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Abstract

Mathematical finance forms a modern, attractive source of examples
and case studies for classes in scientific computation. I will show here how
the Nobel Prize winning Black–Scholes option valuation theory can be used
to motivate exercises in Monte Carlo simulation, matrix computation and
numerical methods for partial differential equations.

1 Option Valuation for Science Students

My colleague Xuerong Mao and I designed a 24 contact hour class on The Mathe-

matics of Financial Derivatives for final year mathematics-based undergraduate
students at the University of Strathclyde. The class draws together ideas from

• mathematical modelling,

• stochastics,

• mathematical analysis,

• computational methods,

and has no pre-requisites beyond freshman-level calculus and linear algebra. We
have found that financial option valuation is a sexy, easily-motivated peg on which
to hang a range of applied and theoretical tools. The class has proved popular,

∗This manuscript appears as University of Strathclyde Mathematics Research Report 01
(2004). A revised version will appear in the Education Section of Computing in Science and
Engineering, 2004.

†Supported by a Research Fellowship from The Leverhulme Trust.
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attracting around 80% of all possible takers, including many students aiming for
joint degrees in Mathematics & Computer Science, Mathematics & Physics, and
Mathematics, Statistics & Economics. In this article, I focus on the computa-
tional side of option valuation. Because the necessary background in finance may
be introduced with little effort, realistic problems can be inserted into a range of
numerical methods classes. This material is also eminently suitable as a source
of open-ended, individual-study projects involving scientific computation. The
article deals with three methods: Monte Carlo, binomial and finite differences. In
each case, I show how the method may be used to value a European call option.
Short MATLAB [5] codes are used to make the ideas concrete; these may be down-
loaded from http://www.maths.strath.ac.uk/~aas96106/algfiles.html. Sug-
gestions for computational projects are provided.

Before discussing the three methods, I give brief reviews of the definition of
a European call option and the corresponding Black–Scholes formula.

2 Financial Options

Suppose that I phone you today with the following offer:

Let’s agree now that in 3 months’ time you will have the option to
purchase Microsoft Corp. shares from me at a price of $25 per share.

The key point is that you have the option to buy the shares. Three months from
now, you may check the market price and decide whether or not to exercise the
option. (In practice, you would exercise the option if and only if the market price
were greater than $25, in which case you could immediately re-sell for an instant
profit.) This deal has no downside for you—three months from now you either
make a profit or walk away unscathed. I, on the other hand, have no potential
gain and an unlimited potential loss. To compensate, there will be a cost for you
to enter into the option contract. You must pay me some money up front.

The option valuation problem is thus to compute a fair value for the option.
More precisely, it is to compute a fair value at which the option may be bought
and sold on an open market.

The option described above is a European call. The Microsoft shares are an
example of an asset—a financial quantity with a definite current value but an
uncertain future value. Formalizing the idea and introducing some notation, we
have:

Definition A European call option gives its holder the opportunity to pur-
chase from the writer an asset at an agreed expiry date t = T at an agreed
exercise price E.

If we let S(t) denote the asset value at time t, then the final time payoff for
the European call is max(S(T ) − E, 0) because

• if S(T ) > E the option will be exercised for a profit of S(T ) − E,
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• if S(T ) ≤ E the option will not be exercised.

Options were first traded in the open market in 1973. Since that time, the
demand for option contracts has undergone a remarkable growth; to the extent
that trading in options typically far outstrips that for the underlying assets. The
popularity of options may be attributed to three facts.

1. They are attractive to speculators, who have a view on how the asset price
will evolve and wish to gamble. Taking out an option generally gives a
better upside (and correspondingly worse downside) than investing in the
asset.

2. They are attractive to individuals and institutions wishing to mitigate their
exposure to risk. Options may be regarded as insurance policies against
unfavourable movements in the market.

3. There is a logical, systematic theory for working out how much an option
should cost.

Points 1 and 2 create a demand for option trading and point 3 makes it viable
for “marketmakers” to find sensible prices.

There is a vast array of reference material on option valuation, catering to
all tastes and backgrounds. For a comprehensive treatment, ranging from the
practicalities of how money is exchanged to theoretical and algorithmic aspects
of option valuation, we recommend the classic finance/business-student oriented
text [6]. My forthcoming undergraduate book [4] is aimed at mathematics-based
students and gives equal weight to modelling, analysis and computational meth-
ods. All the material in this article is covered in greater depth in [4], and pointers
to some literature pertaining to the suggestions for computational projects may
be found there, too. Real life option data is freely available from a number of
sources, including The Wall Street Journal, The Financial Times and the Ya-
hoo! Finance site http://finance.yahoo.com/. On a slightly lighter note, the
fascinating story of how some of the academics behind option valuation theory
tried, and eventually spectacularly failed, to put their ideas into practice with
real money, is told in the highly readable book [1].

3 Asset Price Model

The Black–Scholes theory models the asset price as a stochastic process—a ran-
dom variable that depends on t. From a computer simulation perspective, we
need to know how to generate a typical discrete asset path. The model says that
given S0 = S(0), prices S(ti) for the asset at times t = ti = i∆t may be generated
from the recurrence

S(ti+1) = S(ti)e
(µ− 1

2
σ2)∆t+σ

√
∆tξi,
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where

• the parameter µ is the expected growth rate of the asset,

• the parameter σ is the volatility of the asset,

• ξi is a sample from a Normal(0,1) psuedo-random number generator.

In MATLAB, we could compute and plot such a path as follows:

>> T = 1; N = 100; Dt = T/N; mu = 0.1; sigma = 0.3; Szero = 1;

>> Spath = Szero*cumprod(exp((mu-sigma^2)*Dt+sigma*sqrt(Dt)*randn(N,1)));

>> plot(Spath)

The upper picture in Figure 1 shows fifty such paths—in each case the discrete
points (ti, S(ti)) are joined to give a piecewise linear curve. At the expiry date,
t = T , the asset price is a random variable with density given by

f(x) =
exp

(

−(log(x/S0)−(µ−σ2/2)T )2

2σ2T

)

xσ
√

2πT
, for x > 0,

with f(x) = 0 for x ≤ 0. To confirm this, the lower plot in Figure 1 gives a
histogram where the final asset prices S(T ) for 10, 000 paths have been binned.
The density curved is superimposed as a dashed line.

4 Black–Scholes Formula

In addition to employing the simple asset price model above, Black and Scholes
[2] imposed a number of simplifying assumptions about the options market. Then
they made creative use of the no arbitrage (“no free lunch”) principle to come up
with the following formula for the value of a European call option at time t and
asset price S:

C(S, t) = SN(d1) − Ee−r(T−t)N(d2),

where

d1 =
log(S/E) + (r + 1

2
σ2)(T − t)

σ
√

T − t
,

d2 = d1 − σ
√

T − t,

and N(·) is the Normal(0,1) distribution function,

N(x) :=
1√
2π

∫ x

−∞

e−
s2

2 ds.

The parameter r in the formula is the continuously compounded interest rate.
If the asset price today (time zero) is S0 then the Black–Scholes call option
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Figure 1: Asset price paths and a histogram at expiry time.

value is C(S0, 0). The MATLAB function bsf.m in Figure 4.1 gives one way of
implementing the formula, via the built-in error function erf. An example of the
function in use is

>> S = 2; t = 0; E = 1; r = 0.05; sigma = 0.25; T = 3;

>> C = bsf(S,t,E,r,sigma,T)

C =

1.1447

In Figure 2 we plot a Black–Scholes surface C(S, t) as a function of S and t.
Here, T = 1 and E = 1, and we see that at expiry the option value reduces to the
“hockey stick” payoff max(S − E, 0). The time zero solution C(S, 0) evaluated
at the initial asset price S = S0, solves the option valuation problem that we
introduced above.

Although the basic European call option valuation problem has a simple ana-
lytical solution (under the Black-Scholes assumptions), there are many variations
of the problem that, currently, require the use of numerical methods. In partic-
ular, a rich variety of exotic options are traded. These options differ from the
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European call in that the payoff depends not only on the final time asset price,
but also on its behaviour over all or part of the time interval [0, T ). For exam-
ple, the payoff may depend on the maximum, minimum or average asset price
and may knock-in or knock-out depending upon whether the asset price crosses
a pre-determined barrier. Also, the option may have an early exercise facility,
giving its holder the freedom to exercise before the expiry date. The design and
analysis of numerical methods for valuing exotic options is still a very active re-
search topic. In this article I apply the three standard approaches to the simple
European call case, with the motivation that such methods are needed in more
exotic circumstances.
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Figure 2: Black–Scholes surface for a European call.

5 Monte Carlo Method

An extremely useful property of the Black–Scholes option value is that it may be
regarded as the average payoff, suitably discounted for interest, under the risk
neutrality condition µ = r. In other words, we may reproduce the option value by
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function C = bsf(S,t,E,r,sigma,T)

% function C = bsf(S,t,E,r,sigma,T)

%

% Black-Scholes formula for a European call

%

tau = T-t;

if tau > 0

d1 = (log(S/E) + (r + 0.5*sigma^2)*tau)/(sigma*sqrt(tau));

d2 = d1 - sigma*sqrt(tau);

N1 = 0.5*(1+erf(d1/sqrt(2)));

N2 = 0.5*(1+erf(d2/sqrt(2)));

C = S*N1-E*exp(-r*tau)*N2;

else

C = max(S-E,0);

end

Listing 4.1: Listing of bsf.m

setting µ = r in the asset model and computing the average of the payoff over all
asset paths. In practice, this may be done by Monte Carlo simulation—average
the payoff over a large number of asset paths. For a European call option we only
need to know about the asset price at expiry, so we may take ∆t = T in each
path. A suitable pseudocode algorithm is

for i = 1 to M

set Si = S0e
(r− 1

2
σ2)T+σ

√
Tξi

set Pi = e−rT max(Si − E, 0)
end

set Pmean = 1
M

∑M
i=1 Pi

set Pvar = 1
M−1

∑M
i=1(Pi − Pmean)

2

Here, Pi is the payoff from the ith asset path, discounted by the factor e−rT

to allow for the fact that the payoff happens at the future time t = T . The
overall average Pmean is our Monte Carlo estimate of the option value. The
computed variance, Pvar, may be used to give an approximate 95% confidence

interval [Pmean − 1.96
√

Pvar/M, Pmean + 1.96
√

Pvar/M ]. Loosely, for sufficiently
latge M this interval will contain the true option value for 95 simulations out of
every 100.

In Listing 5.1 we give a MATLAB code that applies the Monte Carlo method.
Here, we have made use of the “vectorized” mode of the random number generator
and the high-level commands mean and std. The output is

>> mc

Pmean =
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% MC Monte Carlo valuation for a European call

%

%%%%%%%%%% Problem and method parameters %%%%%%%%%%%%

S = 2; E = 1; r = 0.05; sigma = 0.25; T = 3; M = 1e6;

randn(’state’,100)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Svals = S*exp((r-0.5*sigma^2)*T + sigma*sqrt(T)*randn(M,1));

Pvals = exp(-r*T)*max(Svals-E,0);

Pmean = mean(Pvals)

width = 1.96*std(Pvals)/sqrt(M);

conf = [Pmean - width, Pmean + width]

Listing 5.1: Listing of mc.m

1.1453

conf =

1.1435 1.1471

and we recall that the Black–Scholes formula for these parameter values gave C

= 1.1447. In Figure 3, we show how the Monte Carlo approximation varies with
the number of samples, M . Here we took S = 10, E = 9, r = 0.06, σ = 0.1 and
T = 1. The crosses in the picture give the Monte Carlo approximations and the
horizontal lines show the extent of the confidence intervals. The Black–Scholes
value is represented as a vertical dashed line.

Project Suggestions

• Investigate the use of Monte Carlo for valuing a range of path-dependent
options; that is, options with a payoff that depends upon S(t) for 0 ≤ t ≤ T .

• Experiment with variance reduction methods for speeding up Monte Carlo
computations.

• Investigate the use of low discrepancy sequences and Quasi Monte Carlo

methods in the context of option valuation.

• Test whether Monte Carlo may be used to compute approximations to
Greeks, that is, partial derivatives of the Black–Scholes value C(S, t) with
respect to S, t or parameters such as σ and E.

6 Binomial Method

The binomial method starts with a simplified asset price model. The time interval
[0, T ] is discretized into equally spaced points 0 = t0 < t1 < · · · < tM = T with
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Figure 3: Monte Carlo approximations and confidence intervals for a European
call option.

ti = i∆t. Given asset price S0 at time zero, it is assumed that the asset price at
time t1 arises from either a downward movement to dS0 or an upward movement
to uS0, where d < 1 and u > 1. Then at time t2 the same restriction to down/up
movements leads to three possible asset prices d2S0, duS0 and u2S0. Continuing
this argument, there will be i + 1 possible asset prices at time ti = i∆t, given by

Si
n = d i−nunS0, 0 ≤ n ≤ i.

At expiry time, ti = tM = T , there are M + 1 possible asset prices {SM
n }M

n=0.
Letting {CM

n }M
n=0 denote the corresponding expiry time payoffs from a European

call option, we know that

CM
n = max(SM

n − E, 0), 0 ≤ n ≤ M.

The binomial method proceeds by working backwards through time. An option
value C i

n corresponding to asset price Si
n at time ti is computed as a weighted
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average of the two asset prices C i+1
n and Ci+1

n+1 from time ti+1. The formula is

Ci
n = e−r∆t

(

pCi+1
n+1 + (1 − p)C i+1

n

)

, 0 ≤ n ≤ i, 0 ≤ i ≤ M − 1.

Here, the parameter p may be regarded as the probability of an upward movement
in the asset price. The formula allows us to reverse back to time zero and compute
the required option value C0

0 . The method parameters ∆t, u, d and p must be
chosen so that the binomial asset model matches the Black–Scholes version in the
∆t → 0 limit. Once ∆t is fixed, this leads to two equations for the three remaining
parameters, and consequently many possible solutions. A popular choice is

d = A −
√

A2 − 1, u = A +
√

A2 − 1, p =
er∆t − d

u − d
,

where A = 1
2

(

e−r∆t + e(r+σ2)∆t
)

.

In Listing 6.1 we list a MATLAB code that implements the binomial method,
using a matrix-vector product to work backwards through time. The approximate
option value W = 1.1448 agrees well with the Black–Scholes value C = 1.1447

from above.
Figure 4 shows how the error in the binomial approximation behaves as a

function of M , in the case S = 5, E = 3, T = 1, r = 0.06 and σ = 0.3. The upper
picture covers 100 ≤ M ≤ 300 and the lower picture covers 700 ≤ M ≤ 1000.
It is clear that although the error is generally decreasing, the convergence is by
no means monotonic with M . The dashed lines in the pictures have the form
“constant/M”—it may be shown that the error converges at this rate. The highly
oscillatory nature of the convergence has been the subject of a number of research
articles.

Project Suggestions

• Can the execution time of binom.m be improved? (See [3] for a discussion
of this issue.)

• A key advantage of the binomial method is its ability to incorporate an early

exercise facility. Follow this up by implementing the method for American,
Bermudan or shout options.

• Investigate the literature on curbing the oscillations in the binomial error.

• Can the binomial method be used to compute Greeks (defined earlier)?
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Figure 4: Error in binomial method as a function of M .

7 Finite Differences for the Black–Scholes PDE

The Black–Scholes formula for the value of a European call option arises as the
solution of a partial differential equation (PDE). The PDE is of parabolic form,
with Dirichlet boundary conditions. Unusually, a final time, rather than initial
time, condition completes the problem. Letting τ = T − t denote the time to

expiry, we may convert to a more natural initial time specification. The PDE
then has the form

∂C

∂τ
− 1

2
σ2S2∂2C

∂S2
− rS

∂C

∂S
+ rC = 0,

with initial data
C(S, 0) = max(S(0) − E, 0)

and boundary conditions

C(0, τ) = 0, C(S, τ) ≈ S − Ee−rτ for large S,
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%BINOM Binomial method for a European call

%

%%%%%%%%%% Problem and method parameters %%%%%%%%%%%%

S = 2; E = 1; r = 0.05; sigma = 0.25; T = 3; M = 256;

dt = T/M; A = 0.5*(exp(-r* dt)+exp((r+sigma^2)*dt));

d = A - sqrt(A^2-1); u = A + sqrt(A^2-1);

p = (exp(r*dt)-d)/(u-d);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Option values at time T

W = max(S*d.^([M:-1:0]’).*u.^([0:M]’)-E,0);

B = (1-p)*eye(M+1,M+1) + p*diag(ones(M,1),1);

B = sparse(B);

% Re-trace to get option value at time zero

for i = M:-1:1

W = B(1:i,1:i+1)*W;

end

W = exp(-r*T)*W;

Listing 6.1: Listing of binom.m

on the domain S ≥ 0 and 0 ≤ τ ≤ T . Truncating the S range to 0 ≤ S ≤ L and
using a finite difference grid {jh, ik} with spacings h = L/Nx and k = T/Nt, we
may compute a discrete solution V i

j ≈ C(jh, ik). Letting

Vi :=















V i
1

V i
2
...
...

V i
Nx−1















∈ R
Nx−1

denote the numerical solution at time level i, we have V0 specified by the initial
data, and the boundary values V i

0 and V i
Nx

for all 1 ≤ i ≤ Nt specified by the
boundary conditions. Using a forward difference for the t-derivative and central
differences for the S-derivatives gives the explicit method

V i+1
j − V i

j

k
− 1

2
σ2(jh)2

(

V i
j+1 − 2V i

j + V i
j−1

)

h2
− rjh

(

V i
j+1 − V i

j−1

2h

)

+ rV i
j = 0.

The method may be expressed in matrix-vector form

Vi+1 = FVi + pi, for 0 ≤ i ≤ Nt − 1,

where F ∈ R
(Nx−1)×(Nx−1) is tridiagional and the vector pi ∈ R

Nx−1 is determined
by the boundary conditions.
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The MATLAB code forward.m in Listing 7.1 implements this method. In
Figure 5, we show a Black–Scholes surface arising from this method. We used
MATLAB’s waterfall plotting command to emphasize the timestepping nature
of the finite difference iteration.
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Figure 5: Finite difference Black–Scholes surface from forward.m.

Project Suggestions

• Speed up the code forward.m by replacing the matrix-vector multiplica-
tions by vector operations that access subarrays using MATLAB’s colon
notation. (See [5, Chapter 5] for details of the colon notation.)

• Investigate the accuracy and stability of the explicit method in forward.m,
and evaluate the improvements from (a) Crank–Nicolson and (b) upwinding
for the ∂C/∂S term.

• Show that the binomial method may be regarded as a finite difference
method and use this viewpoint to explain its convergence properties.

• Investigate the use of finite difference methods to value American options.

13



%FORWARD Forward Time Central Space on Black-Scholes PDE

% for European call

%

clf

%%%%%%% Problem and method parameters %%%%%%%

E = 4; sigma = 0.5; r = 0.03; T = 1;

Nx = 11; Nt = 29; L = 10; k = T/Nt; h = L/Nx;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

T1 = diag(ones(Nx-2,1),1) - diag(ones(Nx-2,1),-1);

T2 = -2*eye(Nx-1,Nx-1) + diag(ones(Nx-2,1),1) + diag(ones(Nx-2,1),-1);

mvec = [1:Nx-1]; D1 = diag(mvec); D2 = diag(mvec.^2);

Aftcs = (1-r*k)*eye(Nx-1,Nx-1) + 0.5*k*sigma^2*D2*T2 + 0.5*k*r*D1*T1;

U = zeros(Nx-1,Nt+1); Uzero = max([h:h:L-h]’-E,0);

U(:,1) = Uzero; p = zeros(Nx-1,1);

for i = 1:Nt

tau = (i-1)*k;

p(end) = 0.5*k*(Nx-1)*((sigma^2)*(Nx-1)+r)*(L-E*exp(-r*tau));

U(:,i+1) = Aftcs*U(:,i) + p;

end

waterfall(U’), xlabel(’j’), ylabel(’i’)

Listing 7.1: Listing of forward.m

14
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