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Classification of Disease Subgroup and Correlation
With Disease Severity Using Magnetic Resonance
Imaging Whole-Brain Histograms: Application to

Magnetization Transfer Ratios and Multiple Sclerosis
J. Dehmeshki*, G. J. Barker, and P. S. Tofts

Abstract—This paper presents a new approach to characterize
subtle diffuse changes in multiple sclerosis (MS) using histograms
derived from magnetization transfer ratio (MTR) images. Two
major parts dominate our histogram analysis; 1) Classification of
MTR histograms into control and MS subgroups; 2) Correlation
with current disability, as measured by the EDSS scale (a measure
of disease severity). Two data reduction schemes are used to
reduce the complexity of the analysis: linear discriminant analysis
(LDA) and principal component analysis (PCA). LDA is better
for the classification of MTR histograms as it takes into account
the between-class variation. By using LDA, the space of MTR
histograms is transformed to the optimal discriminant space for a
nearest mean classifier. In contrast, PCA is useful for correlation
with current disability as it takes into account the variation within
each subgroup in its process. A multiple regression analysis is used
to evaluate the multiple correlation of those principal components
with the degree of disability in MS. This is the first application
of such classification and correlation techniques to magnetic
resonance imaging histogram data. Our MTR histogram analysis
approach give improved classification success and improved
correlation compared with methods that use traditional histogram
features such as peak height and peak location.

Index Terms—Histogram analysis, linear discriminant analysis,
multiple sclerosis, principal component analysis.

I. INTRODUCTION

M AGNETIC resonance imaging (MRI) techniques are a
valuable way to depict the pathology of multiple scle-

rosis (MS)in vivo. By characterising the extent and nature of
pathological change, they offer opportunities to obtain new in-
sights into the underlying pathogenic mechanisms and a sensi-
tive, objective tool with which to monitor treatment effects.

Amongst an increasing number of methods applied there
has been a major interest, in recent years, in the application of
magnetization transfer (MT) imaging. This approach adds an
additional radiofrequency pulse to a traditional MR sequence;
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this causes a reduction in the magnetization of the pool of water
protons bound to macromolecules. The effect is to reduce the
nuclear magnetic resonance (NMR) signal arising from the
mobile proton pool, by an amount determined by the size of the
bound pool. Measurement of the magnetization transfer ratio
(MTR), thus, provides a measure of the structural integrity
of tissue. Major reductions in MTR are likely to indicate de-
structive changes including demyelination and axonal loss, the
pathological substrates of symptoms and disability in MS. Less
marked reduction in MTR might also be expected with other
pathological changes known to occur in MS including oedema,
inflammation and gliosis. MTR, thus, provides a reproducible,
quantitative measure of brain tissue structures and their modifi-
cation by pathological change, which in MS occurs not only in
visible lesions but also in the normal appearing tissues. There
have been numerous recent studies which have used histogram
analysis to study the global MTR characteristics of brain tissue
[1]–[8].

Various descriptive measures have previously been used to
describe the MTR histogram and to measure change; these in-
clude histogram peak height, peak location (i.e., mode), av-
erage MTR value (i.e., mean), 25th percentile, 50th percentile,
and 75th percentile values [1]–[6]. These measures have been
used for two purposes: to separate controls from MS subgroups
(or to separate subgroups) using simple students t-tests, and
to correlate with [expanded disability status scale (EDSS); a
measure of disability in MS] [9]. The success of any new dis-
ease descriptor at these two tasks is influential in the process
of deciding whether the descriptor is likely to be useful for
characterising disease progress and its response to treatment.
However the features listed above cannot be optimum for these
two distinct tasks. The former task (separation of groups) re-
quires features that minimize intra-group variation, while max-
imizing inter-group variation. The latter task (correlation) re-
quires features that maximally represent variation within the pa-
tient dataset (whether a subgroup or all the patients). For ex-
ample if two subgroups have the same mean EDSS, one cannot
expect a feature such as peak height to simultaneously differ-
entiate between the two subgroups and to correlate with EDSS.
In addition, such measures are essentially local descriptors of
histogram characteristics (i.e., only one part of the histogram is
used); because they are local and are chosen arbitrarily (by trial
and error), they are unlikely to be optimum as much potential in-
formation is ignored. We have recently developed an alternative
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TABLE I
CLINICAL CHARACTERISTICS OF THEPATIENTS AMONG THE DIFFERENTMS SUBGROUPS

CO control; BE benign; SP secondary progressive; RR relapsing remitting; PP primary progressive.
Values are given standard deviations (SDs).

way of analyzing MTR histograms [7], [8] that has two major
advantages over the existing method. First, it takes into account
the entire shape of the histograms, and not only just a few ar-
bitrary markers (whatever this is for correlation or classifica-
tion). Second, instead of performing t-tests to compare groups
of patients, patients are classified based on their individual MTR
histograms using a pattern recognition scheme. Using this ap-
proach, MS patients can be classified correctly into clinical sub-
groups of MS.

We use linear discriminant analysis (LDA) and principal
component analysis (PCA) as data reduction schemes to reduce
the complexity of the histograms. We show that the former
is more robust for classifying MTR histograms into different
subgroups. The latter is useful for correlation analysis as it takes
into account the variation within each subgroup. By using these
two data reduction techniques, we provide a new approach
which uses the entire shape of the histogram for classification
and correlation. Classification is more appropriate than a
simple t-test, since it works on individual patient data, and a
measure of success is produced. We believe this is the first
application of such classification and correlation techniques to
MRI histogram data.

Our method involves a number of steps which are described
in more detail in the remainder of this paper. First, a morpholog-
ical technique is described to reduce the partial volume effect of
tissue adjacent to cerebro-spinal fluid (CSF), in order to mini-
mize the effects of atrophy. The histograms of MTR images are
then normalized to the residual brain tissue volume within the
scan slices. Using LDA, the space of the MTR histograms is
transformed to the optimal discriminant space. In this space, a
nearest-mean classifier is used to recognize pairwise the differ-
ences between normal controls and the four different subgroups
of MS disease. Finally, a multiple regression analysis is used to
evaluate the multiple correlation of principal components (PCs)
of MS subgroup patients with the degree of disability in MS.

II. MTR I MAGES

A. Subjects

The analysis was applied to MTR image data for 83 patients
with MS [11 with benign (two male, nine female), ten with
relapsing-remitting (four male, six female), 16 with secondary
progressive (three male, 13 female), and 46 with primary

progressive disease (30 male, 16 female)] and 39 healthy
controls (19 male, 20 female).

Patient and control demographics are provided in Table I.

B. MRI Acquisition

MRI was carried out using a 1.5-tesla Signa Echo speed
Horizon system (General Electric, Milwaukee, WI). A dual
spin echo sequence (28 contiguous 5-mm axial slices, TE 30/80
ms, TR 1720 ms, 0.75 NEX, 256256 matrix, field of view
24 24 cm) was performed with and without presaturation
pulses (total acquisition time 20 min). The presaturation pulse
was a Hamming-apodised three lobe sinc pulse with a duration
of 16 ms and a peak amplitude of 23.2T giving a nominal
bandwidth of 250 Hz, applied 1 kHz from the water resonance.
Scans with and without presaturation were interleaved for each
TR period providing precise co-registration.

MTR was calculated for each pixel by the formula
percent units (pu) where and

represent signal intensities with and without presaturation re-
spectively. MTR is measured in units of pu. Typical values are
38 pu for white matter, 33 pu for grey matter and 0 pu for CSF
(which has no bound protons).

III. PREPROCESSING

A. Partial Volume Reduction

Partial volume problems arise because some voxels (size
about 1 5 mm) contain more than one tissue. We are
interested particularly in those that contain a fraction of CSF.
Partial volume voxelshave signal intensity depending on
the relative proportions of the voxel occupied by different
tissues. The distribution of MTR values shown in histograms,
therefore, contains an unknown error component due to partial
volume effects. A two-stage partial volume reduction technique
(described below) was used to remove some partial volume
voxels from around the sulci and ventricles, which contain
some CSF, prior to PC and LD analysis. This gave about a 5%
reduction in total number of voxels which could be used in the
rest of the analysis.

Two stages are sequentially used to reduce the partial volume
effects at the brain /CSF boundaries from the MTR images.
These are thresholding and mathematical morphology.
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Fig. 1. Morphological structures that match the edges of the brain slices.

1) Thresholding: Because partial voxels containing CSF
have “partial” intensities dependent on the amount of CSF
contained in their pixels, their intensities are likely to be lower
than other tissue (since CSF is 0 pu). Thresholding these
images by setting all intensities less than a specified threshold
(in our case, 10 pu) to zero would remove partial volume
voxels with those intensities. MS lesions also have lower MTR
values (typically 20 pu in this image dataset) and, therefore,
the threshold selected was such that voxels in visible lesions
were not removed by this process. Other workers [1]–[5]
have used thresholds in a similar manner; we chose this after
experimentation, selecting an aggressive value to reduce partial
volume effects with CSF.

2) Mathematical Morphology:In order not to remove in-
ternal voxels, morphological operations [10] were applied on
the thresholded images. The application of these morphological
operations can be expressed as

o (1)

for MTR image , morphological operation o, morphed image
and structure . Of the four operations; erosion, dilation,

opening and closing; opening is the most suitable as it removes
additional outlying pixels/voxels along the slice boundaries and
reinforces the boundary edges, i.e., any removed pixels/voxels
which should have been part of the boundary are replaced. The
structures used for the morphological operations are shown in
Fig. 1 and match the eight possible edges of the brain slices
boundaries. The morphological application of these structures
to the images in sequence can be expressed as

o o o o (2)

The effects of this operation are twofold: internal “missing
voxels” (i.e., holes in the mask) caused by thresholding are
filled in; and a one-pixel wide strip of partial volume voxels
associated with boundaries between CSF and brain tissues is
removed.

B. Histogram Normalization and Noise Reduction

A MTR histogram (i.e., MTR voxel intensity frequency) of
whole brain was calculated for each subject. Each MTR his-
togram was normalized to the residual brain tissue volume by
dividing the number of counts in each sampling bin by the total
number of voxels. Thus, the total area under the histogram is
fixed at unity and the normalized histogram is, therefore, a fre-
quency distribution.

In order to evaluate the effect of noise on our histogram anal-
ysis, a smoothing filter (moving average) with width of 0.5 pu
was applied to the histograms for noise reduction.

IV. DATA REDUCTION

There is a large number of bins (depending on the resolution
to which the MTR values are stored, in our case 500 bins each
of width 0.1 pu) in each MTR histogram compared with the
relatively small number of training data sets (i.e., the number
of patients used to train the classifier). Any data analysis can,
therefore, erroneously focus on meaningless characteristics of
individual training cases instead of seeing the broad picture that
is essential for general data analysis on the training sets problem.

LDA and PCA are two data reduction schemes designed to
reduce the complexity of analysis. The purpose of these pro-
cedures is to compress all of the information contained in a
500-bin histogram into a few values. We show that PCA is useful
for correlation analysis (see Section VI) as it take into account
the variation within each subgroup in its process. In contrast, we
expect LDA to be better for classifying MTR histograms into
different subgroups. We have measured the success of a nearest
mean-group classification applied on LDA spaces.

V. CLASSIFICATION OF MTR HISTOGRAM

The aim of this section is to show that there are significant
differences in MTR histograms between patients with different
types of MS disease and healthy controls. There are many avail-
able classifiers that could be used for distinguishing between
different groups, and for developing rules for classification of
a MTR histogram of a subject whose group is unknown. These
methods can be divided into two categories; the first category
(often called “parametric”) assumes knowledge of the under-
lying class-conditional probability density function (in our case,
probability density function of the MTR histograms for a given
clinical group). In many applications (including our own) these
would have to be estimated from training sets (a set of correctly
classified samples). The second category (often called “non-
parametric”) develops a set of decision rules that uses the data to
estimate the decision boundaries directly without explicit calcu-
lation of the probabilistic density functions. This study uses the
second “nonparametric” category; the histogram space is trans-
formed to the optimal discriminant space (which maximizes the
separation between the classes in the training set). This discrim-
inant space can be divided into as many regions as there are
classes. The boundary between them, the decision boundary,
can be used to assign an unknown MTR histogram to a clin-
ical group. The decision boundaries may be linear or nonlinear.
Here, we use a linear LDA since this is more appropriate as the
number of our samples is small. In general, a LDA is discrimi-
nant analysis with linear class boundaries using a feature vector
of specified dimension. The feature vector extracted from the
histogram using a multiple discriminant transformation, which
is defined using training data set. A nearest mean classifier, ap-
plied on transformed data spaces, is used for classification.
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A. Linear Discriminant Analysis (LDA)

The aim of LDA is to maximize the ratio of the between-
group variance to the within-group variance. LDA is used to
create a nearest-mean-group classifier. A brief summary of the
techniques is given here, but for more detail see [11] and [12].
The aim of LDA is to maximize

(3)

In (3), is the between-class scatter matrix, is the within-
class scatter matrix, andis the transformation we are searching
for in order to form the optimal discriminant space. We can de-
fine the following, with being the histogram of subjectin
subgroup , and being the number of subjects in subgroup

(4)

(5)

(6)

(7)

(8)

Equation (4) computes subgroup mean ofsubjects in sub-
group . Both the within-class scatter and the between-class
scatter are analogous to their respective covariance matrices.

In looking for , we can define

(9)

(10)

(11)

(12)

(13)

It follows from this that

(14)

(15)

Taking the determinant of a scatter matrix is equivalent to
finding the product of the eigenvalues, which corresponds to
the product of the variance. As may be seen with reference to
(3), by maximizing this ratio, we are looking for a transform

that maximizes the between-class variance with respect to
the within-class variance. The solution of (3) can be shown to
correspond to the generalized eigenvectors of

where the vectors then form the columns of the matrix.
In addition, the individual dimensions of the discriminant

space created by each eigenvectorare now ordered. The
between-class variances in dimensionis proportional to the
eigenvalue . Assuming a constant within-class variance, the
higher the between class variance of a dimension, the better the
discriminant capacity of that dimension.

One additional step can be taken to scale all the within-class
variances to uniform size in the discriminant space.

The variance in dimension can be computed as
and each dimension can be scaled by replacingwith

(17)

giving each new dimension uniform variance. This allows us
to use the nearest-mean group classifier, in discriminant space,
since this classifier does not account for differing variances be-
tween dimensions. The decision as to whether the particular
MTR histogram is allocated to one subgroup or another is based
on measuring the (Euclidean) distance between its transform
scores (created by LDA) and the centroids of all the subgroups
in discriminant space.

B. Identifying Regions of Histogram and Images With
Significant Between-Group Variation. (LDA-Based
Eigenvectors and Eigenimages)

The largest elements of each eigenvector derived from (16)
show which regions of a histogram contribute most to the vari-
ationbetween group. These regions of significant variation can
also be highlighted in the brain slice using the eigenvectors. This
involves mapping the MTR values (intensity values) in the brain
slice images through the eigenvectors and displaying the result.
This is described by

(18)

for eigenimage and image (of the individual subject)
with points ( ) and using eigenvector . Thus, is
the MTR value at a particular voxel in the image (location
( )); is the value of the eigenvector at this
MTR value (i.e., indexed by the MTR value). The positive
and negative extrema of the eigenvector as discussed earlier
will give the significant regions. The absolute value of these
give high intensity values for these significant regions and,
therefore, eigenimages formed from mapping through the
absolute eigenvector highlight significant regions as being
bright areas.

VI. CORRELATIONWITH CURRENTDISEASESEVERITY (EDSS)

This section demonstrates that MTR histograms provide a
global measure of tissue structural change that corresponds
closely to the degree of disability (EDSS) in MS. The EDSS
is used by clinicians as a “gold standard” measure of disease
severity in MS, although it has several shortcomings. It has
only discrete values (0.5–10 in steps of 0.5), with an inter-ob-
server agreement of about 1.0, it is nonlinear, and is biased
toward locomotor disability, largely ignoring other symptoms
such as neuropsychiatric ones. Nonetheless, the acceptance
by the clinical community of new MRI surrogate markers of
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(a) (b)

Fig. 2. The removal of partial volume voxels using thresholding and mathematical morphology. (a) Brain slice with highlighted lesions. (b) Extracted partial
volume voxels.

disease is largely dependent on being able to show correlation
of these markers with EDSS [13]. We have used a multiple
linear regression analysis to evaluate the correlation between
the first few PCs and EDSS. PC analysis was used to reduce
the dimensionality of the MTR histogram, while retaining as
much of the variation present in the histogram set as possible.
Therefore, the first few PCs were introduced as global features,
which represent the most useful information within the MTR
histogram. This multiple correlation analysis is appropriate, as
the individual PCs were essentially uncorrelated. The F test
was used to test for the significance of the multiple correlation
coefficient [14].

A. Principal Component Analysis (PCA)

Data reduction can be achieved by extracting the PCs [15] of
the covariance matrix of MTR histograms, computed by treating
the histograms as replicates of a-variate observation ( is the
number of bins in each MTR histogram). The PCs are uncorre-
lated with each other and are ordered in decreasing proportion
of variation present in all of the original MTR histograms.

PCs capture the characteristic significant variations for each
of the patient groups. These characteristic variations are in the
form of eigenvalues and eigenvectors evaluated from the MTR
histogram data [15]. The process of evaluating the eigenvalues
and eigenvectors is described below. First, covariance matrix of
MTR histograms, is evaluated

(19)

Where

and stands for number of patientsthat comprises the training
set, and are elements in the index where is the number
of bins in histogram.

Then, eigenvalues and eigenvectors
of this matrix are evaluated

(20)

The most significant (largest) eigenvalues and their corre-
sponding eigenvectors are selected to characterize the variation
of each patient group. The percentage variation ( ) cov-
ered by these significant components is calculated as follow.

(21)

where is number of bins in MTR histogram, and are the
eigenvalues.

The percentage variation allows us to choose the number of
PCs ( ) to be used for our further MTR histogram analysis.
Note that the PCs,, of each histogram are linear combination
(dot product) of the eigenvectors and the histogram

(22)

B. Identifying Regions of Histogram and Images With
Significant Within-Group Variation. (PC-Based Shading
Histogram and Eigenimages)

The largest elements of each eigenvector show which regions
of a histogram contribute most to the variationwithin a group
(Note that this is distinct from thebetween-groupdifferences
highlighted by LDA). These regions can be highlighted in the
brain slice using the PCA eigenvectors in a similar manner to
(18).

VII. RESULTS

A. Partial Volume Reduction

Images illustrating the reduction of partial volume effects
using thresholding and mathematical morphology can be seen
in Fig. 2.

An example of a MT image with circled lesions is shown in
Fig. 2(a) along with partial volume voxels extracted [Fig. 2(b)]
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Fig. 3. MTR histograms (after CSF removal and normalization) among the five groups; CO= control; PP= Primary progressive; RR= Relapsing Remitting;
Be= Benign; SP= Secondary Progressive.

using the technique described in Section III-A. The final brain
slice image retains all of its internal tissue including lesions,
but has a “cleaner” boundary as a result of the partial volume
removal.

B. Group Mean Histograms

Fig. 3 displays the mean MTR histograms for the MS sub-
groups and controls, showing clear differences in peak height
and location, indicating that there are differences between con-
trol and MS subgroups. This shifting of the peak position may
be significantly influenced by pixels that are not in visible le-
sions but in the normal appearing brain. This shifting of the
peaks downward and to the left indicates that the MS subgroups
in general have a lower fraction of high density tissue (healthy
tissue) or, in other words, a higher fraction of low density tissue
(lesion and deteriorated tissue) than the control group does.

C. Classification Results

Ideally, the classifier should compare a clinically unknown
MTR histogram with a pre-existing database of the MTR his-
tograms and classify it to one of several possible groups, with a
indication of the degree of certainty of the classification. How-
ever, total validation of this system requires large databases of
preclassified MTR histograms. It will take some time to con-
struct these databases and consequently obtain a complete val-
idation of our automatic system. In the meantime, because we
currently have only a small database, we restrict our classifier to
a binary distinguishing between pairs of clinical MTR groups, in
order to provide a preliminary test of our system. However a bi-
nary or three-way classification may often be sufficient, since, to
use the system optimally, the clinical question being asked must
guide a potential restriction on the number of possible classes
(e.g., there may be prior information that the possibility of a par-
ticular subgroup MS has already been excluded, in which case

TABLE II
SUCCESSRATES FORBINARY CLASSIFICATION (NO. OF SUCCESSES/TOTAL NO.

OF SUBJECTS IN THE TWOGROUPS) USING LDA CLASSIFICATION

CO control; BE benign; SP secondary progressive; RR relapsing remitting;
PP primary progressive.

the classifier should not attempt to answer whether the subject
has that particular form of MS).

1) Binary Classification Results:Table II shows the result of
a binary classification of patients into the different groups using
LDA classifier applied on the MTR histograms. To avoid the
“selection bias” problem, due to the fact that the number of pa-
tients is not large enough, the leave-one-out method is used for
validation [16], [17]. The number of correctly classified samples
and the total number of samples involved in each binary com-
parison are given in the Table II. Using LDA, the success rate
of binary classification was 86%–92%, depending on which MS
groups were being compared with control.

2) Comparison of LDA Scores With Conventional Histogram
Parameters: In order to make a convincing comparison of our
LDA score method with conventional histogram parameters,
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(a)

(b) (c)

Fig. 4. Sample scatter plots for (a) the distribution of discriminant scores (created by MDA analysis) and two established features [(b) peak height and (c) average
MTR] Note that the MDA scores relate to binary comparisons, so that the each control has a score which differs according to what comparison is being made.

TABLE III
PERFORMANCE OFLDA SCORE ANDCONVENTIONAL HISTOGRAM PARAMETERS IN SEPARATING MS SUBGROUPS ANDCONTROL. p VALUES FORSTUDENT t-TEST

ARE SHOWN. NOTE THAT THE LDA p-VALUES ARE ALWAYS LOWERTHAN THOSEACHIEVED BY ANY OTHER PARAMETERS, USUALLY BY A LARGE FACTOR

AVMTR Average brain MTR; PH peak height, PL peak location: MTR25%, MTR50%, MTR75%: MTR AT THE 25TH, 50TH, 75TH PERCENTAGE; CO control; BE
benign; SP secondary progressive; RR relapsing remitting; PP primary progressive. NS not significant.

Fig. 4 shows some sample scatter plots for the distribution of
discriminant scores (created by LDA analysis in binary classi-

fication) and two established features (peak height and average
MTR). This figure clearly shows the power of discriminant anal-
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Fig. 5. MDA eigenvector for binary comparisons between each MS subgroup and control. Note that the number of eigenvectors needed to describe the comparison
is at most one less than the number of groups being compared, so for these binary comparison only a single eigenvector is generated.

Fig. 6. MDA-Shaded histograms for binary comparisons between each MS subgroup and controls.

ysis in differentiating subgroups using their MTR characteris-
tics. It is apparent also that conventional measures provide a far
less clear differentiation. Student t-tests were also carried out
between some subgroups to compare our LDA score method
with conventional histogram parameters (peak height and av-
erage MTR value) (Table III). We investigated whether the LDA
score would provide better separation between the groups (i.e.,
lower p-values). In separating the different clinical subgroups,
LDA was always better then conventional MTR histogram pa-
rameters.

3) LDA-Based Eigenvector and Eigenimages:The eigen-
vectors created by LDA analysis contain information from the
whole histogram, in a way that has been optimized to place
most emphasis on those parts that contribute most to separating
the groups. Fig. 5 shows the LDA eigenvectors derived from
binary comparison between MS group and control group, along
with the histogram of a typical patient from that group. The
positive and negative extrema of the eigenvectors are the region
of that group’s histograms that contribute the most to group
separation (i.e., between each MS subgroup and control). Fig. 6
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Fig. 7. MDA Eigen images relating to binary comparisons between each MS subgroup and control. Bright areas correspond to tissues whose intensities inthe
original MTR images fall within the ranges which best discriminate the groups. A typical image from each subgroup is mapped through the eigenvector (Fig. 5) to
produce an intensity dependent on the amplitude of the eigenvector at that value of MTR. The gray scale is arbitrary.

shows shaded histograms which qualitatively illustrate these
significant regions with dark regions contributing the least to
group separation (between each MS subgroup and control) and
bright regions contributing the most.

Fig. 7 shows eigenimages [see (18)] which highlight the
pixels in the original MTR image whose intensity fall within
regions of the histogram corresponding to significant differ-
ences between the groups; regions that contribute most to the
separation between the two groups are very bright while those
with little or no contribution are dark. It is interesting to note
the distribution pattern of the bright regions in the primary
progressive eigenimages; the variations seen over the whole
images may reflect the more diffuse nature of the disease
in these patients [18]. Note that the eigenvector has been
calculated globally, and shows areas ofpotentialabnormality;
thus, it is not surprising that some tissue that is highlighted,
such as the choroids plexus, could be normal and still caught in
the range of MTR values that have most variation.

4) Effects of Age and Atrophy:In a previous study [19]
we measured the effect of age on the mean MTR of normal
white matter. The reduction is extremely small (about 0.23
pu/decade); this is too small to explain the significant re-
ductions we saw for MS. In addition we divided the normal
group into the youngest and oldest halves (mean ages 25.78
[ 5.0 SD] and 44.10 [ 5.5 SD] years respectively). LDA
was applied in an attempt to classify the subjects from their
histograms. The success rate was 23/39 (i.e., 59%); if the
groups overlapped completely we would expect a success rate
of 50% from chance. Thus, we conclude that LDA is unlikely
to be significantly influenced by age in this study.

D. Correlation Result: Multiple Regression Analysis (EDSS)
Results

Other workers [1]–[6] have previously reported good correla-
tion of histogram parameters such as the peak height with EDSS.
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(a) (b)

Fig. 8. PCA eigenvector. (a) Relapsing onset (RO) Histogram along with first two PC eigenvector. (b) Primary progressive group histogram along with first two
PC eigenvectors. Note that (unlike the MDA example above, which relates to a binary comparison of groups) we are here extracting information from all subjects
within a particular group, so multiple eigenvectors can be created (limited only by the number of bins in the histogram). Here, we display the first two(most
significant) eigenvectors.

TABLE IV
RESULTS OFCORRELATION ANALYSIS BETWEENEACH SUBGROUPS ANDEDSS

AVMTR avrage brain MTR; PH peak height, PL peak location: MTR25%,
MTR50%, MTR75%: MTR AT THE 25TH, 50TH, 75TH PERCENTAGE. PP pri-
mary progressive; RR relapsing remitting; BE benign; SP secondary progressive;
RO RR BE Sp. ( ) traditional MTR parameters: the spearman’s rank correlation
analysis was used; () PCs: the f test is used for the significance of the multiple correlation
coefficient. NS not significant.

It is to be expected that any results obtained using previous pa-
rameterizations may be less optimal than results obtained using
PC analysis [using the first three PCs as these cover 90% of the
variability based on (21)], which is more general and not re-
stricted to this subset of parameterizations. However, it would
be interesting to compare such measures with those provided
by PCA. Therefore, a Spearman’s rank correlation analysis was
used to evaluate the relationship between each of the traditional
MTR parameters (peak height, peak location, average MTR,
MTR at the 25th, 50th, and 75th percentile) and EDSS. Table IV
shows the correlation between EDSS and traditional MTR his-
togram parameters for all patients and for the PP subgroups and
relapsing onset (RO) (because of small numbers within the BE,
RR, and SP groups it was considered appropriate to combine
them into the single larger RO group for disability correlation).
In the PP group, there was no correlation between individual
conventional MTR parameters and EDSS, but using multiple
correlation analysis there was a significant correlation with the
PCs of the histogram ( ). In the RO group, moderate
associations were seen between a number of conventional MTR
parameters and EDSS, the strongest being with the 25th per-
centile MTR ( ). However a still stronger correlation
was seen with the PCs ( ). It can be seen from Table IV
that multiple PC analysis revealed more robust correlation be-

tween the MTR histogram and disability in the two subgroups
(PP, RO).

1) PCA-Based Eigenvector and Eigenimages:Fig. 8 shows
the first two eigenvectors for each group, along with the
histogram of a typical patient from that group. The positive
and negative extrema of the eigenvectors are the regions of that
group’s histograms that contribute the most to its variation.
Fig. 8 shows that low regions of the histograms in general
did not contribute significantly to the variation in the MTR
histogram data within an MS subgroup. Shaded histograms
qualitatively illustrate these significant regions with dark
regions contributing the least to within group variation and
bright regions contributing the most (Fig. 9).

VIII. C ONCLUSION

This study explores and demonstrates the application of the
Linear Discriminant transform and PCA to MTR images in MS,
and has shown that these techniques may be used to characterize
various subtypes of MS. This alternative way of analyzing MTR
histograms has two major advantages over the existing methods.
First, it takes into account the entire shape of histograms, and not
only just a few arbitrary features (e.g., peak location and height).
Second, instead of performing t-tests to compare groups of pa-
tients, patients are classified based on their individual MTR his-
tograms using LDA. Using this method, MS patients could be
classified reasonably accurately into clinical subgroups of MS.
MRI measurements are increasingly being used as surrogate
markers in drug trials; this work implies that LDA and PCA-de-
rived features will be more sensitive and specific at predicting
biological and clinical change than existing features are.

LDA of MTR histograms has been shown to provide effective
classification of disease subgroups and controls. Even a perfect
classifier might not achieve 100% success, since we do not have
a perfect ‘Gold Standard’ description of the class of each sub-
ject; the clinical subgroups may not have been assigned com-
pletely correctly, and some of the patients may even be in tran-
sition between groups.

PCA has been shown to provide good correlation per-
formance relating MTR histogram features to disability, as
quantified using the EDSS. This has been shown by the good
correlation between the PCs and EDSS. The EDSS scale is
a nonlinear categorical (discontinuous) scale that combines
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(a) (b)

(c) (d)

Fig. 9. PCA- shaded histogram corresponding to Fig. 8. (a), (b) Primary Progressive Group Shaded Histograms. (c), (d) Relapsing onset group shaded histograms.

several aspects of disability, thus, it would be very surprising if
we achieved 100% correlation [13].

The analysis methods used here have been chosen to be op-
timal for correlation and classification; they make no attempt to
give a biological interpretation of the data. Indeed this is a well-
known characteristic of PCA—optimal correlation is obtained
but interpretation is not advanced. Nonetheless, the eigenvector,
and the consequent images, do give an indication of the spatial
location of the biological abnormalities (variation).

The proposed approaches to MTR histogram data appear
robust and offer relevant information that should allow moni-
toring of MS in multicenter studies. For this to be implemented
successfully, retraining of the method will be initially required
using control and patients subjects studied at the different
sites. However, this offers new potential for standardization
of quantitative data. As such, this technique deserves further
investigation.
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