For any given pair of positive numbers i and j, define the stopping
time

τij = inf{t ≥ 0 : |X(t)| > i or |v(t)| > j}. (45)

Then
lim

Δt→0
E

(
sup

0≤t≤T
(X(t ∧ τij) − x(t ∧ τij))

2
)

= 0. (46)
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Proof. For the sake of simplicity, we write τij = τ . For any 0 ≤ t1 ≤ T , we have

X(t1 ∧ τ) − x(t1 ∧ τ)

= −λ1

∫ t1∧τ

0

(X(r) − x̄(r))dr + σ1

∫ t1∧τ

0

(X(r)
√
|V (r)| − x̄(r)

√
|v̄(r)|)dW1(r)

= −λ1

∫ t1∧τ

0

(X(r) − x̄(r))dr + σ1

∫ t1∧τ

0

X(r)(
√
|V (r)| −

√
|v̄(r)|)dW1(r)

+ σ1

∫ t1∧τ

0

√
|v̄(r)|(X(r) − x̄(r))dW1(r).

By the Hölder inequality and the Doob martingale inequality, we then derive that
for any 0 ≤ t ≤ T ,

E

(
sup

0≤t1≤t
(|X(t1 ∧ τ) − x(t1 ∧ τ))2

)
≤ 3λ2

1tE

∫ t∧τ

0

(X(r) − x̄(r))2dr + 12σ2
1E

∫ t∧τ

0

(X(r))2(
√

|V (r)| −
√

|v̄(r)|)2dr

+ 12σ2
1E

∫ t∧τ

0

|v̄(r)|(X(r) − x̄(r))2dr

≤ (3λ2
1T + 12σ2

1j)E

∫ t∧τ

0

(X(r) − x̄(r))2dr + 12σ2
1i

2
E

∫ t∧τ

0

|V (r) − v̄(r)|dr

≤ C1E

∫ t∧τ

0

(X(r) − x̄(r))2dr + C2(Δt), (47)

where C1 = 3λ2
1T + 12σ2

1j and

C2(Δt) = 12σ2
1i

2T
(

sup
0≤t≤T

E|V (r) − v̄(r)|
)

which tends to zero as Δt → 0 by Corollary 3.1. Note that

E

∫ t∧τ

0

(X(r) − x̄(r))2dr

≤ 2E

∫ t∧τ

0

(X(r) − x(r))2dr + 2E

∫ t∧τ

0

(x(r) − x̄(r))2dr. (48)

But

E

∫ t∧τ

0

(X(r) − x(r))2dr ≤ E

∫ t

0

(X(r ∧ τ) − x̄(r ∧ τ))2dr

≤
∫ t

0

E

(
sup

0≤t1≤r
(X(t1 ∧ τ) − x̄(t1 ∧ τ))2

)
dr. (49)

Moreover, for r ∈ [0, t ∧ τ ], let [r/Δt] be the integer part of r/Δt. By definition,

x(r)−x̄(r) = λ1(μ1−x[r/Δt])(r−[r/Δt])+σ1

√
|v[r/Δt]| x[r/Δt](W1(r)−W1([r/Δt]Δt))
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which yields

(x(r) − x̄(r))2 ≤ 2λ2
1(μ1 + i)2Δt2 + 2σ2

1ji
2(W1(r) − W1([r/Δt]Δt))2.

Thus

E

∫ t∧τ

0

(x(r) − x̄(r))2dr

≤ E

∫ t∧τ

0

[
2λ2

1(μ1 + i)2Δt2 + 2σ2
1ji

2(W1(r) − W1([r/Δt]Δt))2
]
dr

≤
∫ t

0

[
2λ2

1(μ1 + i)2Δt2 + 2σ2
1ji

2
E(W1(r) − W1([r/Δt]Δt))2

]
dr

≤ T
[
2λ2

1(μ1 + i)2Δt2 + 2σ2
1ji

2Δt
]

:= C3(Δt). (50)

Substituting (50) and (49) into (48) and then inserting the resulting inequality
into (47) we obtain

E

(
sup

0≤t1≤t
(X(t1 ∧ τ) − x(t1 ∧ τ))2

)
≤ 2C1

∫ t

0

E

(
sup

0≤t1≤r
(X(t1 ∧ τ) − x̄(t1 ∧ τ))2

)
dr + 2C1C3(Δt) + C2(Δt).(51)

The Gronwall inequality gives

E

(
sup

0≤t1≤T
(X(t1 ∧ τ) − x(t1 ∧ τ))2

)
≤ [2C1C3(Δt) + C2(Δt)]e2C1T .

The required assertion (46) follows by letting Δt → 0.

Let us now recall the payoff for the European put option:

Λ = E[(E − X(T ))+],

where E > 0 is the exercise price. Accordingly, the payoff based on the numerical
method is

Λ̄Δt = E[(E − x̄(T ))+].

The theorem below shows that the numerical approximation is convergent. We
remark that the proof makes use of the fact that the payoff is bounded above as
a function of S(T ), and it is not clear to us how the proof could be extended to
cope with unbounded payoff functions. However, if the appropriately discounted
expectations are regarded as option values, then the corresponding call option,
whose payoff is unbounded, could be valued from the put via put-call parity,
see, for example [20, Section 7.4]. We also remark that [15, Example 6.2.2]
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performs a closely related Monte Carlo simulation on the same model (33)–(34).
Our result contributes toward filling the gap in the literature that Glasserman
identified: namely, that the textbook convergence theory does not apply because
“the square-root functions in the model dynamics and the kink in the call option
payoff violate the smoothness conditions”. A similar observation is made in [5].

Theorem 6.1. In the notation above,

lim
Δt→0

|Λ − Λ̄Δt| = 0. (52)

Proof. For i, j > 0, set

Ai = {X(t) ≤ i, 0 ≤ t ≤ T} and Bj = {|v(t)| ≤ j, 0 ≤ t ≤ T}.
Given any ε > 0, by Lemmas 6.1 and 6.2 we can find i, j sufficiently large for

P (Ac
i ∪ Bc

j ) ≤
ε

4E
.

Compute

|Λ − Λ̄Δt| ≤ E|(E − X(T ))+ − (E − x̄(T ))+|
= E

(
|(E − X(T ))+ − (E − x̄(T ))+|1Ai∩Bj

)
+ E

(
|(E − X(T ))+ − (E − x̄(T ))+|1Ac

i∪Bc
j

)
≤ E

(
|X(T ) − x̄(T )|1Ai∩Bj

)
+ 2EP(Ac

i ∪ Bc
j )

≤ E

(
|X(T ) − x̄(T )|1(τij>T )

)
+

ε

2

≤ E|X(T ∧ τij) − x(T ∧ τij)| + E

(
|x(T ) − x̄(T )|1(τij>T )

)
+

ε

2
, (53)

where τij is the stopping time defined in Lemma 6.3. But

E

(
|x(T ) − x̄(T )|1(τij>T )

)
≤ E

(∣∣λ1(μ1 + i)(T − [T/Δt]) + σ1

√
j i(W1(T ) − W1([T/Δt]Δt))

∣∣1(τij>T )

)
≤ λ1(μ1 + i)Δt + σ1

√
j i

√
Δt.

This, together with Lemma 6.3, shows that there is a Δt� > 0 such that for all
Δt < Δt�,

E|X(T ∧ τij) − x(T ∧ τij)| + E

(
|x(T ) − x̄(T )|1(τij>T )

)
<

ε

2
.

In view of (53), this completes the proof.
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As we remarked in section 1, Broadie and Kaya [5] have shown how to simu-
late exactly in the Heston model, and their computations demonstrate that this
approach is more efficient than Euler discretization for valuing a European put.
Generally, for payoffs depending only on X(T ), where a single exact step from
t = 0 to t = T is competing against a large number of Euler steps from tn to tn+1,
the exact version will be superior. However, for a fully path-dependent option
the situation reverses, because both approaches require the solution to be evolved
over small subintervals [tn, tn+1] and Table 1 of [5] indicates that the cost of an
Euler step is significantly less than the cost of evolving the exact solution. Our
final result uses Theorem 6.1 to show that the Euler approach is convergent in
such a case: namely for an up-and-out barrier option. Note that using the step
function x̄(t) in (55) is equivalent to using the discrete solution.

Theorem 6.2. For the Heston model (33)–(34) and the numerical method (41),
define

U := E
[
(X(T ) − E)+1{0≤X(t)≤B, 0≤t≤T}

]
, (54)

UΔt := E
[
(x̄(T ) − E)+1{0≤x̄(t)≤B, 0≤t≤T}

]
, (55)

where the exercise price, E, and barrier, B, are constant. Then

lim
Δt→0

|U − UΔt| = 0.

Proof. Let A := {0 ≤ X(t) ≤ B, 0 ≤ t ≤ T} and AΔt := {0 ≤ x̄(t) ≤ B, 0 ≤
t ≤ T}. In the same way as in the proof of Theorem 5.1, we can show that

|U − UΔt| ≤ E
(|X(T ) − x̄(T )|1A∩AΔt

)
+ (B − E)P(A ∩ A

c

Δt)

+ (B − E)P(Ac ∩ AΔt). (56)

Now, for i, j > B, set

Ai := {X(t) ≤ i, 0 ≤ t ≤ T} and Bj := {|v(t)| ≤ j, 0 ≤ t ≤ T}.
Let ε > 0 be arbitrary. By Lemmas 6.1 and 6.2, we can find a pair of i and j
sufficiently large for

P(Ac
i ∪ Bc

j ) ≤
ε

2(1 ∨ B)
. (57)

Compute

E
(|X(T ) − x̄(T )|1A∩AΔt

)
= E

(
|X(T ) − x̄(T )|1A∩AΔt∩Ai∩Bj

)
+ E

(
|X(T ) − x̄(T )|1A∩AΔt∩(Ac

i∪Bc
j )

)
≤ E

(|X(T ) − x̄(T )|1Ai∩Bj

)
+ BP(Ac

i ∪ Bc
j )

≤ E
(|X(T ) − x̄(T )|1{τij>T}

)
+

ε

2
,
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where the stopping time τij is defined in (45). Recalling the proof of Theorem
6.1, we observe that there is a Δt� = Δt�(ε) > 0 such that for any Δt < Δt�,

E
(|X(T ) − x̄(T )|1{τij>T}

)
<

ε

2
,

whence
E
(|X(T ) − x̄(T )|1A∩AΔt

)
< ε.

In other words, we have shown that

lim
Δt→0

E
(|X(T ) − x̄(T )|1A∩AΔt

)
= 0. (58)

Next we will show that P(A ∩ A
c

Δt) → 0 as Δt → 0. Using (57), we note that

P(A ∩ A
c

Δt) ≤ P(A ∩ A
c

Δt ∩ Ai ∩ Bj) +
ε

2
. (59)

On the other hand, for any sufficiently small δ, we have

A = { sup
0≤t≤T

X(t) ≤ B}
= { sup

0≤t≤T
X(t) ≤ B − δ} ∪ {B − δ < sup

0≤t≤T
X(t) ≤ B}

⊆ { sup
0≤kΔt≤T

X(kΔt) ≤ B − δ} ∪ {B − δ < sup
0≤t≤T

X(t) ≤ B}

=: A1 ∪ A2.

Hence,

A ∩ A
c

Δt ∩ Ai ∩ Bj ⊆
[
A1 ∩ A

c

Δt ∩ Ai ∩ Bj

]
∪ A2

⊆
[
{ sup

0≤kΔt≤T
|X(kΔt) − x̄(kΔt)| ≥ δ} ∩ {τij > T}

]
∪ A2

⊆ { sup
0≤t≤T

|X(t ∧ τij) − x̄(t ∧ τij)| ≥ δ} ∪ A2.

So,

P(A ∩ A
c

Δt ∩ Ai ∩ Bj) ≤ P( sup
0≤t≤T

|X(t ∧ τij) − x̄(t ∧ τij)| ≥ δ) + P(A2)

≤ 1

δ2
E

(
sup

0≤t≤T
|X(t ∧ τij) − x̄(t ∧ τij)|2

)
+ P(A2).

Now, for any ε > 0, we may choose δ so small that

P(A2) <
ε

4
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and then, by Lemma 6.3, choose Δt so small that

1

δ2
E

(
sup

0≤t≤T
|X(t ∧ τij) − x̄(t ∧ τij)|2

)
<

ε

4
,

whence
P(A ∩ A

c

Δt ∩ Ai ∩ Bj) <
ε

2
.

Substituting this into (59) we obtain

P(A ∩ A
c

Δt) < ε

for sufficiently small Δt. This shows that

lim
Δt→0

P(A ∩ A
c

Δt) = 0. (60)

An argument similar to that used in the proof of Theorem 5.1 shows that

lim
Δt→0

P(Ac ∩ AΔt) = 0. (61)

Substituting (58), (60) and (61) into (56) gives the required result.
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