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Hierarchic Finite Element Bases on Unstructured
Tetrahedral Meshes *

Mark Ainsworth Joe Coyle *

May 14, 2002

Abstract

The problem of constructing hierarchic bases for finite element discreti-
sation of the spaces H', H(curl), H(div) and L on tetrahedral elements
is addressed. A simple and efficient approach to ensuring conformity of the
approximations across element interfaces is described. Hierarchic bases of
arbitrary polynomial order are presented. It is shown how these may be
used to construct finite element approximations of arbitrary, non-uniform,
local order approximation on unstructured meshes of curvilinear tetrahe-
dral elements.

AMS subject classifications  78-08, 656N30.

Key words Hierarchic finite element bases. Conforming finite element spaces.

1 Introduction

The variational formulation of partial differential equations arising in science
and engineering generally involves one or more of the function spaces H*(£2),
H(curl;Q2), H(div;Q) and L2(€2). The spaces differ in the smoothness prop-
erties required of their members. The space Lo(€2) involves the comparatively
modest requirement that its members should be square integrable, while the
space H'(€) in addition requires all components of the gradients to be square
integrable. The spaces H (curl; Q) and H (div; () consist of vector-valued func-
tions and fall in between Ly and H' in the smoothness requirements by asking
that certain combinations of first derivatives are square integrable:

H(curl; Q) = {v € Ly() : curlv € L2(2)}

and
H(div;Q) ={v € Ly(Q2) : divv € La(2)}.
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Great Britain under grant GR/M59426 is gratefully acknowledged.
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Scotland. M.Ainsworth@strath.ac.uk
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The finite element method is frequently used to approximate the solutions of
boundary value problems. A family of finite element subspaces should respect
the smoothness requirements of the underlying function space associated with
the problem to be approximated. The most commonly occurring case involves
the space H!(£2) where the smoothness requirements translate into the fact that
a finite element subspace must consist of functions that are continuous across
inter-element boundaries. At the opposite extreme the space La(£2), which
frequently occurs in the setting of mixed finite element schemes, imposes no
inter-element continuity requirements on the finite element subspace.

The spaces H(curl; Q) and H(div;{2), although less common, are nev-
ertheless of considerable importance in application areas such as electromag-
netism, elasticity and fluid mechanics. The inter-element continuity require-
ments or conformity conditions are more complicated for these spaces. The
space H (div; () requires the normal component of the finite element function
to be continuous across an interface, while the space H (curl; ) requires that
certain tangential components of the finite element approximation should be
continuous. These conditions are weaker than those associated with the space
H(Q), but their realisation can prove problematic nevertheless. One possible
alternative consists of using the more familiar vector-valued H*(Q)-conforming
finite element space in place of an H (div; ) or H(curl; Q)-conforming approxi-
mation. Unfortunately, this means that the approximation is overly constrained
and opens up the possibility that the finite element scheme may not actually
converge to the solution of the problem in hand.

The construction of low order H(div) and H (curl) conforming approxi-
mation may be found in textbooks [7, 9, 18, 31]. However, interest in the use
of higher order finite element schemes, such as p, hp or spectral element meth-
ods, has become increasingly widespread. These methods typically involve the
use of elements of variable, non-uniform order approximation on unstructured
meshes [30, 32]. The use of a higher order space can lead to complications with
enforcing appropriate conformity properties of globally defined basis functions
across element interfaces, particularly if elements of non-uniform local order are
employed.

The treatment of the Ly and H'-conforming finite element spaces is well
documented in the literature. For example, sets of hierarchic basis functions
of arbitrary order on tetrahedral elements may be found in the books of Szabo
and Babuska [32], and Karniadakis and Sherwin [21]. These spaces are also
discussed in the present work, partly in the interests of completeness and partly
in order to set the work in context. However, our main reason for revisiting
these simpler spaces is to highlight in a familiar setting some of the difficulties
which, though not always apparent, are the crux of the problem of constructing
conforming spaces on unstructured meshes.

A survey of (low order) finite element schemes geared towards h-version
discretisation of H(div), and to a lesser extent H (curl), may be found in the
book of Brezzi and Fortin [9]. The basic framework for finite element spaces of
arbitrary order on tetrahedral elements was described by Nedelec [28, 29]. The
work of Hiptmair [17] is remarkable in that it encompasses a unified treatment
of finite element discretisation of both spaces H(curl) and H(div) within the



framework of differential forms.

The lowest order finite element schemes for the discretisation of H (curl)
are often referred to as edge elements [6, 26, 33] or Whitney forms [36]. The
search for a convenient set of basis functions for higher order approximation
has attracted a great deal of attention. Several variants of second order basis
functions have been described in [10, 14, 19, 23], while third order elements
have been considered in [8, 20, 24, 27]. A hierarchic set of basis functions up to
third order has been presented by Webb and Forghani [35] while Anderson and
Volakis [5] target efforts on the construction of higher order functions based on
the Whitney forms. The construction of elements of higher than third order is
considered by Graglia et.al. [16] where a nodal basis is described, and Webb [34]
where basis functions of arbitrary order are presented based on the degrees of
freedom outlined in [29]. Demkowicz and Vardapetyan [13] derived families of
non-uniform arbitrary order spaces for H(curl) and H(div) and showed [13]
that the vital commuting diagram property [9] is preserved.

Despite the intensive search for hierarchic bases for arbitrary order finite el-
ement discretisation of the spaces H (curl) and H (div), a number of problems
remain with the realisation. Most, if not all, of the existing works are lim-
ited to low order elements of uniform degree and focus on describing the basis
functions on a reference tetrahedron devoting little attention to the problem of
ensuring that the associated global basis functions satisfy the global conformity
conditions. However, the work of Demkowicz et. al. [12, 13], deals with approx-
imation of arbitrary order. The problem of deriving bases for non-uniform order
approximation of H(curl) and H (div) in two dimensions on hybrid meshes of
triangular and quadrilateral elements was studied in [1].

The purpose of the current work is to obtain families of hierarchic basis
functions of arbitrary polynomial order and to describe the process whereby these
functions may be used to construct arbitrary, non-uniform local polynomial or-
der finite element subspaces for H(2), H(curl;Q), H(div;Q) and L2(Q) on
general unstructured meshes of possibly curvilinear tetrahedra. Thus, the cur-
rent work presents a reasonably complete solution to the problem of developing
bases on tetrahedral meshes, although some important issues such as condition-
ing of the matrices are not addressed.

The remainder of the manuscript is organised as follows. Firstly, the prob-
lem of enforcing continuity across element boundaries on an unstructured mesh
of tetrahedral elements is discussed. Fully hierarchic bases of arbitrary uniform
polynomial order are then exhibited for the four spaces of interest. Finally, the
generalisation to non-uniform local order of approximation is discussed along
with the details of the implementation.

2 The Problem of Enforcing Conformity

Traditionally, finite elements as described, for example by Ciarlet [11], are con-
structed with degrees of freedom identified with the values of a function, or ap-
propriate derivatives, at nodes located on the element. However, when higher
or non-uniform local orders are required, as is the case for the Ap-version finite
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Figure 1: (a) Triangular elements ¢ and t’ sharing a common edge e connecting
the vertices v, and v;. The local orientation of the edge with each element is
indicated by the dashed arrows. (b) Local cubic edge basis functions on each
element. The mismatch in the local orientation of the edges means that the
values of the local degrees of freedom corresponding to the edge function must
be appropriately constrained to ensure conformity.

element method, it is advantageous to use degrees of freedom corresponding to
hierarchic basis functions [4, 32]. Unfortunately, hierarchic bases create prob-
lems with enforcing conformity of the approximation across element interfaces
that do not arise with the traditional nodal bases. Here, we illustrate the types
of problem that arise in the setting of the scalar H'(Q2) space. Similar, but
more acute, difficulties are encountered in the finite element discretisation of
the spaces H (curl) and H(div).

2.1 Enforcing H'(Q2)-Conformity in Two Dimensions

Suppose that the polygonal domain §2 is partitioned into triangles so that the
non-empty intersection of distinct elements is a single common edge or vertex
of both elements. Consider the situation where the order of approximation is
chosen to be cubic, p = 3, and let u be a function from the finite element space.
The restriction of u to an inter-element edge e shared by elements ¢ and ¢’ (see
Figure 1) will be a cubic function of the parametrisation & € [—1,1] used on
the edge.

Traditionally, the function would be described by values at four nodes on
the edge and these values would correspond to values of local degrees of freedom
on both elements ¢t and ¢'. The situation is rather different when a hierarchic
basis is employed. For instance, a natural choice of hierarchic basis functions,
when restricted to the edge, would give the functions

%(1—5); %(1+§); 1-¢% ¢1-¢%). (1)

If the local orientation of the edges on the reference element is chosen so that the
boundary is traversed in an anti-clockwise sense, then the local orientations of
the common edge are mismatched, as shown in Figure 1(a). As a consequence,



the local parametrisation of the edges in each element, denoted by & and &y,
satisfies & = —&p. This creates difficulties in enforcing continuity across the
edge. For instance, suppose u vanishes at the endpoints of the edge e so that
the first two functions in (1) are redundant. Relative to the basis functions on
element ¢, the restriction of u to the edge is given by

ule = co(1 = &) + er&e(1 — &),

while relative to element ¢,

ule = (1 — &) + hép(1 - &).

In order to obtain a conforming approximation, the values of these different
representations must agree on the interface. Inserting s = —&¢ into the latter
equation and comparing coeflicients leads to the conclusion

/
o } @)
1 = 1

The reason behind the sign difference is illustrated in Figure 1(b) where the
restrictions of the local cubic edge basis function on the edge are shown. It is
observed that the cubic modes have differing signs due to the mismatch in the
local orientations of the edge.

The need to resolve such sign conflicts [4] is typical when hierarchic basis
functions are used, but does not arise for nodal basis functions. While it is a rel-
atively trivial matter to apply these constraints by incorporating a sign change
in the local-global (connectivity) mapping for the element [3], the situation in
three dimensions is not so simple.

2.2 Enforcing H'(Q2)-Conformity in Three Dimensions

The basic difficulty in enforcing H'(€2)-conformity in three dimensions first
manifests itself in the simple case where fourth order, p = 4, elements are used
and the domain €2 consists of only two elements. Such a situation is shown in
Figure 2, where the tetrahedra, t and #', share a common face f defined by
nodes with global numbers 2, 3 and 4.

If the boundary value problem is subject to homogeneous boundary con-
ditions, then the finite element functions must vanish on the boundary of the
domain . Let Ao, A3 and A4 denote the usual barycentric, or area, coordinates.
A cubic finite element function that vanishes on the boundary of the face f, but
is non-zero on the face itself, must be a multiple of the polynomial 3¢ given by
AaAsAy. Consequently, on the face f, the basis for the third order space must
reduce to a multiple of the function Gg.

If the order of approximation is increased to fourth order, p = 4, and a
hierarchic basis is required, then the basis functions on the face must, in addition
to the function By, include two further functions of the form pw, where w is an
affine function. The natural choice for the two additional functions on element



Figure 2: The pair of adjacent tetrahedra, t = [2314] and t' = [342 5], sharing
a common face f defined by the vertices with global numbers 2, 3 and 4. The
natural coordinates for each element are indicated by the dashed arrows.

t corresponds to taking w to be & and 7, as shown in Figure 2, giving the
following local face basis functions on element ¢,

Brs  Bf&e  Bgne
By the same token, the local face basis functions on ¢ are given by
By Be&ys By

A quartic finite element function u that is non-zero on the face f, relative to
the basis functions for element ¢, has the form

uly = By (co + c1&e + came) (3)
whilst relative to element ', the function has the form
ulp = By (cp+ ciéy + chmy) - (4)

The relationship between the coefficients needed to ensure agreement on the
face can be deduced by first observing that

S = X5 My =M
or, noting that Ao + A3+ Xy =1 on f,
§t/ =1- )\3 - /\4; Ny = )\4.

Similarly,
§e=A3; Mg = A4,

and so, inserting these into equations (3)-(4) and equating coefficients, we obtain

co = ¢+
= —d . (5)
o = -+
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(a) Edge orientation  (b) Face orientation  (c) Tetrahedral orientation

Figure 3: Intrinsic orientations of entities based on the global numbering of
the vertices defining the entity. Here, it is assumed that the global numbering
satisfies 0 < 7 < j < k. In each case, the vertex v, with the lowest global
numbering is singled out as the preferred vertex.

By way of contrast to the two dimensional case, the application of these con-
straints is no longer simply a matter of resolving sign conflicts. Indeed, the
non-local nature of the constraints makes even the task of identifying the global
degrees of freedom non-trivial.

The source of the difficulty may be traced to the freedom in the choice of the
two functions needed to augment the basis function already present in the cubic
space, to form a basis for the fourth order space. This leads to a set of face basis
functions that do not remain invariant under a cycling of the numbering of the
vertices on the face. This, in turn, is responsible for the more complicated, non-
local constraints (5). It is not difficult to convince oneself of the impossibility
of constructing hierarchic basis while maintaining rotational invariance. In
contrast, a natural choice of nodal basis is automatically rotationally invariant
and non-local constraints do not arise. The subject of rotational invariance is
discussed further by Webb [34].

2.3 Circumventing Sign Conflicts

The foregoing discussion shows that a hierarchic, conforming basis in two di-
mensions can be realised purely by resolving sign conflicts. However, this notion
does not generalise to the three dimensional case due to the loss of rotational
invariance in the face basis functions. Faced with this impasse, we shall revisit
the two dimensional case in search of an alternative concept that is more readily
extended to the three dimensional setting.

Akin [4] shows that, in two dimensions, it is possible to avoid sign conflicts
altogether by employing a consistent orientation of edges. An edge e connecting
the global vertices v, and v;, is assigned a unique, global orientation by choos-
ing, for instance, the tangent vector in the direction from the vertex v, to vertex
v;. The associated parametrisation of the edge is given by £, = \i— A, € [—1, 1],
as shown in Figure 3(a). The local parametrisation of the edge in the reference
element is chosen to coincide with the global parametrisation of the edge.

This process circumvents the sign conflict problem. Consider once again the
example illustrated in Figure 1. The common edge e = [0i] would be oriented
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Figure 4: The continuity of the global cubic functions across e is a consequence
of a consistent local parametrisation of each edge from the smallest vertex v,
to the largest vertex v; on both elements.

in the same direction on both triangles. The local parametrisation &,; used to
define the local basis functions would then agree on neighbouring elements, and
the cubic edge function would automatically be continuous across e, as shown
in Figure 4. In particular, the constraints (2) would then take the form

and the issue of sign conflicts no longer arises.

The same notion may be used in three dimensions to circumvent the problem
of rotational invariance in enforcing H'()-conformity across faces. A face
f = [oij] defined by global vertices v,, v; and v; is parameterised by choosing
coordinates &, = A\j — A, and &,j = A\j — Ao, as shown in Figure 3(b). The local
parametrisation of the face on the reference element is chosen to agree with the

global parametrisation.
Consider once again the situation shown in Figure 2. The face basis func-

tions for the fourth order space are chosen to be of the same form on both

elements:

By;  Bglaz = Br(A3 — A2);  Brlaa = Br(Aa — A2).
With this choice of basis, the arguments leading to conditions (5) would yield
the trivial set of constraints

/. 1. !
CO:CO’ C]_—Cl, 62—62./

and conformity is obtained automatically. In short, once a unique global pre-
ferred parametrisation of the faces has been defined, the same parametrisation



may be adopted locally on each element and issues of rotational invariance
become irrelevant.

2.4 Intrinsic Orientation of Edges and Faces

The foregoing examples illustrate that the orientation of the element faces and
edges is the key to enforcing appropriate continuity properties of the discrete
spaces. It is important that the method chosen to orient faces and edges can
be applied locally on each element in isolation, without the need to refer to
exterior entities such as the elements containing them.
Denote the set of vertices, edges and faces of a single element ¢ by V(¢),
E(t) and F(t), respectively, and the corresponding global sets by V, £ and F.
Each edge e € £ is described by a pair [0i] of numbers for the global vertices
located at the endpoints of the edge. The ordering of the numbers is determined
by requiring o < i. The edge may then be assigned a unique parametrisation
given by
663R3_)R3 Se = &oi = Ai — Ao (6)

The parametrisation is intrinsic to the edge, depending solely on the global
numbering of the endpoints of the edge.

Likewise, a face f € F is described by a triple [0ij] formed from the
global numbering of the vertices of the face. By applying a rotation of the
local numbering of the vertices, it is possible to ensure that the vertex v,
with the smallest global numbering, has local number 1 without affecting the
properties of the face itself. The ordering of the remaining vertices, v; and v,
is then automatically determined so that the cyclic ordering of the vertices is
preserved. This process results in a well-defined ordering of the vertices. The
face is then assigned a unique parametrisation given by &,; and &,;. Once again,
the parametrisation is intrinsic to the face and is determined entirely in terms
of the global numbering of the vertices of the face. Equally well, a tetrahedron
t =[oijk] € T is parametrised by &, &, and &y, as shown in Figure 3. The
ordering of the vertices in the tetrahedron is discussed in detail in the next
section.

A unique directed tangent on an edge e = [01] is given by

7 = 7l — V; — Vo, (7)

while a unique pair of tangent vectors to face f = [0 j] is defined by
{ = 719 and T2‘f = rlogl, (8)

T

For future reference, we introduce bubble functions on each edge e, face f and
tetrahedron t by

Be = Boi = Aois B = Boij = AoAiXj;  and By = Boiji = AoXiNjAk-  (9)

Note that these functions vanish on the boundary of the entity with which they
are associated and are therefore continuous functions.



2.5 Intrinsic Orientation of Elements

The intrinsic orientation of the edges and faces described above depends on
the global numbering of the vertices. This means that the construction of
the basis functions on the reference element also depends on the numbering
of the global vertices defining the element. At first sight, this fact appears to
carry undesirable consequences. Fortunately, this proves not to be the case
thanks to the following key observation: An appropriate reordering of the local
numbering to the vertices allows any global tetrahedron to be reduced to one of
two possible reference tetrahedra. This process will be illustrated below. The
significance of the observation is that the standard finite element technology,
whereby computations are performed on a corresponding reference element, is
not sacrificed provided two reference tetrahedra are utilised.

The reduction to one of two reference tetrahedra is achieved by the following
procedure:

1. Local vertex 1 is aligned with the smallest global vertex v, by rotating
the local numbering on either of the two faces containing global vertex
v, and local vertex 1. (Of course, if the two are already aligned, then no
action is needed.)

2. Local vertex 4 is aligned with the largest global vertex vy by rotating the
local numbering on the face opposite local vertex 1.

3. The tetrahedron is then classified as Type I or 11, according to the relative
ordering of the global numbering of the remaining vertices v; and v;. If
i < j, then the tetrahedron is of Type I, and otherwise of Type II (see
Figure 5).

As a simple example, consider a tetrahedron with global numbering [1596 8 24]
as shown in Figure 6(a). The general procedure applied to this particular
tetrahedron gives:

1. The triple [1596 8] representing a face containing the smallest global and
local vertices, is cyclically permuted until the smallest global vertex has
local number 1. This yields [8 1596] and is equivalent to the rotation of
a local face to align the smallest global and local vertices as shown in
Figure 6(b). This gives the new local to global numbering [8 1596 24| for
the tetrahedron.

2. The triple [1596 24] representing the face opposite the smallest local ver-
tex, is cyclically permuted to align global vertex 96 with local vertex 4.
This is equivalent to rotating the local face opposite the smallest local
vertex as shown in Figure 6(c). This results in a new local to global
mapping [8 24 15 96].

3. This tetrahedron is then classified as a Type 11 reference element as shown
in Figure 5 (because 24 > 15).

10
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(a) Type I: i < j (b) Type Il: i > j

Figure 5: The two possible reference tetrahedra. The arrows indicate the global
orientation of the edges. The tetrahedra differ only in the orientation of the
edge connecting vertices v; and v;, which depends on the ordering of the global
numbers ¢ and j. If ¢ < j, then the tetrahedron is of Type I, and of Type 11
otherwise.

If the original numbering of the tetrahedron is given by [24 96 8 15], then the
procedure would result in a numbering given by [8 1524 96] corresponding to a
Type I reference element.

In practice, the reduction to a Type I or II reference configuration is per-
formed as a pre-processing step at a negligible cost. The fact that every element
may be reduced to a Type I or II reference element is of vital significance: Ev-
ery edge and every face of the appropriate reference configuration is identical
with the intrinsic orientations of the edges and faces viewed in isolation. This
means that the parametrisation on the reference element will automatically be
compatible with the global parametrisation of the edges and faces induced by
the intrinsic orientation. Consequently, once the tetrahedra have been classified
as Type I or 11, there is no need to check orientations during the finite element
analysis.

3 Hierarchic Bases

Hierarchic basis functions are essential for the efficient, practical implementa-
tion of higher order finite element methods, such as p and hp-version procedures,
where increased accuracy relies on increasing the order of the polynomial space.
Here, we derive hierarchic bases for arbitrary, non-uniform order discretisation
of the spaces H', H(curl), H(div) and Ly on an unstructured partitioning
T of the domain into tetrahedral elements. It is assumed throughout that
the partitioning is regular in the sense that the non-empty intersection of dis-
tinct elements is either a single common vertex, edge or face of both elements.
Non-degenerate curvilinear elements are permitted. In particular, each element

11



Vis
(b) Align vertices with smallest lo-

(a) Original numbering of physical cal and global numbers by rotating
tetrahedron [1596 8 24]. a face containing both vertices, giv-
ing the new numbering [8 1596 24].

Vgg

V24

Vis
(d) Final alignment of tetrahedron
and orientation of edges. The rela-
tive ordering of the global numbers
for local nodes 2 and 3 corresponds
to a Type II element.

(c) Align vertices with greatest local
and global numbers by rotating the
face containing both vertices giving
the new numbering [824 15 96].

Figure 6: Reduction of tetrahedron with original numbering [15 96 8 24] to Type
II reference tetrahedron. The local numbers are shown in parentheses.
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t € T is assumed to be the image of a reference tetrahedron ¢ under a smooth
bijective mapping F'¢, with the Jacobian of the mapping denoted by Jy4.

A set {1y : £ =0,1,...} constitutes a hierarchic basis on a reference interval
I =[-1,1] if, for each £ =0,1,.. ., the function 1)y is a polynomial of degree /.
This set will be used to construct general bases on tetrahedra and is referred
to as the primary basis. One obvious choice for ¥y would be the monomial of
degree £. However, in practice, 1)y is often taken to be the Legendre polynomial
Ly of degree ¢, defined inductively by the relation

Lo(s) =1;  Li(s) = s;

20+ 1 ¢ (10)
T L(s) — I 1.9,
i) -y leals), (=12

Lev1(s) =

As a matter of fact, any family of polynomials could be chosen, such as the
Gegenbauer polynomials [15, Section 8.93] defined, for fixed «, by

Yo(s) = 1; P1(s) = 2as;

2+ 0) 200+ 0 —1 (11)
= — -y (=1,2,...
¢é+1(5) ¢ +1 SQZ]((S) ¢ +1 1/}6 1(8)7 s 4y
The choice a = % gives the Legendre polynomials.

The primary basis for an interval I may be used to construct polynomial
bases on edges, faces and interiors by taking the arguments of the primary basis
functions to be of the form

goi = Az - )\o S [_la 1]
as follows:

Lemma 1 Let {¢y: £ =0,1,...} be a hierarchic basis on a reference interval
I. Then, bases for the spaces P, of polynomials of total degree at most p € N
on edges, faces and interiors are given by

1. for e =[oi] € &,
Pp(e) = span{ty (&) : 0 < € < p}
2. for f =[oij] € F,
Pp(f) = span{th(&oi)m(€oj) : 0 < £,m, £+ m < p}
3. fort=loijkl €T,

Pp(t) - Span{wf(goi)wm(goj)¢n(§ok) 0<tm,nl+m+n< p}-

The proof of this result is left as an elementary exercise. For future reference it
is worth noting that the functions in each of these sets are linearly independent.

13



Space: P,(t), p € N

Interior Functions: ¢ = [0 j k]

Sbgmn = ¢€(goi)¢m(goj)¢n(éok)a 0< E, m,n,ﬁ +m+n<p

Table 1: Hierarchic basis functions for Ls-conforming finite element space of
order p.

3.1 L, and H!'-Conforming Basis Functions

A conforming discretisation of the space H'(€2) is characterised by continuity
(of traces) across element interfaces. By way of contrast, the space Ls imposes
no such continuity requirements on interfaces which simplifies the construction
of conforming finite element spaces dramatically.

3.1.1 Reference Element Basis Functions

The polynomial spaces of order p on the reference element ¢ for both the H'!
and Lo spaces is given by

X =X =P, ).

However, the differing continuity requirements on the interfaces mean that dif-
ferent bases are used to realise these spaces. For instance, the set of hierarchic
basis functions for XPL2 given in Table 1 consists entirely of interior functions.
The term interior reflects the nature of the degrees of freedom associated with
the functions. The absence of conformity conditions for the space Lo means
that the coefficients of all basis functions can be chosen completely indepen-
dently on all elements. In this sense, the degrees of freedom are internal to the
element.

Conversely, the set of hierarchic basis functions for X’f " based on the pri-
mary basis {¢y : £ € N} given in Table 2 is split into sets of functions identified
with element vertices, edges, faces and interiors. This reflects the differing con-
formity conditions for the space H'. The requirement for continuity between
elements means that the basis functions must match at vertices, on edges and
on faces. Vertex functions are the only non-zero functions at element vertices
and therefore must have the same coefficient on all elements containing the
vertex. Similarly, edge functions are (apart from the vertex functions) the only
non-zero functions on element edges and must have identical coefficients on all
elements containing the edge. Equally well, the coeflicients of the face functions
need only match on the pair of elements sharing the common face. Finally, in-
terior functions vanish on all shared boundaries and their coefficients may be
chosen independently on each element.

It will be observed that the nature of a function depends on the particular
space under consideration. The same function could be an interior function for
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Space: P,(t), p € N

Vertex Functions: v € V(&)

Sbv::\v

Edge Functions: e = [0i] € £(t)

@f = Boithe(Soi)y 0<L<p—2
Face Functions: f = [0ij] € F(t)
@{m = Boijthe(€oi)bm(Eoj), 0<€ml+m<p—3

Interior Functions: ¢ = [0 ] k]

@%'rnn = ﬁowkdjf(éoz)wm (éoy)¢n (gOk))
0<lmnb+m+n<p—4

Table 2: Hierarchic basis functions for H'-conforming finite element space of
order p.

the Ly case but need not necessarily be an interior function for the H' space.
For instance, an interior function for the space Lo need not vanish on element
boundaries.

Lemma 2 The set of functions defined in Tables 1 and 2 forms a hierarchic
basis for the spaces Xfl and X;,"2, p € N, respectively.

Proof. Let p € N. The result in case of the space Lo is an immediate
consequence of Lemma 1. The H! case requires some attention. The ver-
tex function ¢¥ belongs to P1 and, a fortiori, P,. Consider an edge function
o7, L €40,...,p—2}. By definition, 9y is a degree ¢ polynomial, and so, since
&i = A\j — A\ € Py, it follows that the function ,(&;;) belongs to Py. Con-
sequently, the edge function ¢7 belongs to Py;2 and hence also belongs to P,
since £ < p — 2. Similar arguments show that the face and interior functions
also belong to the space IP).
The functions are linearly independent. For instance, suppose

Zwv—l—Zwe—l—wa—i—thO, (12)

vey ecf fer

where w, € span{®?} etc. The presence of the edge, face and interior bub-
ble functions in the definitions means that ) ), w, vanishes at the element
vertices. Consequently, since the barycentric coordinate functions are linearly
independent, each term w, vanishes and it follows that the first term in equa-
tion (12) is identically zero. The only remaining term in (12) that is non-zero
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on the element edge e is we € fespan{tyy}. It follows that we must vanish
identically since {1y} forms a basis on an interval. Consequently, the second
term in (12) vanishes. Similarly, ws vanishes on the face f, and analogous ar-
guments show wy must therefore be identically zero. Finally, it follows that wy
vanishes on the element interior, and arguing as above, is therefore identically
Zero.

The proof is concluded by observing that the number of functions defined
in Table 2 coincides with the dimension, (p + 1)(p + 2)(p + 3)/6, of the space
Pp. ]

Sets of basis functions similar to those given in Table 2 are well-known in the
literature. For instance, the basis presented in [32] differ only in the choice
of local parametrisation used to define the basis functions associated with the
faces and interior.

3.1.2 Global Basis Functions

A global basis function ¢ defined on a physical element ¢ € 7 is constructed
from the basis function ¢ defined on the reference element using the standard
pull-back transformation:

Ple=¢oF,". (13)
The global discrete La(£2) space of order p is given by

X5 = Dspan {5, : 0 < L.m.n < p}
teT

while the corresponding H'(€) space is defined by

1
Xg = @ span {¢"}
veV

@ span{pf:0<{<p-—2}
ecf

@ span{<p£m:0§€,m§p—3}
feF

EB Span{cpzm’n :0< ¥l m,n §p74}.
teT

The next result shows that these are conforming subspaces:

Theorem 3 The spaces X, ]]):%— and X f} are Lo—conforming and H'—conforming
subspaces of order p, respectively.

Proof. The case of the space Lo is trivial since no conformity conditions are
required, so restrict attention to the space H'. Lemma 2 shows that X’f}
corresponds to an order p space and it suffices to demonstrate H' conformity.

Let t, ' € T be distinct, intersecting tetrahedra. There are three cases to
be considered:
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Case (i): If tNt' is a single common vertex v, then the only basis function
that is non-zero on both elements is the vertex function ¢V = A,, which, being
a barycentric coordinate function, is globally continuous.

Case (ii): If t Nt is a single common edge e = [oi], then, apart from
the vertex functions, the edge functions ¢f are non-zero on both elements. The
restriction of the edge basis function to each element is given by 5,;1(&,;). Since
both B,; = A\ and &, = A; — A, are globally continuous and depend only on
the vertex numbers of the edge, it follows that the edge function is continuous
across interfaces between all elements containing the edge.

Case (iii): If Nt is a single common face f = [0 ], then apart from the
vertex and edge functions (already shown to be continuous), the face functions
<p{m are non-zero on both elements. The restriction of the face function to
both elements is given by Byij1e(&0i)1m(&oj), and, arguing as before, these are
smooth functions of the globally continuous barycentric coordinate functions.
Thus, the face functions are continuous across the shared interface.

The interior functions are supported on a single element, and are therefore

trivially seen to be globally continuous. [ |

3.2 H/{(curl)-Conforming Basis Functions

A conforming discretisation of the space H (curl) is characterised by continuity
of tangential components across element interfaces. More precisely, Nedelec [29,
Lemma 3] shows that if domains K and K’ share a common face f with normal
n, then a smooth vector field w on each domain belongs to H(curl; K U K')
provided that n A u is the same on each side of the face f.

3.2.1 Reference Element Basis Functions

The vector-valued polynomial space of order p on the reference element ¢ is
given by
~_curl ~
X, =(@®)"
~ curl
A set of hierarchic basis functions for X;ur is given in Table 3.
The lowest order edge function ¢f defined in Table 3 coincides with the
so-called Whitney element [7, 36]. The two lowest order edge functions have

the property that on an edge €',
1 ife=¢€ e ife=¢€
A ~el 2 ~el
Te @y = ' and Te- @f|, = .
0 otherwise 0 otherwise.

These relations may be generalised by using the recurrence relation (10) defining
the Legendre polynomials to reveal that the edge functions defined in Table 3
satisfy, for £=10,1,2,...,

. Li(&e) ife=¢€
Te Pile = (14)

0 otherwise.
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Space: (P,(t))%, p € N

Edge Functions: e = [0i] € £(t)

P = AV, — AV

P = ANVA,+ AV
20+1_ - l .
P = Lo(&oi pT— ——Li_ ot Aea 2</l<p-1
‘10£+1 E"‘l Z(S )(Pl €+1 f4 1(6 )‘PO — —p

>
~—

Edge-Based Face Functions: f € F(

For each edge e C Jf:
¢£,e = Bew(ée)@j\f\e, 0<l<p-—2,

where f\e denotes the vertex opposite edge e in face f.

Face Bubble Functions: f = [0ij] € F(t)

GL 1 = Boige(&oi)tom (€07) 71"

p . . , 0<lml+m<p-—3
@T 10 = Boijthe(oi)thm (€0 717!

Face-Based Interior Functions: f = [0ij] € F(t)

(;O_tf,fm - B_fwﬁ(goi)@bWL(gaj)@S\t\f: 0<lml+m<p-—3
where t\ f denotes the vertex of t opposite face f.

Interior Bubble Functions: ¢ = [0i j k]

)éq, de{l1,2,3}
mntl+m+n<p-—4

Qb?i,émn = ﬁtwf(éoi)wm (goj)d)n( Aok
0<

Table 3: Hierarchic basis functions for H (curl)-conforming finite element space
of order p.
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Altogether, there are (p 4+ 1) edge basis functions associated with each edge of
the reference element, giving 6(p + 1) in total.

The face functions are more complicated and fall into two categories: Fdge-
based face functions cfoig are associated with the edges e of face f while face
bubble functions are associated with the face f itself. The key distinction is
that face bubble functions on f vanish on all other faces while edge-based face
functions are also non-zero on the face f’ sharing an edge e with f. However,

since the vector @/A\f\e is normal to the face f’, the tangential components of

(,bf; ¢, are non-zero only on the face f itself. The conformity conditions character-
ising the space H(curl) depend only on tangential components and therefore,
the degrees of freedom for the edge-based face functions are associated with a
single face. This justifies classifying these as face functions.

The tangential components of the edge-based functions on face f satisfy,

nd A 403;( P = Cﬁe¢€(§e)767 (15)
which follows from the observation that
nf A VApe = ot

where ¢ is the (non-zero) determinant of the matrix whose columns are formed
from the components of the constant vectors 7., nf and ﬁj\f\e. Altogether,
there are 3(p — 1) edge-based face functions and (p — 1)(p — 2) face bubble
functions for each face of the reference tetrahedron, giving 4(p — 1)(p+ 1) face
functions in total.

The interior functions also fall into two categories: Interior bubble func-
tions functions vanish on all faces of the tetrahedron while face-based interior
functions are non-zero on certain faces. However, the tangential components of
the face-based functions do vanish on all faces of the tetrahedron. Nevertheless,
the classification as interior functions is justified since H (curl)—conformity im-
poses conditions on tangential components only, meaning that the coefficients
of the face-based functions can be chosen independently on each element.

There are (p —1)(p — 2)(p — 3)/2 interior bubble functions and (p — 1)(p —
2)/2 face-based interior functions for each face of the reference element, giving

(p—1(p—2)(p+1)/2 in total.

Lemma 4 The set of functions defined in Table 3 forms a hierarchic basis for
- curl
the spaces X;m , peN.

Proof. Observe that each of the functions defined in Table 3 belongs to the
space (P,)3. The next step is to show the functions are linearly independent.
Suppose that

Z;we+%: Z{;fw{:—i—zf:wf—sz:w}—s—wtzo (16)
ec eC

where we, w/, w(]: , wh and w? are linear combinations of edge, face and

interior functions, respectively. With the aid of Lemma 1, it is not difficult to
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show that the basis functions within these categories are linearly independent,
and it therefore suffices to show (16) implies the each of the above functions
must vanish individually.
Let e € £ be any edge, then, taking inner product of (16) with 7. on the
edge gives
Te we,=0

since the tangential components of the face and interior functions vanish on all
edges. Property (14) then implies that w® = 0 and it follows that the first term
in (16) vanishes.

Let f € F be a face containing the edge e, then, forming the vector product
of (16) with n¥ on the face f gives

nf/\’w’ecf—l—nf/\wff:O (17)

since the tangential components of interior functions and the face bubble func-
tions vanish on all faces. Restricting (17) to an edge of face f and recalling
the face bubble functions vanish on the edges, and then applying property (15)
shows that the edge-based face function wf = 0 and it follows that the second
term in (16) must vanish. Equation (17) then implies the third term vanishes
too.

Similarly, taking inner products of (16) with nf on the face f gives

fiwtl =
n' -wyg ; 0

since the interior bubble functions vanish on all faces. Inserting the expressions
for the face-based interior functions and noting that the gradient is normal to
the face leads to the conclusion w'} = 0 and the third term in equation (16)
drops out. Consequently, equation (16) reduces to w® = 0 and it follows that

the basis functions are linearly independent.
The proof is concluded by observing that the number of basis functions
defined in Table 3 coincides with the dimension, (p+ 1)(p+2)(p+ 3)/2, of the
space (P,)3. ]

3.2.2 (Global Basis Functions

A global basis function ¢ of H(curl) defined on a physical element ¢t € 7 is
constructed from the basis function ¢ defined on the reference element using a
covariant transformation:

ele= (I7 @) o F7 . (18)

The global discrete H (curl) space of order p is defined by

X;}%’—'l = @ span {f : 0 < ¢ < p}
ec&
@ span{cpze:ogfgp—lecaf}
feF
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EB span{cpif’gm,<p££m:0§€,m§p—3}

f=loijleF
EB span{cp}lm:0§€,m§p—3,fC8t}
teT
@ Span{cpfi’gmn:de{1,2,3},0§€,m,n§p—4}.
teT

The main result of this section reads as follows:

Theorem 5 The space X;y‘%’—” is an H (curl)—conforming subspace of order p.

Proof. Let p € N be fixed. Lemma 4 shows that the space is of p-th order. It
only remains to show that if distinct elements £ and ¢’ share a common face f,
then for each global basis function, the quantity nf A ¢ is continuous across
the face f.

FEdge functions: Let e C f be an edge of the shared face. The higher order
edge functions @§ are combinations of functions of & multiplied by the two
lowest order edge functions, which, in turn, are combinations of the gradients
of the barycentric coordinates on the edge. The coordinate &, is continuous on
the shared face, and it therefore suffices to show that nf AJ . TW )\ is continuous
across the face, where Nis a barycentric coordinate on the face. The chain rule
confirms that J, TV is simply the gradient with respect to the physical coor-
dinates, V. The barycentric coordinate functions have continuous tangential
components across shared faces, and therefore nf A WV is continuous across the
interface.

Face functions: The tangential components of both types of face function
are only non-zero on the face f with which they are associated. On the face,
the edge-based face functions are combinations of functions of the barycentric
coordinates on the face and their gradients. Consequently, arguing as in the
case of edge functions, we conclude that the tangential components are contin-
uous across the interface. The face bubble functions are also functions of the
barycentric coordinates on the face and the two intrinsic tangent vectors ‘rzf ,
T‘Jf defined on the face. Consequently, since the tangent vectors coincide on
the elements sharing the interface, it follows that the face bubble functions are
H (curl)—conforming.

Interior functions: Both types of face function have vanishing tangential
components on all faces, and are therefore trivially seen to be conforming. ®

3.3 H(div)-Conforming Basis Functions

A conforming discretisation of the space H(div) is characterised by the con-
tinuity of the normal components across element interfaces. More precisely,
Nedelec [29, Lemma 1] shows that if domains K and K’ share a common face
f with normal n, then a smooth vector field w on each domain belongs to
H (div; K U K') provided that n - u is the same on each side of the face f.
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3.3.1 Reference Element Basis Functions

The vector-valued polynomial space of order p on the reference element ¢ is
given by
~_div ~ 3
X, = Pp(d))".
- . . . . oodiv, .
A set of hierarchic basis functions for X, Vs given in Table 4.
The edge-based face functions defined in Table 4 associated with each edge

e = [oi] of face f, are linear combinations of the elementary functions

f= j\f\eﬁj\o VAN @5\2
where f\e denotes the vertex opposite edge e in face f. These functions are
used in [7] to construct a basis for the lowest order, or Whitney, elements in

the form
)Y ol
eCof

It is not difficult to verify that the normal component of the function {o{: on a
face f' vanishes unless f and f coincide,

nf ol =0, f£F.

There are p edge-based face functions associated with each of the three edges
of face f, giving in total, 12p functions on the tetrahedron.

The normal component of the face bubble functions vanishes on all edges
and on all faces except the face with which they are associated. There are
(p—2)(p—1)/2 functions per face, and consequently 2(p —2)(p—1) face bubble
functions altogether on the tetrahedron.

There are three types of interior function. The normal components of all
types of interior function vanish on all faces of the tetrahedron. The edge-
based interior functions have non-zero tangential components on the edge with
which they are associated and account for 6(p — 1) basis functions in total.
The face-based interior functions have vanishing tangential components on all
edges, but have non-zero tangential components on the face with which they are
associated. These account for 2(p—1)(p—2) basis functions. Finally, the interior
bubble functions vanish on all boundaries and account for (p—3)(p—2)(p—1)/2
functions in total.

These observations are used to prove the following result:

Lemma 6 The set of functions defined in Table 4 forms a hierarchic basis for
the spaces X ,p €N,

Proof. Each of the functions defined in Table 4 belongs to the space (P,)3.
The next step is to show the functions are linearly independent. Suppose that

3D ICEDMELD TS SERTE IR
f ecof ecé

where wg, w, wi,

functions respectively. The basis functions within these categories are linearly

wt p and wt are linear combinations of face and interior
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Space: (Py(t))?, p € N

Edge-Based Face Functions: f € F(t)

For each edge e = [07] C Of:
@l =vi&)pl, 0<t<p-1
where
o1 = 3 VA A VA,
and f\e denotes the vertex opposite edge e in face f.

Face Bubble Functions: f = [0ij] € F(t)

Sb{m = Boij e (Eoi)om (Eof) VA AV, 0<lm,l4+m<p—3

Edge-Based Interior Functions: e € £(t)

Qbfz,l = ﬁewé(goi)‘;'e, 0<l<p-—2

Face-Based Interior Functions: f = [0 j] € F (%)

Sbi,f,i,ém = /Boij (] (éoz)wm (éoj)’f-[o i

t : - . 0<lim,l+m<p—3
&4 i m = BoijtbelEoi) b (€707

Interior Bubble Functions: ¢ = [01 j k]

402,emn = Bete(Eoi)bm (Eoj)Un(Eor)ea, d € {1,2,3}
0§€7m7n7£+m+n§p_4-

Table 4: Hierarchic basis functions for H (div)-conforming finite element space
of order p.
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independent, and it therefore suffices to show (19) implies the each of the above
functions must vanish individually.
Taking inner products of (19) with nf and evaluating on a face f € F gives

Z nf-wg‘ +nf . wf| =0
eCof f f

since the normal components of the interior functions vanish on all faces. Re-
calling that the face bubble functions vanish on all edges and using properties
of the edge-based face functions reveals firstly that wg = 0, and hence that
wf =0.

Consequently, the first two terms in (19) vanish. The remaining terms vanish
too. Firstly, the edge-based interior functions are the only non-zero functions
on the edges and must therefore be zero. Then, the face-based interior functions
are the only remaining non-zero functions on the faces and must also vanish
identically. Thus, equation (19) reduces to w? = 0 and it follows that the basis
functions are linearly independent.

The proof is concluded by observing that the number of basis functions
defined in Table 4 coincides with the dimension, (p + 1)(p +2)(p + 3)/2, of the
space (P,)3. [ ]

3.3.2 Global Basis Functions

A global basis function ¢ of H(div) defined on a physical element t € T is
constructed from the basis function ¢ defined on the reference element using
the contravariant (Piola) transformation [25]:

1

= —— (Jyp)o F, 1. 20
(10|t det(Jt) ( t(p) o t ( )
The Piola transformation has the follow important property
1 (@AO A @Ai) — VA, AV, (21)
det(Jt)

The global discrete H(div) space of order p is defined by

ng?‘i: @ span{cpzézogﬁgp—l,ecaf}
feF

D soan{of, 0<tmtm<p-3}
feF

EB span{goz’e:ogﬁgp—ZeC@t}
teT

@ span {cp}MW ‘psﬂjlm :0<tm<p-3,f=oij] € ]:(t)}
teT

@ span {tpfumn :de{1,2,3},0<l,m,n<p-— 4} .
teT

This constitutes an H (div)—conforming basis:
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Theorem 7 The space Xg’i} is an H (div)—-conforming subspace of order p.

Proof. Fix p € N. Lemma 6 shows that the space is of p-th order and it suffices
to show that if distinct elements ¢ and ¢’ share a common face f, then for each
global basis function, the quantity n¥ - ¢ is continuous across the face f.

Interior functions: All types of face function have vanishing normal com-
ponents on all faces, and are therefore H (div)-conforming.

Face functions: Let e = [0i] C Of be an edge of the shared face. The
face functions are combinations of functions of & multiplied by the images of
products of the form @5\1 A ﬁj\j under the Piola transformation, which, in view
of relation (21) are given by VA\; AV ;. The coordinate & is continuous on the
shared face, and it suffices to show that the normal component of VA; A VA,
is continuous across the face. This quantity only depends on the tangential
components of V), and VA; on f. However, the barycentric coordinates are
continuous and thus the tangential components of their gradients is continuous
across a face and it follows that the normal components of the face functions
match across a face. [ |

4 Implementation

The application of the basis functions to the situation where elements of non-
uniform local polynomial order are required is now considered. The generali-
sation to non-uniform order is straightforward provided a hierarchical basis is
available once it is realised [2], that one only need construct the connectivity
mappings.

Connectivity mappings play a key role in finite element analysis. For in-
stance, they are used to distribute the global solution vector to the elements
and in the assembly of the global linear system. The standard finite element
sub-assembly procedure for a global matrix M, such as the mass matrix, may
be written in the form [2, 22]:

M =" AMA] (22)
teT

where M are element matrices and A are connectivity mappings.

A connectivity mapping is represented by a rectangular Boolean matrix of
dimension N x Ny where N is the total number of global degrees of freedom
and V¢ is the number of degrees of freedom on element . The entries of the
matrix are given by

(23)

A 1 if 7 is the global number of local degree of freedom j,
! 0 otherwise.

To re-iterate, the construction of the connectivity mappings is the only
modification of the standard finite element methodology needed to implement
locally non-uniform order approximation. All other operations such as the
evaluation of the element matrices, application of boundary conditions etc.
follow the usual approach.
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Figure 7: Exploted view of five-element mesh used to illustrate variable order
implementation.

The implementation of the bases for non-uniform local polynomial order
will be illustrated by considering a simple mesh comprised of five elements

T = {t1, . ts).

shown in Figure 7. The elements and the desired polynomial orders are given
by
2648 y b1 = 5 )

= ]

tz—[2368}; p2=4

t3=[1426; p3=3 (24)
t,=102458); p1=2

t5=[4678}; p5=4

where the elements have been oriented as described in the previous section.
The first element ¢ represents the most common situation whereby an element
has neighbouring elements on all faces. Here, in order to avoid a proliferation
of data, only the information needed for element t; will be presented in detail,
since the treatment of larger number of elements follows the same pattern.

The vertices V(t1), edges E(t1) and faces F(t1) of element t; are easily
identified from the global vertex numbers [2 6 4 8] of the element:

V(i) ={2,4,6,8}
g(tl) = {61,62,...,66}
f(tl) :{flaf23f3a.f4}

26



Entity Vertices Contained Local
Within Order

el [2 6] tl, tg, t3 3
€9 [2 8] tl, t2, t4 2
€3 [6 8] tl, t2, t5 1
€y [2 4] tl, t3, t4 2
€5 [4 6] tl, tg, t5 1
€Eg [4 8] tl, t4, t5 1
fi 26 8] t1, t 4
£y [2 4 6] ty, t3 3
fs (24 8] t1, ty 2
f4 [46 8] iy, ts 1

Table 5: Edges and faces of element ¢, and local order of approximation deter-
mined from using minimum degree of elements containing the entity.

where the edges and faces are defined in Table 5. The complete sets V, £ and
F of vertices, edges and interiors are compiled by forming the unions of such
elemental contributions by looping over elements. At the same time, the active
polynomial order applied on each entity is also be determined by applying a
minimum rule [2]. This rule states that the active order of approximation an
edge or face is taken to be the minimum degree of all elements containing the
edge or face. For instance, face f; is shared by elements ¢ and ¢2, having local
orders 5 and 4 respectively. Applying the minimum rule gives a local order of
approximation min(4,5) = 4 on face f;. The local order of approximation on
edge e is the minimum order of the elements ¢, to and t3 containing the edge,
giving an order min(5,4,3) = 3 on the edge. Table 5 shows the local orders
approximation on all edges and faces of element &;.

Once all vertices, edges, faces and interiors have been identified, global
numbers are assigned to the degrees of freedom and the connectivity mapping
is constructed. This process is performed as follows:

1. For each entity c € VUE U FUT, (i.e. each element vertex, edge, face
and interior):
(a) Find the local order of approximation pe.

(b) Determine the number of degrees of freedom N (e, pc) needed on the
entity by reference to Table 6.

(c) Assign global numbers and distribute to all elements containing the
entity.

2. For each element t € 7: Construct the connectivity mapping A;.

The following sections detail the construction of the connectivity mappings
for the five-element mesh described above.
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Space Vertices FEdges Faces Interiors

" 1 p—1 (=2)p—-1/2 (p-3)p-2)(p—-1)/6
H (curl) 0 pt1l  (p=DE+1) (@-2)-DE+1)/2
H(div) 0 0  (p+DP+2)/2 (p-DE+1)p+2)/2

Ly 0 0 0 (p+1)(p+2)(p+3)/6

Table 6: Number of degrees of freedom N(¢,p) needed on each entity ¢ (i.e.
vertex, edge, face or interior) for the various spaces if the active order of ap-
proximation on the entity is p € N. (Negative quantities correspond to no basis
functions.)

4.1 L,-Conforming Subspace

The basis functions for an Le-conforming subspace given in Table 1 consist
entirely of interior functions and global numbers are needed only for the interior
degrees of freedom, as indicated in Table 6. The local order of approximation
on element ¢ is p = 5 and Table 6 indicates that 56 degrees of freedom are
assigned to element ¢;.

Suppose that the global numbers {116, ...,171} are assigned. In theory, the
connectivity mapping A; will be a rectangular matrix of size N x 56, where
N is the total number of global degrees of freedom with entries defined as
in equation (23). In practice, this matrix is never explicitly constructed, and
instead the information is stored in the more compact form

Ay =[116 ...171].

The correspondence between the numbers and the particular basis functions is
a matter of taste, provided that any scheme is used consistently.

4.2 H!'-Conforming Subspace

The basis functions for an H'-conforming subspace given in Table 2 are sep-
arated into subsets of basis functions associated with the individual vertices,
edges, faces and element interior. The connectivity mapping on element ¢ may
be decomposed accordingly, giving
- AY
A

AgS
At = Atfl 9

A
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where the remaining entries are zeros, or, more compactly,
_ B Y ael (= I1 Tz At
A¢ =blockdiag[Ay, AF', ... AT ALY, AR AL (25)

Table 6 indicates that one degree of freedom per vertex is needed for the space
H*! giving a total of four for the element. If the actual numbers assigned are
selected to coincide with the vertex numbers, then the compact storage scheme

described above gives
AY =[24638].

Similarly, Table 5 shows that edge e; has local order of approximation p = 3
and then Table 6 indicates that two global numbers, {9, 10} say, are to be as-
signed. The local order of element £; is p = 5 meaning that each edge has four
basis functions, while only two freedom numbers have been assigned. This is
to be expected, since the highest order, p = 4 and p = 5, edge functions must
have coefficients equal to zero in order to preserve conformity with lower order
elements sharing the edge. This is enforced by assigning a global freedom num-
ber of ‘0" to all such degrees of freedom. The contribution to the connectivity
mapping for the element from edge ey is therefore given by

AS =1[91000].

Equally well, Table 5 shows that face f; has a local order p = 4 and then Table 6
indicates that three global numbers, {11,12,13} say, are assigned. However,
there are six local basis functions on each face of a fifth order element. As
described above, the three actual global numbers are padded out with zeros
giving
Al =[111213000].

This process continues until finally it is observed that four interior degrees of
freedom is needed, {85, 86, 87,88} say, giving

At = [85 86 87 88].

It is then a simple matter to concatenate the connectivity mappings for each
entity to form the element connectivity mapping in the form a string of integers
and zeros. The zeros indicate columns of zeros in the full matrix representation
and automatically enforce that the coefficients of the associated basis functions
must be zero. This is necessary to ensure conformity since these basis functions
on the neighbouring, lower order, elements are not activated.

4.3 H(curl) and H(div)-Conforming Subspaces

The basis functions for an H (curl)-conforming subspace given in Table 3 are
separated into subsets of basis functions associated with the edges, faces and
element interior. As before, the connectivity mapping on element ¢ may be
partitioned into corresponding sub-blocks,

Ay = blockdiag[AS, ... A% AT AT AY, (26)
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The contributions from each entity are then constructed using the same proce-
dure as for the space H!, with the only difference being that the second row of
Table 6 is used to determine the number of degrees of freedom to be assigned.
In the same vein, the basis functions for an H (div)-conforming subspace
given in Table 4 are separated into subsets of basis functions associated with
the faces and element interior and the connectivity mapping takes the form

Ay = blockdiag[AJt, ..., Afs AY. (27)

The treatment is then identical with that for the H'-case, using the third row
of Table 6 to determine the number of degrees of freedom.

It will be noticed that in passing from H! to H(curl) to H(div), the entity
with the lowest dimension is dropped at each step. One might wonder what
happens in the next step whereby faces would be removed, yielding a mapping
of the form

A¢ = blockdiag[A}]. (28)

This simply corresponds to the Lo space considered earlier.
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