Factorizations of complete graphs into brooms

Petr Kovářr ${ }^{\text {a, }}$, Michael Kubesa ${ }^{\text {a }}$, and Mariusz Meszka ${ }^{\text {b }}$
${ }^{a}$ Department of Applied Mathematics, Technical University Ostrava, 17. listopadu, 70833 Ostrava-Poruba, Czech Republic
${ }^{\mathrm{b}}$ Faculty of Applied Mathematics, AGH University of Science and Technology, Mickiewicza 30, 30-059 Kraków, Poland

Abstract

Let r and n be positive integers with $r<2 n$. A broom of order $2 n$ is the union of the path on $P_{2 n-r-1}$ and the star $K_{1, r}$, plus one edge joining the center of the star to an endpoint of the path. It was shown by Kubesa [9] that the broom factorizes the complete graph $K_{2 n}$ for odd n and $r<\left\lfloor\frac{n}{2}\right\rfloor$. In this note we give a complete classification of brooms that factorize $K_{2 n}$ by giving a constructive proof for all $r \leq \frac{n+1}{2}$ (with one exceptional case) and by showing that the brooms for $r>\frac{n+1}{2}$ do not factorize the complete graph $K_{2 n}$.

Key words: Graph factorization, graph labeling, spanning trees
2000 MSC: 05C70, 05C78

1 Introduction and definitions

Graph decomposition is a well established topic of graph theory. Various techniques were introduced for decomposing graphs into edge disjoint subgraphs.

Definition 1.1 Let H be a graph with m vertices. A decomposition of the graph H is a set of pairwise edge disjoint subgraphs $G_{1}, G_{2}, \ldots, G_{s}$ of H such that every edge of H belongs to exactly one of the subgraphs G_{r}. If each subgraph G_{r} is isomorphic to a graph G we speak about a G-decomposition of H. If G is a factor (i.e., a spanning subgraph) of H, then we call the G decomposition a G-factorization.

Email addresses: petr.kovar@vsb.cz (Petr Kovář), michael.kubesa@vsb.cz (Michael Kubesa), meszka@agh.edu.pl (Mariusz Meszka).
${ }^{1}$ Research for this article was partially supported by the institutional project MSM6198910027.

In this paper we always take the complete graph K_{m} for H and a certain spanning tree T for G. There are some obvious necessary conditions for a T factorization of K_{m} to exist. First, since the number of edges $m-1$ of T must divide the number of edges $m(m-1) / 2$ of K_{m}, obviously m has to be even and there will be $m / 2$ copies of T in the factorization. Moreover, since every vertex has degree at least 1 in every factor, $\Delta(T) \leq m / 2$. Further structure-based necessary conditions are examined in Section 2.

Unlike the famous Graceful Tree Conjecture (all n-vertex trees have graceful labelings, which enable them to decompose $K_{2 n}$), not all $2 n$-vertex trees factorize $K_{2 n}$. There is no easy necessary and sufficient condition known for a T-factorization to exist, and we do not expect such condition to exist.

Sufficient conditions include several types of graph labelings. If a given graph G allows a certain type of labeling, then there exist a G-factorization of $K_{2 n}$. One such labeling, the blended labeling, was introduced by Fronček [2]. A fundamental notion in further constructions is the length of an edge.

We adopt the common convention of denoting vertices by their labels. Moreover, an edge $x y$ we denote by (x, y) if x or y are integer expressions.

Definition 1.2 Let G be a graph with $V(G)=V_{0} \cup V_{1}, V_{0} \cap V_{1}=\emptyset$, and $\left|V_{0}\right|=\left|V_{1}\right|=m$. Let λ be an injection, $\lambda: V_{i} \rightarrow\left\{0_{i}, 1_{i}, \ldots,(m-1)_{i}\right\}$ for both $i=0$ and $i=1$.

The pure length of an edge $\left(x_{i}, y_{i}\right)$ with $x_{i}, y_{i} \in V_{i}$, where $i \in\{0,1\}$, for $\lambda\left(x_{i}\right)=p_{i}$ and $\lambda\left(y_{i}\right)=q_{i}$ is defined as

$$
\ell_{i i}\left(x_{i}, y_{i}\right)=\min \{|p-q|, m-|p-q|\} .
$$

The mixed length of an edge $\left(x_{0}, y_{1}\right)$ with $x_{0} \in V_{0}, y_{1} \in V_{1}$, for $\lambda\left(x_{0}\right)=p_{0}$ and $\lambda\left(y_{1}\right)=q_{1}$, is defined as

$$
\ell_{01}\left(x_{0}, y_{1}\right)= \begin{cases}q-p & \text { for } q \geq p \\ m+q-p & \text { for } q<p\end{cases}
$$

where p and q are the vertex labels without subscripts and lie in $\{0,1, \ldots, m-$ $1\}$. The edges $\left(x_{i}, y_{i}\right)$ for $i \in\{0,1\}$ with the pure length $\ell_{i i}$ are pure edges and the edges $\left(x_{0}, y_{1}\right)$ with the mixed length ℓ_{01} are mixed edges.

Definition 1.3 Let G be a graph with $4 n+1$ edges such that $V(G)=V_{0} \cup V_{1}$, $V_{0} \cap V_{1}=\emptyset$, and $\left|V_{0}\right|=\left|V_{1}\right|=2 n+1$. Let λ be an injection, $\lambda: V_{i} \rightarrow$ $\left\{0_{i}, 1_{i}, \ldots,(2 n)_{i}\right\}$ for both $i=0$ and $i=1$, and define lengths as in Definition 1.2.

We say G has a blended labeling (also called blended ρ-labeling) λ if
(1) $\left\{\ell_{i i}\left(x_{i}, y_{i}\right):\left(x_{i}, y_{i}\right) \in E(G)\right\}=\{1,2, \ldots, n\}$ for $i=0,1$,
(2) $\left\{\ell_{01}\left(x_{0}, y_{1}\right):\left(x_{0}, y_{1}\right) \in E(G)\right\}=\{0,1, \ldots, 2 n\}$.

Fronček [2] showed that there exists a G-factorization of $K_{2 n}$ for odd n if G has a blended labeling. Meszka [11] showed that having a blended labeling is not necessary for a G-factorization to exist when G is a tree. Kovářová [6] (see also [4]) introduced 'swapping labeling' and showed that a G-factorization of $K_{2 n}$ for even n exists when G has a swapping labeling.

Definition 1.4 Let G be a graph with $V(G)=V_{0} \cup V_{1}, V_{0} \cap V_{1}=\emptyset$, and $\left|V_{0}\right|=\left|V_{1}\right|=2 n$. Let λ be an injection, $\lambda: V_{i} \rightarrow\left\{0_{i}, 1_{i}, \ldots,(2 n-1)_{i}\right\}$ for both $i=0$ and $i=1$, and define lengths as in Definition 1.2.

We say that G with $4 n-1$ edges has a swapping blended labeling (briefly swapping labeling) λ if
(1) $\left\{\ell_{i i}\left(x_{i}, y_{i}\right):\left(x_{i}, y_{i}\right) \in E(G)\right\}=\{1,2, \ldots, n\}$, for $i=0,1$,
(2) there exists an isomorphism φ such that G is isomorphic to G^{\prime}, where $V\left(G^{\prime}\right)=V(G)$ and $E\left(G^{\prime}\right)=E(G) \backslash\left\{\left(k_{0},(k+n)_{0}\right),\left(l_{1},(l+n)_{1}\right)\right\} \cup\left\{\left(k_{0},(l+\right.\right.$ $\left.\left.n)_{1}\right),\left((k+n)_{0}, l_{1}\right)\right\}$ for certain k, l,
(3) $\left\{\ell_{01}\left(x_{0}, y_{1}\right):\left(x_{0}, y_{1}\right) \in E(G)\right\}=\{0,1, \ldots, 2 n-1\} \backslash\left\{\ell_{01}\left(k_{0},(l+n)_{1}\right)\right\}$.

We summarize the results by Fronček [2] and Kovářová [6] in the following theorem.

Theorem 1.5 If a graph G on m vertices allows a blended labeling or a swapping labeling, then there exists a G-factorization of K_{m}.

Various other labelings such as the ρ-symmetric labeling, $2 n$-cyclic labeling, fixing labeling, and recursive labeling were introduced by several authors as sufficient conditions for certain G-factorizations to exist. For every admissible $d \geq 3$, a spanning tree of diameter d that factorizes $K_{4 n+2}$ was found by Fronček in [2]; the case for $K_{4 n}$ was completed by Kovářová in [6]. Among the most general result there is the determination of spanning caterpillars of diameter 4 that factorize $K_{2 n}$ (in a series of papers by Fronček [3], Kubesa [9,10] and Kovářová $[7,8]$). Spanning caterpillars of diameter 5 that factorize $K_{2 n}$ were determined through the years in a series of papers and finally completed in [4] by Fronček et.al. A T-factorization of $K_{2 n}$ for every $\Delta(T)$ possible, $2 \leq \Delta(T) \leq n$, was given by Kováŕ and Kubesa [5].

In this paper we give a complete characterization (analogously to the papers [4] and [5]) in the case when a tree consisting of a path with many leaves attached to one of its endvertices factorizes the corresponding complete graph. We show that every such graph factorizes the corresponding complete graph unless the number of attached leaves exceeds $(n+1) / 2$ or unless it is one exceptional case. The primary motivation for studying this class was to examine graphs
that do not have labelings of the types mentioned and yet do factorize the complete graph. It turned out that there were only finitely many such graphs in this particular class of graphs.

Let S_{r} denote the star $K_{1, r}$, and let P_{k} denote the path with k vertices. For $1 \leq r \leq 2 n-3$, let $B_{2 n}(r)$ denote the graph formed from the disjoint union of $P_{2 n-r-1}$ and S_{r} by adding one edge joining the center of the star to an endvertex of the path. The graph $B_{2 n}(r)$ is called a broom, the center of the star is called centrum, the leaves of the star are called bristles, the path is the broomstick, and its vertices are called broomstick vertices. See Fig. 1.

Fig. 1. A broom $B_{2 n}(r)$.
We seek a decomposition of $K_{2 n}$ into n factors $T_{1}, T_{2}, \ldots, T_{n}$ that are isomorphic to a single spanning tree T, where $T \cong B_{2 n}(r)$. Using the labeling of the vertices of $K_{2 n}$, we designate the factors by isomorphisms $\phi_{1}, \phi_{2}, \ldots \phi_{n}$, writing $T_{i}=\phi_{i}\left(B_{2 n}(r)\right)$. This is an abuse of notation; actually, ϕ_{i} is the map of the vertex set.

2 Non-existence of a broom-factorization

Let $T_{1}, T_{2}, \ldots T_{n}$ be factors in $K_{2 n}$ that form a $B_{2 n}(r)$-factorization of $K_{2 n}$. There are at most three different vertex degrees in the broom $B_{2 n}(r)$. Moreover, for $r>1$ there are exactly three different degrees. The centrum has degree $r+1$, the bristles and one broomstick vertex have degree 1 and all remaining (broomstick) vertices have degree 2 .

Lemma 2.1 Let $B_{2 n}(r)$ be a broom, and let the trees $T_{1}, T_{2}, \ldots, T_{n}$ form a $B_{2 n}(r)$-factorization of $K_{2 n}$. If $r>(n-1) / 2$, then each vertex of the complete graph $K_{2 n}$ can be a centrum in at most one factor T_{i}.

PROOF. We color the edges of $K_{2 n}$ so that all edges in one factor T_{i} are colored by the same color and we use a different color for each T_{i}. If some vertex u of $K_{2 n}$ is the image of the centrum v in two different factors T_{i} and T_{j}, then u is incident to $r+1$ edges in each of T_{i} and T_{j} and to at least one edge in each other factor. Hence $2(r+1)+(n-2) \leq 2 n-1$, which requires $r \leq(n-1) / 2$.

Theorem 2.2 If $B_{2 n}(r)$ factorizes the complete graph $K_{2 n}$, then $r \leq(n+1) / 2$.

PROOF. By contradiction. Let $T=B_{2 n}(r)$ be a broom with $r>(n+$ 1)/ 2 bristles and suppose it factorizes $K_{2 n}$. By Lemma 2.1 each vertex of the complete graph $K_{2 n}$ is the map of the centrum in at most one factor F_{i}. Since there are only vertices of degree 1,2 , and $r+1$ in the tree T, we distinguish two types of vertices in $K_{2 n}$. We say vertex u is Type A if it is the map of the centrum (of degree $r+1$) in one factor, the map of vertices of degree 2 in $n-r-1$ factors, and the map of leaves (not necessarily bristles) in r factors (each vertex in $K_{2 n}$ is of degree $2 n-1$). Type B vertex is not the map of a centrum in any factor, but it is the map of vertices of degree 2 in $n-1$ factors and the map of a vertex of degree 1 in only one factor, since there are total $2 n-1$ edges adjacent to it. There are n factors T_{i} which implies that there are n vertices of each type in $K_{2 n}$.

Now we examine the edges between the centrum and the bristles. There is a total of $n r$ bristles adjacent to the n centrums. Among these leaves at most n can mapped to some other Type B vertex. Since the centrum of each factor is mapped always to a Type A vertex, there have to be at least $n r-n=n(r-1)>$ $n\left(\frac{n+1}{2}-1\right)=\binom{n}{2}$ edges among the Type A vertices. But there are only $\binom{n}{2}$ edges among the n Type A vertices which is the desired contradiction.

3 Constructions of a broom-factorizations for odd n

Let $n=2 k+1$. The following lemma was proved in [9]. We give a simpler proof here.

Lemma 3.1 The broom $B_{4 k+2}(r)$ allows a blended labeling for every $k \geq 1$ and $1 \leq r \leq k$.

PROOF. The proof is constructive. We split the broom $B_{4 k+2}(r)$ into three subtrees T_{0}, T_{01}, and T_{1}. T_{0} will contain only pure 00 -edges, T_{01} only mixed edges, and T_{1} only pure 11-edges; see Figs. 2 and 3.

The subtree T_{0} is a broom $B_{k+1}(r)$ with r bristles and the broomstick of length $k-r$. The bristles are made by pure 00 -edges $\left(\left(k-\frac{k-r}{2}\right)_{0}, x_{0}\right)$ for $x=\frac{k-r}{2}, \frac{k-r}{2}+1, \ldots, k-\frac{k-r}{2}-1$ when $k-r$ is even and $\left(\left(\frac{k-r-1}{2}\right)_{0}, x_{0}\right)$ for $x=\frac{k-r-1}{2}+1, \frac{k-r-1}{2}+2, \ldots, \frac{k+r-1}{2}-1$ when $k-r$ is odd. In the both cases the lengths of bristles are $1,2, \ldots, r$.

The broomstick is the path $k_{0}, 0_{0},(k-1)_{0}, 1_{0}, \ldots,\left(\frac{k-r}{2}-2\right)_{0},\left(k-\frac{k-r}{2}+\right.$ $1)_{0},\left(\frac{k-r}{2}-1\right)_{0},\left(k-\frac{k-r}{2}\right)_{0}$ for even $k-r$ and $k_{0}, 0_{0},(k-1)_{0}^{2}, 1_{0}, \ldots,\left(k-\frac{k-r-1}{2}+\right.$

Fig. 2. Broom $B_{4 k+2}(r)$ for odd k and odd r.
$1)_{0},\left(\frac{k-r-1}{2}-1\right)_{0},\left(k-\frac{k-r-1}{2}\right)_{0},\left(\frac{k-r-1}{2}\right)_{0}$ for odd $k-r$. The lengths of pure $00-$ edges in the broomstick are $k, k-1, k-2, \ldots, r+2, r+1$ in the both cases.

The subtree T_{01} is the path $k_{0},(2 k)_{1},(k+1)_{0},(2 k-1)_{1}, \ldots,\left(k+\frac{k}{2}+1\right)_{1},(k+$ $\left.\frac{k}{2}\right)_{0},\left(k+\frac{k}{2}\right)_{1},\left(k+\frac{k}{2}+1\right)_{0}, \ldots,(2 k-1)_{0},(k+1)_{1},(2 k)_{0}, k_{1}$ for even k and $k_{0},(2 k)_{1},(k+1)_{0},(2 k-1)_{1}, \ldots,\left(k+\frac{k+1}{2}-1\right)_{0},\left(k+\frac{k+1}{2}\right)_{1},\left(k+\frac{k+1}{2}\right)_{0},(k+$ $\left.\frac{k+1}{2}-1\right)_{1}, \ldots,(2 k-1)_{0},(k+1)_{1},(2 k)_{0}, k_{1}$ for odd k. In both cases the path has mixed edges of lengths $k, k-1, k-2, \ldots, 1,0,2 k, \ldots, k+3, k+2, k+1$.

Finally, the subtree T_{1} is the path $k_{1}, 0_{1},(k-1)_{1}, 1_{1}, \ldots,\left(\frac{k}{2}-2\right)_{1},\left(\frac{k}{2}+1\right)_{1},\left(\frac{k}{2}-\right.$ $1)_{1},\left(\frac{k}{2}\right)_{1}$ for even k and $k_{1}, 0_{1},(k-1)_{1}, 1_{1}, \ldots,\left(\frac{k-1}{2}+2\right)_{1},\left(\frac{k-1}{2}-1\right)_{1},\left(\frac{k-1}{2}+\right.$ $1_{1},\left(\frac{k-1}{2}\right)_{1}$ for odd k. In both cases the path T_{1} contains pure 11-edges of all lengths from 1 up to k.

Notice that the subtrees T_{0} and T_{01} share only a single vertex, namely k_{0}, and T_{01}, T_{1} also share a single vertex k_{1}. Therefore, we obtain a blended labeling of a broom $B_{4 k+2}(r)$ for every $1 \leq r \leq k$.

Lemma 3.2 The broom $B_{4 k+2}(k+1)$ allows a blended labeling for $k \geq 2$.

Fig. 3. Broom $B_{4 k+2}(r)$ for even k and odd r.
PROOF. The proof is constructive. We divide the construction into two cases.

Case 1. Let k be even. We split the broom $B_{4 k+2}(k+1)$ into four subtrees $T_{1}, T_{2}, T_{3}, T_{4}$, and a single edge. T_{1} is a star $K_{1, k+1}, T_{2}, T_{3}$ are paths of length k and T_{4} is a path of length $k-1$. Finally, we add one missing edge; see Fig 4.

The subtree T_{1} contains pure 00 -edges $\left(k_{0}, 0_{0}\right),\left(k_{0}, 1_{0}\right),\left(k_{0}, 2_{0}\right), \ldots,\left(k_{0},(k-\right.$ $1)_{0}$) of lengths $k, k-1, k-2, \ldots, 1$ and the mixed edge $\left(k_{0}, k_{1}\right)$ of length 0 . The subtree T_{2} is the path $k_{0},(2 k)_{1},(k+1)_{0},(2 k-1)_{1}, \ldots,\left(k+\frac{k}{2}+1\right)_{1},\left(k+\frac{k}{2}\right)_{0}$ with mixed edges of lengths $k, k-1, k-2, \ldots, 1$. The subtree T_{3} is the path $(k+1)_{1}, 0_{1},(k-1)_{1}, 1_{1},(k-2)_{1}, 2_{1}, \ldots,\left(\frac{k}{2}-1\right)_{1},\left(\frac{k}{2}\right)_{1}$ with pure 11-edges of all lengths from 1 up to k. The subtree T_{4} is the path $(k+1)_{1},(2 k)_{0},(k+2)_{1},(2 k-$ $1)_{0}, \ldots,\left(k+\frac{k}{2}\right)_{1},\left(k+\frac{k}{2}+1\right)_{0}$ with mixed edges of lengths $k+2, k+3, k+4, \ldots, 2 k$. Notice that T_{1}, T_{2} share only the vertex k_{0} and T_{3}, T_{4} also share only a single vertex $(k+1)_{1}$. Moreover, T_{1} together with T_{2} form one component and T_{3} together with T_{4} form another component. By adding the last mixed edge $\left(\left(k+\frac{k}{2}\right)_{0},\left(\frac{k}{2}\right)_{1}\right)$ of the so far unused length $k+1$ we obtain the broom $B_{4 k+2}(k+1)$ with a blended labeling.

Case 2. Let k be odd. Again we split $B_{4 k+2}(k+1)$ into four subtrees T_{1}, T_{2}, T_{3}, T_{4}, and a single edge; see Fig. 5. T_{1} is the star $K_{1, k+1}, T_{2}, T_{3}$ are paths of

Fig. 4. Broom $B_{4 k+2}(k+1)$ for even k.
lengths k and T_{4} is a path of length $k-1$.
The subtree T_{1} contains pure 00 -edges $\left(k_{0}, 0_{0}\right),\left(k_{0}, 1_{0}\right),\left(k_{0}, 2_{0}\right),\left(k_{0},(k-1)_{0}\right)$ of lengths $k, k-1, k-2, \ldots, 1$ and the mixed edge $\left(k_{0}, k_{1}\right)$ of length 0 . The subtree T_{2} is the path $k_{0},(2 k)_{1},(k+1)_{0},(2 k-1)_{1}, \ldots,\left(k+\frac{k+1}{2}-1\right)_{0},\left(k+\frac{k+1}{2}\right)_{1}$ with mixed edges of lengths $k, k-1, k-2, \ldots, 1$. The subtree T_{4} is the path $(k+1)_{1},(2 k)_{0},(k+2)_{1},(2 k-1)_{0}, \ldots,\left(k+\frac{k+1}{2}-1\right)_{1},\left(k+\frac{k}{2}+1\right)_{0},\left(k+\frac{k+1}{2}\right)_{1}$ with mixed edges of lengths $k+2, k+3, k+4, \ldots, 2 k$. Observe that the vertex $\left(k+\frac{k+1}{2}\right)_{0}$ is isolated and T_{2}, T_{4} share only the vertex $\left(k+\frac{k+1}{2}\right)_{1}$ and T_{1}, T_{2} share the vertex k_{0}.

Now we add the mixed edge $\left(\left(k+\frac{k+1}{2}\right)_{0},\left(\frac{k+1}{2}\right)_{1}\right)$ of the only missing length $k+1$ and show by induction that we can construct the path T_{3} so that it has the endvertices $(k+1)_{1}$ and $\left(\frac{k+1}{2}\right)_{1}$. Moreover, T_{3} will have k pure 11-edges of all lengths from 1 up to k and $V\left(T_{3}\right)$ is the set $\left\{0_{1}, 1_{1}, 2_{1}, \ldots,(k-1)_{1},(k+1)_{1}\right\}$ for every $k \geq 3$.

First, we show that above mentioned path T_{3} exists for $k=3,5,7$.

- $k=3: T_{3}$ is the path $4_{1}, 1_{1}, 0_{1}, 2_{1}$.
- $k=5: T_{3}$ is the path $6_{1}, 1_{1}, 4_{1}, 0_{1}, 2_{1}, 3_{1}$.
- $k=7: T_{3}$ is the path $8_{1}, 1_{1}, 5_{1}, 0_{1}, 6_{1}, 3_{1}, 2_{1}, 4_{1}$.

Fig. 5. Broom $B_{4 k+2}(k+1)$ for odd $k, k \equiv 1 \quad(\bmod 6)$.
Assume that T_{3} exists for an arbitrary odd $k \geq 3$. We show that T_{3} also exists for $\bar{k}=k+6$ The endvertices of T_{3} are $\left(\frac{k+1}{2}\right)_{1}$ and $(k+1)_{1}, V\left(T_{3}\right)=$ $\left\{0_{1}, 1_{1}, 2_{1}, \ldots,(k-1)_{1},(k+1)_{1}\right\}$. There are k 11-edges of all lengths from 1 up to k in T_{3}. Now we relabel the vertices in $V\left(T_{3}\right)$. If a vertex was labeled by i_{1} then it gets the label $(i+3)_{1}$. Hence, $V\left(T_{3}\right)=\left\{3_{1}, 4_{1}, 5_{1}, \ldots,(k+2)_{1},(k+4)_{1}\right\}$ and all lengths of edges remain the same. To construct a path \bar{T}_{3}, for \bar{k}, we add six vertices with labels $0_{1}, 1_{1}, 2_{1},(k+3)_{1},(k+5)_{1},(k+7)_{1}$ and the pure 11-edges $\left((k+7)_{1}, 1_{1}\right),\left(1_{1},(k+5)_{1}\right),\left((k+5)_{1}, 0_{1}\right)$ of lengths $k+6, k+4, k+5$ and the edges $\left(0_{1},(k+3)_{1}\right),\left((k+3)_{1}, 2_{1}\right),\left(2_{1},(k+4)_{1}\right)$ of lengths $k+3, k+1, k+2$. Thus, $V\left(\bar{T}_{3}\right)=0_{1}, 1_{1}, 2_{1}, \ldots,(k+5)_{1},(k+7)_{1}$. Notice that the vertex $(k+3)_{1}$ is not incident with the mixed edge of length 0 , while the vertex $(k+6)_{1}$ is. We obtain the path \bar{T}_{3} and the proof is complete.

Eldergill [1] proved that ($n, 2, n-1$)-caterpillar (the numbers $n, 2, n-1$ are the degrees of the vertices along the spine) of diameter 4 does not factorize $K_{2 n}$ for every $n \geq 3$. The broom $B_{6}(2)$ is a special case of such caterpillar for $n=3$.

Lemma 3.3 The broom $B_{6}(2)$ does not factorize K_{6}.
Theorem 3.4 If n is odd and at least 3, then $B_{2 n}(r)$ factorizes $K_{2 n}$ if and
only if $r \leq \frac{n+1}{2}$ and $B_{2 n}(r) \not \neq B_{6}(2)$.
The proof follows immediately from Lemmas 3.1-3.3 and Theorem 1.5.

4 Construction of a broom-factorization for even n

In this section we consider even n and let $k=n / 2$.
Lemma 4.1 The broom $B_{4 k}(r)$ allows a swapping labeling when $k \geq 2$ and $1 \leq r \leq k-1$.

PROOF. The proof is constructive. We split the broom $B_{4 k}(r)$ into three subtrees T_{0}, T_{01}, and T_{1}; see Figs. 6 and 7 . T_{0} will contain only pure 00 -edges, T_{01} will contain only mixed edges and T_{1} will contain only pure 11-edges. Pure edges of length k in T_{0} and T_{1} will be swapped with mixed edges of length k in accordance with the swapping labeling.

Fig. 6. Broom $B_{4 k}(r)$ for odd k and odd r.
The subtree T_{0} is a broom $B_{k+1}(r)$ with r bristles and a broomstick of length $k-r$. The bristles are made by pure 00 -edges $\left(\left(k-\frac{k-r}{2}\right)_{0}, x_{0}\right)$ for $x=\frac{k-r}{2}, \frac{k-r}{2}+$

Fig. 7. Broom $B_{4 k}(r)$ for even k and odd r.
$1, \ldots, k-\frac{k-r}{2}-1$ when $k-r$ is even and $\left(\left(\frac{k-r-1}{2}\right)_{0}, x_{0}\right)$ for $x=\frac{k-r-1}{2}+1, \frac{k-r-1}{2}+$ $2, \ldots, k-\frac{k-r-1}{2}-1$ when $k-r$ is odd. In both cases the lengths of bristles are $1,2, \ldots, r$. The broomstick is the path $k_{0}, 0_{0},(k-1)_{0}, 1_{0} \ldots,\left(\frac{k-r}{2}-2\right)_{0},(k-$ $\left.\frac{k-r}{2}+1\right)_{0},\left(\frac{k-r}{2}-1\right)_{0},\left(k-\frac{k-r}{2}\right)_{0}$ for even $k-r$ and $k_{0}, 0_{0},(k-1)_{0}, 1_{0}, \ldots,(k-$ $\left.\frac{k-r-1}{2}+1\right)_{0},\left(\frac{k-r-1}{2}-1\right)_{0},\left(k-\frac{k-r-1}{2}\right)_{0},\left(\frac{k-r-1}{2}\right)_{0}$ for odd $k-r$. In the both cases the lengths of the pure 00-edges along the broomstick are $k, k-1, k-$ $2, \ldots, r+2, r+1$.

The subtree T_{01} is the path $k_{0},(2 k-1)_{1},(k+1)_{0},(2 k-2)_{1}, \ldots,\left(k+\frac{k}{2}-1\right)_{0},(k+$ $\left.\frac{k}{2}\right)_{1},\left(k+\frac{k}{2}\right)_{0},\left(k+\frac{k}{2}-1\right)_{0}, \ldots,(2 k-2)_{0},(k+1)_{1},(2 k-1)_{0}, k_{1}$ for even k and $k_{0},(2 k-1)_{1},(k+1)_{0},(2 k-2)_{1}, \ldots,\left(k+\frac{k-1}{2}+1\right)_{1},\left(k+\frac{k-1}{2}\right)_{0},\left(k+\frac{k-1}{2}\right)_{1},(k+$ $\left.\frac{k-1}{2}+1\right)_{0}, \ldots,(2 k-2)_{0},(k+1)_{1},(2 k-1)_{0}, k_{1}$ for odd k. In both cases the path has mixed edges of lengths $k-1, k-2, k-3, \ldots, 1,0,2 k-1, \ldots, k+3, k+2, k+1$. The mixed edge of length k is missing.

Finally, the subtree T_{1} is the path $k_{1}, 0_{1},(k-1)_{1}, 1_{1}, \ldots,\left(\frac{k}{2}-2\right)_{1},\left(\frac{k}{2}+1\right)_{1},\left(\frac{k}{2}-\right.$ $1)_{1},\left(\frac{k}{2}\right)_{1}$ for even k and $k_{1}, 0_{1},(k-1)_{1}, 1_{1}, \ldots,\left(\frac{k-1}{2}+2\right)_{1},\left(\frac{k-1}{2}-1\right)_{1},\left(\frac{k-1}{2}+\right.$ $1_{1},\left(\frac{k-1}{2}\right)_{1}$ for odd k. In the both cases the path T_{1} contains pure 11-edges of all lengths from 1 up to k.

Now based on the labeling described above we obtain $2 k$ pairwise edge disjoint factors of $K_{4 k}$ by adding $0,1, \ldots, 2 k-1$, respectively, to all vertex labels (addition is performed modulo $2 k$) According the definition of swapping labeling the first k factors contain pure edges $\left(0_{0}, k_{0}\right)$ and $\left(0_{1}, k_{1}\right)$ (both are of length $k)$. For the next k factors these will be replaced by mixed edges $\left(0_{0}, k_{1}\right)$ and $\left(0_{1}, k_{0}\right)$ of length k for each parity of k.

It is easy to observe (Figs. 6 and 7), that subtrees T_{0} and T_{01} share only one vertex, namely k_{0} in the first k factors and k_{1} in the next k factors. Also T_{01}, T_{1} share a single vertex k_{1} in the first k factors and k_{0} in the next k factors. Therefore, broom $B_{4 k}(r)$ has a swapping labeling for every $1 \leq r \leq k-1$.

Lemma 4.2 The broom $B_{4 k}(k)$ of order $4 k$ with k bristles has a swapping labeling for all $k \geq 4$.

PROOF. To construct the swapping labeling we consider three cases.
Case 1. Let $k \geq 7$ be odd. The following k edges make bristles of $B_{4 k}(k)$: $k-1$ edges $\left((k+2)_{0}, x_{0}\right)$ for $x=0,1, k+3, k+4, \ldots, 2 k-1$ and moreover the edge $\left((k+2)_{0},(k+1)_{1}\right)$. In this way all pure 00 -lengths except k and mixed length $2 k-1$ are accommodated.

In the next step of the construction we divide the broomstick P of length $3 k-1$ into three segments T_{1}, T_{2}, T_{3}, and one single edge. The first segment of P is a path T_{1} of length 3 : $(k+2)_{0}, 2_{0}, 2_{1},(k+2)_{1}$.

The second segment, a path T_{2} of length $2 k-4$ has endvertices $(k+2)_{1}$ and 0_{1}. The edges of T_{2} are: $\left((k+2-x)_{0},(k+2+x)_{1}\right)$ for $x=1, \ldots, \frac{k-1}{2}$, $\left((k+2-y)_{0},(k+1+y)_{1}\right)$ for $y=1,2, \ldots, \frac{k-1}{2}, \frac{k+3}{2}, \frac{k+5}{2}, \ldots, k-1$, and $((k+$ $\left.2-z)_{0},(k+z)_{1}\right)$ for $z=\frac{k+3}{2}, \frac{k+5}{2}, \ldots, k-1$.

The third segment, a path T_{3}, has endvertices $\left(\frac{k-1}{2}\right)_{1}, 0_{1}$, internal vertices in the set $\left\{1_{1}, 3_{1}, 4_{1}, \ldots,\left(\frac{k-3}{2}\right)_{1},\left(\frac{k+1}{2}\right)_{1}, \ldots, k_{1}\right\}$ and consists of $k-1$ edges. To construct T_{3} we apply induction on k. T_{3} exists for $k=7,9,11$:

- $k=7: T_{3}$ is the path $3_{1}, 4_{1}, 7_{1}, 5_{1}, 1_{1}, 6_{1}, 0_{1}$,
- $k=9: T_{3}$ is the path $4_{1}, 9_{1}, 5_{1}, 3_{1}, 6_{1}, 7_{1}, 1_{1}, 8_{1}, 0_{1}$,
- $k=11: T_{3}$ is the path $5_{1}, 11_{1}, 4_{1}, 8_{1}, 3_{1}, 6_{1}, 7_{1}, 9_{1}, 1_{1}, 10_{1}, 0_{1}$.

Now suppose that assertion is true when k is even and at least 10 . We are going to construct a path \bar{T}_{3} for $\bar{k}=k+6$. Apply the following relabeling for vertices of $T_{3}: i \rightarrow i+3$, for $i=0,1,3,4, \ldots, k$. Let \bar{T}_{3} include all edges of T_{3} and a path of length 6: $3_{1},(\bar{k}-1)_{1}, 5_{1}, \bar{k}_{1}, 1_{1},(\bar{k}-2)_{1}, 0_{1}$. Thus \bar{T}_{3} has endvertices $\left(\frac{\bar{k}-1}{2}\right)_{1}, 0_{1}$ and its internal vertices are $1_{1}, 3_{1}, 4_{1}, \ldots,\left(\frac{\bar{k}-3}{2}\right)_{1},\left(\frac{\bar{k}+1}{2}\right)_{1}, \ldots, \bar{k}_{1}$; see Fig. 8.

The last part of P is the single edge $\left(\left(\frac{k+3}{2}\right)_{0},\left(\frac{k-1}{2}\right)_{1}\right)$. One can easily check that T_{1} covers pure lengths k of both types and mixed length $0, T_{2}$ covers all mixed lengths except $0, k, 2 k-2$ and $2 k-1, T_{3}$ covers all pure 11-lengths except k, and the single edge has mixed length $2 k-2$.

Fig. 8. Broom $B_{4 k}(r)$ for odd $k \geq 7$ and $r=k$ along with the induction on k.
Case 2. Let $k \geq 10$ be even. The following k edges make bristles of $B_{4 k}(k)$: $k-1$ edges $\left((k+2)_{0}, x_{0}\right)$ for $x=0,1, \frac{k}{2}, \frac{k}{2}+1, k+3, k+4, \ldots, \frac{3 k}{2}+2, \frac{3 k}{2}+$ $5, \frac{3 k}{2}+6, \ldots, 2 k-1$ and moreover the edge $\left((k+2)_{0}, 4_{1}\right)$. In this way all pure 00 -lengths except k and mixed length $k+2$ are accommodated.

Next we construct a path P of length $3 k-1$ composed of four segments T_{1}, T_{2}, T_{3}, and T_{4}. The first segment of P is a path T_{1} of length 3 : $(k+2)_{0}, 2_{0}, 2_{1},(k+$ $2)_{1}$. The second segment, a path T_{2} of length $2 k-6$, has endvertices $(k+2)_{1}$ and 0_{1}. The edges of T_{2} are: $\left((k+2-x)_{0},(k+2+x)_{1}\right)$ for $x=1, \ldots, \frac{k}{2}-$ $1,\left((k+2-y)_{0},(k+1+y)_{1}\right)$ for $y=1,2, \ldots, \frac{k}{2}, \frac{k}{2}+3, \frac{k}{2}+4, \ldots, k-1$, $\left((k+2-z)_{0},(k+z)_{1}\right)$ for $z=\frac{k}{2}+3, \frac{k}{2}+4, \ldots, k-1$ and moreover the edge $\left(\left(\frac{k+4}{2}\right)_{0},\left(\frac{3 k+6}{2}\right)_{1}\right)$. The addition is performed modulo $2 k$, if necessary. The third segment, a path T_{3}, has endvertices $\left(\frac{k+12}{2}\right)_{1}, 0_{1}$, internal vertices in the set $\left\{1_{1}, 3_{1}, 5_{1}, 6_{1}, \ldots,\left(\frac{k+10}{2}\right)_{1},\left(\frac{k+14}{2}\right)_{1}, \ldots,(k+1)_{1}\right\}$ and consists of $k-1$ edges. To construct T_{3} we apply induction on k. T_{3} exists for $k=10,12,14,16$ and

18:

- $k=10: T_{3}$ is the path $0_{1}, 9_{1}, 1_{1}, 7_{1}, 8_{1}, 5_{1}, 3_{1}, 10_{1}, 6_{1}, 11_{1}$,
- $k=12: T_{3}$ is the path $0_{1}, 6_{1}, 11_{1}, 7_{1}, 9_{1}, 8_{1}, 5_{1}, 13_{1}, 3_{1}, 10_{1}, 1_{1}, 12_{1}$,
- $k=14: T_{3}$ is the path $0_{1}, 7_{1}, 9_{1}, 10_{1}, 5_{1}, 11_{1}, 8_{1}, 12_{1}, 1_{1}, 14_{1}, 6_{1}, 15_{1}, 3_{1}, 13_{1}$,
- $k=16: T_{3}$ is the path $0_{1}, 13_{1}, 1_{1}, 16_{1}, 5_{1}, 8_{1}, 12_{1}, 6_{1}, 15_{1}, 7_{1}, 17_{1}, 3_{1}, 10_{1}, 11_{1}$, $9_{1}, 14_{1}$,
- $k=18: T_{3}$ is the path $0_{1}, 14_{1}, 1_{1}, 18_{1}, 3_{1}, 19_{1}, 7_{1}, 9_{1}, 12_{1}, 5_{1}, 13_{1}, 8_{1}, 17_{1}, 6_{1}$, $16_{1}, 10_{1}, 11_{1}, 15_{1}$.

Now suppose that assertion is true when k is even and at least 10 . We are going to construct a path \bar{T}_{3} for $\bar{k}=k+10$. Apply the following relabeling for vertices of $T_{3}: i \rightarrow i+5$, for $i=0,1,3,5,6 \ldots, k+1$. Let \bar{T}_{3} include all edges of T_{3} and a path of length $10: 5_{1},(\bar{k}-2)_{1}, 3_{1},(\bar{k}+1)_{1}, 7_{1},(\bar{k}-$ $1_{1}, 9_{1}, \bar{k}_{1}, 1_{1},(\bar{k}-3)_{1}, 0_{1}$. Thus \bar{T}_{3} has endvertices $\left(\frac{\bar{k}+12}{2}\right)_{1}, 0_{1}$ and its internal vertices are $1_{1}, 3_{1}, 5_{1}, 6_{1}, \ldots,\left(\frac{\bar{k}+10}{2}\right)_{1},\left(\frac{\bar{k}+14}{2}\right)_{1}, \ldots,(\bar{k}+1)_{1}$; see Fig. 9. The last segment of P is the path $T_{4}:\left(\frac{k+12}{2}\right)_{1},\left(\frac{3 k+6}{2}\right)_{0},\left(\frac{3 k+4}{2}\right)_{1},\left(\frac{3 k+8}{2}\right)_{0}$ of length 3 .

One can easily check that T_{1} covers pure lengths k of both types and mixed length $0, T_{2}$ covers all mixed lengths except $0, k, k+2, k+3,2 k-2$ and $2 k-1, T_{3}$ covers all pure 11-lengths except k, and T_{4} covers mixed lengths $k+3,2 k-1$ and $2 k-2$. Notice that if we replace in previous cases in the broom $B_{4 k}(k)$ two pure edges $\left((k+2)_{0}, 2_{0}\right)$ and $\left((k+2)_{1}, 2_{1}\right)$ of the pure length k by two mixed edges $\left((k+2)_{0}, 2_{1}\right)$ and $\left((k+2)_{1}, 2_{0}\right)$ of the mixed length k then we obtain a broom isomorphic to $B_{4 k}(k)$.

Case 3. Let $k=5,6$ or 8 . The following k edges make bristles of $B_{4 k}(k)$: $k-1$ edges $\left(k_{0}, x_{0}\right)$ for $x=1,2, \ldots k-1$ and moreover the edge $\left(k_{0},(2 k-2)_{1}\right)$. The remaining part of $B_{4 k}(k)$ is a path of length $3 k-1$ and one endvertex k_{0} :

- $k=5:$ the path is $5_{0}, 0_{0}, 0_{1}, 5_{1}, 9_{0}, 6_{1}, 7_{0}, 9_{1}, 8_{0}, 2_{1}, 1_{1}, 3_{1}, 7_{1}, 4_{1}, 6_{0}$,
- $k=6$: the path is $6_{0}, 0_{0}, 0_{1}, 6_{1}, 11_{0}, 1_{1}, 10_{0}, 3_{1}, 7_{0}, 5_{1}, 8_{0}, 9_{1}, 4_{1}, 2_{1}, 11_{1}, 7_{1}, 8_{1}$, 9_{0},
- $k=8:$ the path is $8_{0}, 0_{0}, 0_{1}, 8_{1}, 15_{0}, 1_{1}, 14_{0}, 2_{1}, 13_{0}, 4_{1}, 10_{0}, 9_{1}, 11_{0}, 6_{1}, 9_{0}, 5_{1}$, $3_{1}, 10_{1}, 11_{1}, 15_{1}, 12_{1}, 7_{1}, 13_{1}, 12_{0}$.

It is routine checking that all lengths except mixed length k are used in $B_{4 k}(k)$.
Finally let $k=4$. A swapping labeling of $B_{16}(4)$ is given in Fig. 10.

Theorem 4.3 If n is even, then $B_{2 n}(r)$ factorizes $K_{2 n}$ if and only if $r \leq \frac{n}{2}$.

PROOF. For $k \geq 4$ the assertion follows from the constructions given in the proofs of Lemmas 4.1 and 4.2 and from Theorem 1.5. A construction found

Fig. 9. Broom $B_{4 k}(r)$ for even $k \geq 10$ and $r=k$ along with the induction on k.
by brute force for $k=2$ is in Fig. 11 and for $k=3$ in Fig. 12.

5 Conclusion

Theorems 3.4 and 4.3 yield our main result:

Fig. 10. A swapping labeling of $B_{16}(4)$.

Fig. 11. $B_{8}(2)$-factorization of K_{8}.

Fig. 12. $B_{12}(3)$-factorization of K_{12}.
Theorem 5.1 The broom $B_{2 n}(r)$ factorizes $K_{2 n}$ if and only if $r \leq \frac{n+1}{2}$ and $B_{2 n}(r) \not \not 二 B_{6}(2)$.

The above theorem gives a complete classification of brooms that factorize the complete graph $K_{2 n}$. In this way another step into solving the wide open general problem of tree factorizations of complete graphs is made.

Acknowledgement:

The authors wish to express their thanks to the anonymous referees and to the editor, whose comments helped improve the quality of this paper.

References

[1] Eldergill, P.: Decompositions of the complete graph with an even number of vertices. M.Sc. Thesis, McMaster University, Hamilton (1997)
[2] Fronček, D.: Bi-cyclic decompositions of complete graphs into spanning trees. Discrete Math., 307, 1317-1322 (2007)
[3] Fronček, D.: Note on factorizations of complete graphs into caterpillars with small diameters. JCMCC, 57, 179-186 (2006)
[4] Fronček, D., Kovář, P., Kovářová, T., Kubesa, M.: Factorizations of complete graphs into caterpillars of diameter 5. Discrete Math, 310, 537-556 (2010)
[5] Kovář, P. and Kubesa M.: Factorizations of Complete Graphs into Spanning Trees with All Possible Maximum Degrees. LNCS, 5874, 334-344 (2009)
[6] Kovářová, T.: Decompositions of complete graphs into isomorphic spanning trees with given diameters. JCMCC, 54, 67-81 (2005)
[7] Kovářová, T.: Fixing labelings and factorizations of complete graphs into caterpillars with diameter four. Congressus Numerantium, 168, 33-48 (2004)
[8] Kovářová, T.: Spanning Tree Factorizations of Complete Graphs, Ph.D. Thesis. VŠB - Technical University of Ostrava (2004)
[9] Kubesa, M.: Spanning tree factorizations of complete graphs. JCMCC, 52, 3349 (2005)
[10] Kubesa, M.: Factorizations of complete graphs into caterpillars of diameter four and five. Ph.D. Thesis, VŠB - Technical University of Ostrava (2004)
[11] Meszka, M.: Solution to the problem of Kubesa. Discuss. Math. Graph Theory, 28, 375-378, (2008)

