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bations. Currently, two approaches exist for determining the optimal
controller realizations under different criteria, namely pole-sensitivity
measures [1]-[5] and complex stability radius measures [6], [7].

Inthe first approach, the pole sensitivity measures based on a 2-norm
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Abstract—The pole-sensitivity approach is employed to investigate the Fialho and Georgiou [7] used the complex stability radius measure to
stability issue of the discrete-time control system, where a digital controller, formulate an optimal FWL controller realization problem that can be
implemented with finite word length (FWL), is used. A new stability related  represented as a spec#l, norm minimization problem and solved
measure is derived, which is more accurate in estimating the closed-l00p fo \ith the method of linear matrix inequality [9], [10]. In this second
stability robustness of an FWL implemented controller than some existing .
measures for the pole-sensitivity analysis. This improved stability measure approach, the FWL perturbations are assumed to be complex-valued.
thus provides a better criterion to find the optimal realizations for ageneric ~ Although this assumption is somewhat artificial, the approach has cer-
controller structure that includes output-feedback and observer-based con- tain attractive features and requires further investigation.
tro!lers. A numerica} example is used to verify the theoretical analysis and The contribution of this note is twofold. First, a generic con-
o illustrate the design procedure. troller structure is considered that includes output-feedback and

Index Terms—Closed-loop stability, digital controller, finite word length,  observer-based controllers. Second, adopting the pole-sensitivity
optimization. approach, a new stability related measure is proposed for the unified
controller structure and an optimization procedure is developed to find
the optimal controller realization that maximizes this new measure.
Through theoretical analysis and numerical results, it is shown that

The current controller design methodology often assumes that thé improved measure is less conservative in estimating the FWL
controller is implemented exactly, even though in reality a control laglosed-loop stability robustness of a controller realization than the

existing pole-sensitivity measures of [2], [3].

Fig. 1. Discrete-time closed-loop system with a generic digital controller.
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with F € R™*™, G € R™*1,J € RP*™, M € RP*? and implementw, can guarantee the closed-loop stabill#™" is gener-
H € R™*?. The output-feedback and observer-based controllers calfy unknown. An estimate aB."" can be obtained by
be unified in this general structur€: is an output-feedback controller Fymin

w0 = B; +Int[—log -1 10
whenH = 0; a full-order observer-based controller whBn= A — 0 + Int[=log, (o(w))] (10)

GC, M = 0 andH = B; a reduced-order observer-based controllewhere the integeimt[«] > «. It can easily be seen that the closed-loop
otherwise [11], [12]. system remains stablewf is implemented with a fixed-point processor
Assume that a realizatioffo, Go, Jo, Mo, Ho) of C' has been 0f Byg". As uo(w) is a function of the controller realizatiow, an

designed. It is well-known that the realizations@fare not unique. optimal realization can be found that maximizes(w). The diffi-

All the realizations ofC form the realization set culty however is that c.omputing. the. value !DJ(“’V) is an unsolved
s {(F, G.J,M,H):F=T 'FT,G=T 'Go, open pr(_)_blem. A practlcal_solutlon is to conglde_r a lower bpund of

the stability measurg,(w) in some sense, which is computationally
J=JoT,M =M, H=T "Ho} (3) tractable. Obviously, the closer such a lower bound igdtw), the

whereT € R™*™ is any real-valued nonsingular matrix, called dess conservative the estimation will be. The pole sensitivity measures

similarity transformation. Letv; = Vec(F), whereVec(-) denotes [2], [3] can be regarded as such lower bounds.

the column stacking operator. The vecters,, wa, Wa,, Wo, W,

War, War,, Wi andwyr, are similarly defined. Denote I1l. ANEw FWL STABILITY RELATED MEASURE
’ wr Wry Roughly speaking, how easily the FWL errdew can cause a
i A WG A Wi stable control system to become unstable is determined by how close
W= - = | wy wo = | Wy, ;(A(w))| are to 1 and how sensitive they are to the controller
and @) |N(Aw) to 1 and h tive th to th troll
wN W s W, parameter perturbations. We propose the following FWL stability
Wy Wi, related measute
whereN = (m +p)(m+q) +mp. We also refer tav as a realization )2 . 1— | (A(w))] 1
of C'. The stability of the closed-loop system in Fig. 1 depends on the p(w) = ie{l,lfl,l,lilﬂ} 7i(w) (11)
eigenvalues of the matrix with
— A +BMC BJ <
) {GC—i—HMC F—I—HJ} 7i(w) = > swx) M (12
I 0 I o X=F,G,J,M,H wx 1
= {0 -1 } A(wo) {0 T} . (5) where, for a vectox € C*, the 1-norm|x||, is defined as
All the different realizationsv have the same set of closed-loop poles lIx[l. 2 i || (13)
if they are implemented with infinite precision. Since the closed-loop =
system is designed to be stable, the eigenvalues and the indicator function(x) is given by
Ai (A(w))] 5(x) = {0, if x is a zero vector (14)
= |\ (A(wo))| <1, Vie{l,...,m+n} (6) L, otherwise.
When aw is implemented with a fixed-point processor, it is per- Defining a perturbation subset to the controller realization
turbed intow + Aw due to the FWL effect. Each element Afw is P(w) 2 {Aw: |Xi (A(w +Aw))| — |\ (A(w))]
bounded by—'tf/2y N S ||AW||maXEi (W). Vi} (15)
AW |lmax = e |Awi| < €/2. (™ we have the following proposition, the proof of which is straightfor-

The value ofe is determined as follows. For a fixed point processoWard~ = _ . )
of B, bits, letB, = B, + By, where2” is the smallest normaliza-  Proposition 2: A(w + Aw) is stable if Aw € P(w) and
tion factor that makes the absolute value of each elemeat8fw no  [AWllmax < 111 ’(W)-_ ) )
larger than 1. Thusi; are bits needed for the integer part of a number Remarks: The requirementfaAw € P(w) is nottoo restricted. In
andB; are bits for implementing the fractional part of a number. It jfractice, we WL” only be interested in thosew that lie in the bounded
easy to see region: Q(w) = {Aw: p(Aw) < po(w)}, i.e., thoseAw that will
not cause the closed-loop instability. Similar to [5] it can be shown that
e=2""r, (8) P(w) exists and at least a large part @fw) is covered byP(w).

_ _ Define
With the perturbatiom\w, A; (A (w)) is moved to\; (A(w + Aw)).

If an eigenvalue ofA(w + Aw) is outside the open unit disk, the p(P(w)) 2 inf
closed-loop system, designed to be stable, becomes unstable with an AwgP(w)
FWL implementedw . It is, therefore, critical to know when the FWL Corollary 1: pu1s(w) < po(w) if p(P(w)) > po(w).
error will cause the closed-loop instability. This ultimately means that |; .4 pe seen tha/cu(_

: « Y w) is a lower bound ofio (w), provided that
we would like to know the largest open “sphere” in the controller Pel7,(w) is small enough. The assumption of smallw) is generally

turbation space, within which the closed-loop remains stable. The S{zgjq, and most of digital control systems do have a small stability ro-
or radius of this "sphere” is defined by [6] bustness, especially when fast sampling is applied. In practice, it is very
o (w) 2 inf {|[AW||max: A(w + Aw) isunstablg .~ (9) difficult to verify the sufficient conditiony(P(w)) > jio(w), as this
From the definition ofuo(w), it is obvious that ‘éVOU|d req]t“rslto knowgo (w). However, the conditions for Proposition
Proposition 1: A(w + Aw) is stable if| Aw||max < pto(w). are verifiable.

The largeruo(w) is, the larger FWL error the closed-loop stability 1This measure, as shown later, is an improved version of the existing measure
can tolerate. LeB ™" be the smallest word length that, when used tp, and, hence, is denoted with ;.

AW || max- (16)
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The stability related measufg r(w) is computationally tractable, it has been shown that under the similar conditipnéw) < 1 (w)

as it can be shown that [3].
a i (Aw))| 0
OF =[0 IJLi(w) {1} 17 IV. OPTIMIZATION PROCEDURE
9 |>\ W))| As different realizationsv yield different values ofi,,(w), it is of
- =[0 I]Li(w) { } (18)  practical importance to find ., that maximizes:;(w), since the
controller implemented witw,,. can tolerate a maximum FWL error.
alx (A " This optimal realization problem is formally defined as
(A(w))| _[B' H'|Li(w) (19) p pr y
aJ v 2
v = max (w). (29)
d | (A(w))] —[B" H']L {CT} (20) Givenwo, Vi € {l.....m + n}, partition x;(A(wo)) and
oM 0 vi(A(wo))
o\ (Aw)| _ {CTMT} o [xe (Aw))
_ 0 I|L;(w 21 xi (A(wo)) = _
aH [ ] ( ) T ( ) ( ) X (A(WU))
T . -
with denotmg};he[iiaF;r()os)e) oge(r;t(or ;’;l)ndT (X( ))] , (X(w )) [ym (A(wo))} )
€ |A; w)ly; W) X; W 7 0 = S
Li(w) = (22) yi.2 (A(wo))

_ (A(w)] where x;,1(A(wo)), yi,1(A(wo)) € " and x; 2(A(wo)),
wherex; (A(w)) andy: (A (w w)) are the rightand reciprocal left eigen-y. (A (w,)) € ¢™. It is easily seen from (5) that
vectors related to ths; (A(w)), respectivelyx denotes the conjugate

operation andRe¢[] the real part. Similar to (10), an estimateBf"™" xi (A(w)) = *i1 (A(ivo))
can be provided with, ; (w) by T 'xi 2 (A(wo))
BN = B, + Int [—log, (p11(w))] — 1. (23) B vi.1 (A(wo))
Provided that the conditions of Proposition 2 and Corollary 1 are met, yi (Aw) = Ty 2 (A(wo)) ' (31)
BIN'T > BR™ > B, Unlike B;)'", however,BI}' can be com- ’
From (17) (21) we have
puted easnly
An existing stability related measure, which is also computatlonaII§ W) =T L 2. 2(wo)T™" (32)
tractable, is defined as [3] o
1— |\ (A d|xi (A(w , ,
pw) S o #(W))' (24) % =T"Li 21 (wo)C" (33)
x O (Aw)] (B L 12(wo) FHI Li 2 a(wo) ) T7 (34)
A ONi (A(w)) R
P Y B R N
X=F,G,J,M, H X 1 l()M (B L. 1(wo)—|—HU 1(W0)> (35)

B — B; + Int [— log, (u1(w))] — 1. 26) — @ (L 2.1(wo)C" Mg +Li., (WO)JOT) (36)

The key difference between ; (w) and . (w) is that the former Where
considers the sensitivity ¢h; (A (w))| while the latter considers the
sensitivity of\; (A(w)). It is well known that the stability of a linear |Ai (A(wo))]
discrete-time system depends only on the moduli of its eigenvalues. As =1 9 37)
w1 (w) includes the unnecessary eigenvalue arguments in considera- Sl =4 s
tion, it is reasonable to believe that(w) is conservative in compar- Define the following cost function:

Re [/\f (K(wo)) yi; (K(wo)) le (X(wo))]

Li, j,i((wo)=

ison with . This can strictly be verified. Notin / 1—|x (A
llli(w) y 9 F(T) 2 ] min M = pir(w). (38)
>\7j (A(W))| i€{l,...,m+n} O'L'(W)
dw, The optimal realization problem (29) can then be posed as the following
. optimization problem:
— AN (A( _
= Re [A: (A(w)) ((W))} / |Ai (A(w))] (27) v2  max  f(T). (39)
dwj TemmXm
dot. (‘T)#0
one has Although f(T) is nonsmooth and nonconvex, efficient global op-

9 |Ai (A(w))] timization methods exist for solving for this kind of optimization
dw, problem. The adaptive simulated annealing (ASA) [8] is such an
algorithm and is adopted in this study to search for a true global

. oXi (A(w)) optimum T, of the problem (39). WitHT,,:, we can obtain the

Sw X (A(w)) optimal realiz_ationv‘_mf,. o .
< — m : (28) An alternative optimal realization problem is based on the complex
|/\i (A(W))| Wi stability radius measure [7]. Space limitation precludes a comparison

which means that; (w) < o;(w). We conclude tha (w) <  with this alternative approach. A detailed study on the pole-sensitivity
pir(w) andB™™ > B™ . Notice thatu, (w) is also superior in this and complex stability radius measure approaches for finite-precision
sense than another measure based on a 2-norm [2] gal{ed), since digital controller realizations can be found in [13].
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TABLE |
. ) . ) COMPARISON OF THETWO STABILITY RELATED MEASURES CORRESPONDING
A numerical example is used to illustrate the design procedurgsTiMATED MINIMUM BIT LENGTHS AND TRUE MINIMUM BIT LENGTHS FOR

and verify the theoretical results given in Section lll. The plantTHE Two REDUCED-ORDER OBSERVER BASED CONTROLLER REALIZATIONS
model used is a modification of the plant studied in [2] which was a

V. AN ILLUSTRATIVE EXAMPLE

single-input—single-output (SISO) system. We have added one moy f¢&lization 5 5568‘;171 1 0508‘52 5 5211“ B?fnim BQSn;m
. . . L. WwWo . € — B e —
output that is the first state in the original plant model. The state-spac Wopt 5696940e —05 [ 3.012354c —06 | 22 59 51

model of this modified plant is given by (40), shown at the bottom of
the page. The closed-loop poles as given in [2] were used in design,

and the designed reduced-order observer-based controller obtained 20 | 1 . .
using a standard design procedure [12] had the form 10
Fo— 0 1
¢ 7 -9.3303¢ — 01 1.9319¢ + 00 0
G, _ | 41814 — 02 2.7132¢ 402 vi(k) -10
7 [3.9090e — 02 1.0167¢ + 03 %0
Jo = [3.0000e — 04  5.0000e — 04]
-30
My =[0 6.1250c — 01] 3
I id _40 | 1 L 1 1
H, = | (S047e+01) 0 250 500 750 1000 1250 1500
7.3849¢ + 01 k

_ With this_initiaﬂ controller rea“Z_atiO'Wm the CO't"esF)O”ding transi- Fig. 2. Comparison of unit impulse response for the infinite-precision
tion matrix A (wo) was formed using (5), from which the poles and theontroller implementatiow;.... with those for the two 22-bit implemented
eigenvectors of the ideal closed-loop system were computed. The epatroller realizationsv, andwo,..
timization problem (39) was then formed with € R?*?. The ASA

algorithm was used to find @., which was 20 . . . . .
T . - 1.4714e + 01 3.207le+ 01 0
°Pt T 11.3588¢ + 01 3.053le+01]" 20

FromT,:, the corresponding optimal controller realizatwn,: was

determined yi(k)
-60

P 9.8677¢ — 01 1.4943e¢ — 02

ot = | _9.9047c — 02 9.4511c — 01 -80
o _[17066c-03 —1.8080¢ + 03 -100 -

°PT T 15.2084e — 04 8.3794e + 02 -120 L : ' - L

0 250 500 750 1000 1250 1500
Jopt = [1.1208¢ — 02 2.4887¢ — 02] k
Mope = [0 6.1250e — 01] Fig. 3. Comparison of unit impulse response for the infinite-precision
1.0691e + 00 controller implementatiow;,..; with those for the two 21-bit implemented
H,,:=|_" ¢ . controller realizationsv, andw,p¢.
P 1.9430e + 00

For the initial and optimal controller realizations, the true minimal bininimum bit lengths and true minimum bit lengths for the initial and
lengths B™™ that can guarantee the closed-loop stability were alsptimal controller realizations. The results clearly show that the new
determined using a computer simulation method. Table | compares theasurg:;; is much less conservative than the existing meaguia
values of the two stability related measures, corresponding estimagstimating the true minimum bit length.

[3.2439¢ — 01 —4.5451e + 00 —4.0535¢+00 —2.7003¢e —03 0
1.4518e — 01 4.9477¢ — 01 —4.6945¢ — 01 —-3.1274e—04 0
A = | 1.6814¢ — 02 1.6491e — 01 9.6681c — 01 —2.2114e—-05 O
1.1889¢ — 03 1.8209e — 02 1.9829¢ — 01 1.0000e +00 O
16.1301e — 05 1.2609¢ — 03 1.9930e — 02 2.0000e — 01 1
r1.4518¢ — 01
1.6814e — 02
1.61 —1.5750e — 01 —4.3943¢ 1
B = | 1.1889¢ — 03 = (1) 8 68806+00 maé)e 0 ?)9(;)6'1‘0 (40)
6.1301e — 05
L 2.4979¢ — 06
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We also computed the unit impulse response of the closed-loop Risk-Sensitive Decision-Theoretic Diagnosis
control system when the controllers were the infinite-precision
implementedw, and various FWL implemented realizations. Notice ~ Mark A. Shayman and Emmanuel Fernandez-Gaucherand
that any realizatioow € S, implemented in infinite precision, will

achieve the exact performance of the infinite-precision impIementedAbsmw_We consider the problem of determining the optimal sequence
WO_’ _Wh'Ch 'S_ thedg&gned:ontrollgr performance. F‘_)r this reason, th%ftests for the discovery ofafa?ulty component, Wher%therepisarandqom cost
infinite-precision implemented, is referred to as thieleal controller  associated with testing a component. Our work is motivated by applications
realizationw;q..1. Figs. 2 and 3 compares the unit impulse respongetelecommunications networks, e.g., location and isolation of faults (or in-
of the first plant outpuy, (k) for the ideal controllew;q..1 with those ~truders) in IP networks. A novel feature in our approach is that a risk-sen-
of various 22-bit and 21-bit implemented realizations, respectiveffjivé Performance criterion is used in order to rank different competing
. Chedules. Risk-sensitivity is incorporated through the use of an exponen-
It can be seen that the closed-loop became unstable with a 21gjf,ility function, and hence optimal schedules attain a trade-off between
implemented controller realizatiow,. However, the closed-loop minimal expected costs and, e.g., a low variance about the achievable ex-
system remained stable with the 21-bit implementeg: . pected costs. We characterize optimal schedules both when the testing se-
quence is not subject to precedence constraints, and when it is subject to
such constraints, given by an arbitrary partial order. For the case with
VI. CONCLUSION precedence constraints, we show that our models can be analyzed via mod-
ular decompositions, as studied by Monma and Sidney
We have applied the pole-sensitivity approach to address the sta-
bility issue of the closed-loop discrete-time control system where a
digital controller is implemented with a fixed-point processor. A new o
FWL closed-loop stability related measure has been derived. It has beehhe motivation for the work presented here comes from the problem
shown that this improved measure is a less conservative lower bodault management for communication networks. An important el-
of the computationally intractable true stability measure than other éxnent in many approaches to fault managemeseéuential testing
isting measures for the pole-sensitivity method. As this new measuré}§]- Based on available network management data, a set of compo-
a function of the controller realization, it can be used as a cost functiBgnts (hardware or software) is identified as containing the potential
for obtaining an optimal controller realization that maximizes the pré00t cause of the failure. Then the suspect components are tested se-
posed measure. An efficient optimization strategy has been develogégntially until the defective component is identified. For the resulting
based on the ASA algorithm for optimizing a unified controller strucscheduling problem, itis typically assumed that there is a single faulty
ture which includes output-feedback and observer-based controllergomponent [thenutually exclusive faulttMEF) case], that the proba-
bility of component being faulty is a known valug;, and that there is
arandom cost’; associated with testing it, and the goal is to minimize
REFERENCES the expected sum of the testing costs. Under these assumptions, clas-
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