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Abstract 

The dependency structure of random sources plays a crucial role in portfolio theory and in several pricing and 
risk management problems. In this paper, we discuss the possible usage of alternative association measures in 
portfolio problems. Among association measures, we highlight those that are consistent with the choices of risk-
averse investors and we characterise semidefinite positive association measures. Additionally, we propose new 
portfolio selection problems that optimise the association between the portfolio and market benchmarks and 
follow a dimensionality reduction problem. Finally, by carrying out an empirical analysis, we show the impact of 
selected association measures within the portfolio problem. This analysis proves that the proper usage of both 
a risk measure and an association measure can increase the portfolio performance substantially. 
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1. Introduction 

The dependency structure of random sources plays 
a crucial role in portfolio theory and in several pricing 
and risk management problems. In particular, the 
classic Pearson linear correlation measure is regularly 
used to measure and optimise the dispersion of portfo-
lio returns and to reduce the dimensionality of large-
scale portfolio problems. However, it is not clear why 
this measure of linear correlation is still so popular 
despite its drawbacks. 

For example, it is well known that Pearson linear 
correlation works well only with elliptically distribut-
ed vectors (that admit a finite variance/covariance 

matrix). Unfortunately, the Gaussian distributional 
assumption of return series is usually rejected, see e.g. 
Mandelbrot (1963a,b) and Fama (1965), or Rachev 
and Mittnik (2000) and the references therein. Moreo-
ver, the empirical evidence (see, among others, Ra-
chev et al. (2008) and Biglova et al. (2009)) suggests 
that the dependence model should account for the 
dependence of tail events (huge losses go together). 
Many other measures have been proposed in the 
literature to deal and summarise the dependence 
among random variables (see, among others, Scarsini 
(1984), Cherubini et al. (2004), Nelsen (2006) and the 
references therein). However, most of these measures 
cannot be used directly to order investors’ choices 
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since they are not consistent with investors’ prefer-
ences. 

In this paper, we propose using alternative associa-
tion measures in order to reduce the dimensionality of 
large-scale portfolio selection problems and applying 
them subsequently within the optimal portfolio selec-
tion problem. In order to show the performance of 
both steps we provide an empirical analysis on the US 
stock market. 

We proceed as follows. In Section 2, we summa-
rise some of the basic characteristics of concord-
ance/association measures and characterise the most 
important examples. In Section 3, we discuss when 
and how we can use association measures for portfolio 
problems. In Section 4, we provide the results of an 
empirical comparison of selected portfolio strategies 
and the principal findings are summarised in Section 
5. 

2. Concordance and semidefinite positive associa-
tion measures 

One of the most essential tasks of financial decision-
making is the measurement of the dependency among 
the realisations of particular random variables. Specif-
ically, let us consider n risky assets with gross returns1 

[ ] .,,,= 21
′

nzzzz   As a consequence of the Sklar 
theorem (Sklar, 1959), the joint distribution function is 
given by:  
 ( ) ( ) ( ) ( )( ),,,,= 2211 nnzzz xFxFxFF Cxz  (1) 

where ( ) ( )iiiiz xzxF ≤Pr=  are the marginal distribu-

tion functions and 0,1][0,1][: →nC  is the copula 
function. The copula function can therefore be defined 
by inverting (1) as follows: 
 ( ) ( ) ( ) ( )( ).,,,= 1

2
1

21
1

1 nnzzz uFuFuFF −−− zuC  (2) 
Therefore, the dependency among particular variables 
is fully described by a suitable copula function C . It 
follows that any copula function can be regarded as 
the joint distribution function of marginal distribution 
functions, although in several financial contexts it is 
convenient to express the dependency between ran-
dom variables using a single number (more generally, 
for n random variables we get an n-dimensional 

                                                             
1 Generally, we assume the discrete definition of gross 
returns between time t and time t + 1 of asset i as 

ti

ttiti
ti S

dS
z

,

1],[,1,
1, = ++
+

+ , where tiS ,  is the price of the i-th asset 

at time t and 1],[, +ttid  is the total amount of cash dividends 
between t and t + 1. 

matrix). Moreover, copula functions are useful when 
defining these dependency measures. 

Generally, a concordance measure is used to 
measure the concordance/dependence association 
between random variables. In the following example 
(Nelsen, 2006), two random variables ( )YX ,  with 
independent replications, ( )11 ,YX  and ( ),, 22 YX  are 
concordant if 21 < XX  ( )21 > XX  implies 21 < YY  
( ).> 21 YY  Similarly, the two variables are discordant if 

21 < XX  ( )21 > XX  implies 21 > YY  ( ).21 YY <  The 
concordance measures are easily definable by copula 
functions, since they rely only on the joint features, 
being not related to the marginal characteristics. 

Formally, a concordance measure ρ defined on 
a space of random variables H is any function that 
satisfies the following seven properties: 

1. ;1,1][: −→×HHρ   
2. for any random variable :HX ∈  

( ) 1;=, XXρ  ( ) 1;=, −−XXρ   
3. ( ) ( );,=, XYYX ρρ   
4. ( ) ( ) ( );,=,=, YXYXYX ρρρ −−−   
5. if X and Y are independent random variables, 

then ( ) 0;=,YXρ   
6. if we consider two bivariate random vectors 

( ),,= 21 XXX  ( ),,= 21 YYY  with the same mar-
ginal distributions ( )21 , FF  such that 

( ) ( ) ( )xx YX FxXxXF ≤≤≤ 2211 ,Pr=  for any 
( ) 2

21, Rxx ∈=x  (i.e. X dominates Y with re-
spect to concordance ordering2) then 
( ) ( )2121 ,, YYXX ρρ ≤  (or 

21 CC ρρ ≤  where ,1C  

2C  are the copulas associated with bivariate 
vectors X, Y);  

7. given a sequence of continuous bivariate ran-
dom vectors ( ){ } 1, ≥nnn YX  with copulas nC  that 
converge pointwise to the copula C , then 

nCρ  

converge to .Cρ  

Observe that ( ) ( ) ( )( )221121 ,=, XhXhXX ρρ  for any 
concordance measure ρ, for any two continuous 

                                                             
2 Similarly, we say that X dominates Y in the sense of 

concordance ordering if and only if the copulas C1, C2 

associated to X, Y are ordered i.e. .C21 ≤C  This definition 
is also equivalent to saying that ( ) ( )( )≤2211 ,cov XhXh  

( ) ( )( )2211 ,cov YhYh  for any increasing function 21,hh  such that 
covariance exists. 
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random variables ( )21, XX  and for any two strictly 
monotone (either both increasing or both decreasing) 
functions ,1h  .2h  The Pearson correlation coefficient 
is not a concordance measure, since it does not satisfy 
Property 7 of the concordance measures. For further 
details on all properties of concordance measures and 
their proofs, see Cherubini et al. (2004) and Nelsen 
(2006). 

The most popular measures of concordance are 
Kendall's tau, Spearmann's rho, Gini's gamma and 
Blomqvist's beta. We will state some examples below. 
Example 1. Kendall's tau, Kτ  (also called Kendall 
correlation) is defined as the probability of concord-
ance reduced by the probability of discordance: 

 
( ) ( )( )( )

( )( )( ),0<Pr
0>Pr=,

2121

2121

YYXX
YYXXYXK

−−−
−−τ

 (3) 

where ( )11,YX  and ( )22 ,YX  are independent replica-
tions of ( ).,YX  Therefore: 

( ) ( )( )( )( ),E=, 2121 YYXXsignYXK −−τ  

where 1=)(xsign  if 0>x , ( ) 0=xsign  if 0=x  and 
( ) 1= −xsign  if 0<x . Clearly, Kendall's tau can be 

defined in terms of the copula function: 

 ( ) ( ) ( ) 1,,d,4=
1

0

1

0
−∫∫ vuvuK CCCτ  (4) 

where C  is the copula associated to the bivariate 
vector ( ).,YX  

Example 2. The second most popular measure of 
concordance, Spearman's rho, Sρ , is given by:  

 
( )( )( )
( )( )( )

( )( )( )( ),E3=
0<Pr

0>Pr3=

3121

3121

3121

YYXXsign
YYXX

YYXXS

−−
−−−

−−ρ

  

(5) 

where ( ),, 11 YX  ( )22 ,YX  and ( )33,YX  are independent 
replications of ( ).,YX  

This measure is the Pearson linear correlation co-
efficient applied to the marginal distribution functions 
of random variables, i.e.:  

( ) ( )( ) ( ) ( )( )
( )( ) ( )( )

.
var,var
,cov=,cor=

YFXF
YFXFYFXF

YX

YX
YXSρ  (6) 

It follows that it can be regarded as the correlation of 
copula functions:  

 
( ) ( )

( ) 3,dd,12=

3,d12=,
1

0

1

0

1

0

1

0

−

−

∫∫
∫∫

vuvu

vuuvYXS

C

Cρ
 (7) 

where C  is the copula associated to the bivariate 
vector ( ).,YX  

Example 3. Another measure used to quantify con-
cordance among random variables is Gini's gamma, 

.Gγ  This can be defined in terms of copula functions 
as follows: 

 ,d)],([d),1(4=)(
1

0

1

0 



 −−− ∫∫ uuuuuuuG CCCγ  (8) 

where C  is the copula associated to the bivariate 
vector ( ).,YX  Its sample estimation is given by ranks 

ip  and iq  of the random variables X and Y, respec-
tively: 

( ) .|||1|
/2

1=,
1=1=

2 




 −−−−+
 ∑∑ ii

n

i
ii

n

i
G qpnqp

n
YXγ (9) 

Example 4. Blomqvist’s beta, ,Bβ  is defined as 
follows:  

( )
( )( ) ( )( )

( )( )( )( ),~~E
0]<~~[Pr0]>~~[Pr

=,

yYxXsign
yYxXyYxX

YXB

−−=
−−−−−

β
 (10) 

where x~  and y~  are the medians of given continuous 
random variables X and Y, respectively. With certain 
simplifications, this measure may also be rewritten in 
terms of copula functions: 

 1.
2
1,

2
14=)( −






CCBβ  (11) 

The proof that all these measures are really measures 
of concordance can be found, for example, in Nelsen 
(2006). 
Example 5. A further example shows us a generalisa-
tion of the Pearson correlation:  

( )

,|E,|Ecor

=,
>,2)(min<

1

><><

1

><><

1,

2
2222

p
pppp

YYXX

YXOp














 





 ℑ−





 





 ℑ−

ℑ

where ( ) ,>< pp XXsignX =  1ℑ  is a sub-sigma algebra 

of ℑ  (i.e. ℑ⊂ℑ1 ) and X  and Y  are not 1ℑ  measur-
able. 

It is evident that the measure above is a logical ex-
tension of the Pearson correlation measure, since we 
obtain the Pearson correlation measure if 2=p  and 

{ }.;=1 Ω∅ℑ  

For example, we can use sigma algebra 1ℑ  gener-
ated by a finite partition of ,Ω  that is, 

{ } ,>1,...,=;=<1 niAiℑ  where ,ℑ∈iA  ,= ∅∩ ji AA  
ji ≠∀  and .=1= Ω∪ i

n
i A  In portfolio problems, we can 

think that: 
( ){ },= 1

1
1 α−≤

bzb FzA  ( ) ( ){ }ibzbibzi FzFA αα 1
1

1 <= −
−

− ≤  
for i =2,..., ,1−n  

( ){ },>= 1
1

−
−

nbzbn FzA α  

where ,1<<...<<0 11 −nαα and 

DSpace VSB-TUO http://hdl.handle.net/10084/90148



 Ekonomická revue – Central European Review of Economic Issues, 14, 2011 260 

( ) ( ){ }ββ ≥≤− uzuF bbz
Pr|inf=1  

and bz  is a benchmark of the market.3 Under these 
assumptions, the conditional expectation can be easily 
estimated, since it is given by the simple function: 

( )( ) ( ) ( ) ,Pr
Pr

1=/ ][
1=

1 Ω∈∀ℑ ∫∑ ∈ wXd
A

IwXE
iA

i
iAwX

n

i

where  

 ( )
( )



 ∈

∈ otherwise.0
,if1

=][

AwX
I AwX  

Given a sample of n  i.i.d. copies ( )ii YX ,  of the 
bivariate vector ( )YX ,  and assuming a suitable sigma 
algebra 1ℑ  as above we get: 

• ( )
>/2<

#
1 p

iAiX
i

X
AX ∑ ∈∈

 (where ( )AX i ∈#  is the 

number of observations of iX  belonging to   
A ). This is a consistent estimator of 

( ) Pr
Pr

1 >/2< dX
A

p

A∫  and thus we can estimate 

( ).,
1, YXOp ℑ  

3. The portfolio dimensional problem 

Papp et al. (2005) and Kondor et al. (2007) showed 
that the number of observations should increase 
proportionally with the number of assets in order to 
get a good approximation of the portfolio risk/reward 
measures. Therefore, it is necessary to find the right 
trade-off between a statistical approximation of the 
historical series depending only on a few parameters 
and the number of historical observations. In practice, 
portfolio managers reduce the dimensionality of the 
problem approximating the return series with a k-fund 
separation model (or other regression-type models) 
that depends on an adequate number (not too large) of 
parameters. 

Thus, we can perform a principal component anal-
ysis (PCA) of the gross returns of the stocks used in 
order to identify the few factors (portfolios) with the 
highest return variability (see Biglova et al. (2009)). 
Therefore, we replace the original n correlated time 
series iz  with the n uncorrelated time series iR  

                                                             
3 Generally, we can distinguish two different types of 
benchmarks: artificial benchmarks and traded benchmarks. 
Traded benchmarks are some indices traded on the market 
that represent some sectors and/or markets. For these 
benchmarks we can obtain historical observations. Artificial 
benchmarks are not traded on the market and they are 
artificially created by portfolio manager to represent the 
best/worst indicators of the assets used. 

assuming that each iz  is a linear combination of the 
series .iR  This is always possible when we use 
a linear correlation measure .ρ  Then, we implement 
a dimensionality reduction by choosing only those 
factors whose variability is significantly different from 
zero. We call portfolio factors if  the s time series iR  
with a significant dispersion measure, while the 
remaining sn −  series with very small dispersion 
measures are summarised by an error. Thus, each 
series iz  is a linear combination of the factors plus a 
small uncorrelated noise: 

 .==
1=1=1=

ijij

s

j
jij

n

sj
jij

s

j
i faRafaz ε++ ∑∑∑

+

 (12) 

We can apply the PCA either to the Pearson correla-
tion matrix or to any other linear correlation measure, 
for example ,][= , jiQ ρ  where ( )jiji zzO ,=

12,, ℑρ  for 

a suitable sigma algebra .1ℑ  Having identified the 

s factors, ii

n

ij zxf ∑ 1=
=

 
( ;1,...,= sj  such that 

1=2

1= k

n

k
x∑ ), which account for most of the variability 

in gross returns, we further reduce the variability of 
the error by regressing the series on the factors jf  so 
that we get:  

 .= ,
1=

,0 ijji

s

j
ii fbbz ε++∑  (13) 

Once we have reduced the dimensionality of the 
problem, we can apply the portfolio selection optimi-
sation problem: 

 

( )
( ) ( ) ( )( ),min,max,max 21 i

i
i

ix
zxzx

xq
xv zz

z
z ′−′
′
′

ρρ  (14) 

with ,1=
1=

i

n

i

x∑  0≥ix  and ( )zxv ′  and ( )zxq ′  denote the 

risk and reward measure, respectively.  
Recall from portfolio theory that the portfolio that 

provides the maximum reward per unit of risk is called 
the market portfolio. In particular, when reward and 
risk are both positive measures, the market portfolio is 
the solution for the optimisation problem (14) after 
a suitable choice of association measures. 

In our case, the portfolio selection problem (14) is 
applied to the approximated portfolio of gross returns 

,ˆˆ
1=0 jj

s

j
fxxx bbz ′+′≈′ ∑  where '

jnjj bb ]ˆ,...,ˆ[=ˆ
,1,b  is 

the vector of estimated coefficients jib ,
ˆ

 ( ).0,1,...,= sj  
Such a procedure is computationally efficient and can 
be applied using any linear correlation measure. 
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4. Empirical application using US data 

In this section, we employ various uncertainty 
measures and association measures within the portfo-
lio dimensionality reduction and large-scale portfolio 
selection, as defined in Sections 2 and 3. In this 
context, we consider 1,304 equities on the US stock 
market (450 equities from the Nasdaq and 854 equities 
from the NYSE). We use daily data for the period 
from January 1997 to December 2009 (3,258 observa-
tions in total). All data are obtained from DataStream. 

Hence, our task is to reduce the dimensionality of 
the portfolio problem in order to compare portfolio 
strategies in a large-scale framework. Generally, we 
can consider two possible criteria for selecting the best 
principal components:  

• Take the first principal components that to-
gether explain at least 50% of the dispersion; 
or 

• Take only those principal components that ex-
plain not less than %100/N of the dispersion 
measure (Kaiser-type rule) (where 1,304=N  
is the number of all assets in our empirical 
analysis). 

However, in several large portfolio problems we 
should choose only few principal components in order 
to guarantee a sufficiently good approximation to the 
optimal portfolio problem (see, among others, Papp et 
al. (2005) and Kondor et al. (2007)). According to 
these studies and considering that we have 3258 
historical observations, we can guarantee a good 
approximation of the portfolio problem if we take the 
first 35 principal components. For this reason, in the 
portfolio dimensionality reduction analysis we also 
consider the criterion: 

• Take the first 35 principal components and 
show how much dispersion is explained. 

As linear correlation measures, we consider (see 
Section 2): 

a) The Pearson correlation measure 
( )jiji zz ,cor=,ρ  and its conditional version 

( )( )0.05|,cor= 1
,

−
′≤′ zxjiji Fxzz zρ , where =zx′

i

N

i
z

N ∑ 1=

1  is the equidiversified portfolio;  

b) The linear correlation measure 
( )jiji zzO ,=

12,, ℑρ  and its conditional version 

( )( ),0.1|,= 1

12,,
−
′ℑ ≤′ zxjiji FxzzO zρ  where =zx′  

i

N

i
z

N ∑ 1=

1  and { }>1,...,10=;=<1 iAiℑ  where  

( ){ },0.1max= 1
max1
−≤

iziii FzA  

( )( ) ( ){ }iFziFA
kzkkkkzki 0.1max<10.1= 1

max
1

max
−− ≤−  

for i = 2,...,9; and ( ){ };0.9>max= 1
max10
−

kzkkk FzA  
and 

c) The linear correlation measure 
( )jiji zzO ,=

22,, ℑρ  and its conditional version 

( )( ),0.05|,= 1

22,,
−
′ℑ ≤′ zxjiji FxzzO zρ  where 

i

N

i
z

N
x ∑′

1=

1=z  and { }>1,...,40=;=<2 iAiℑ

where ( ){ },0.025max= 1
max1
−≤

iziii FzA   

( )( ) ( ){ }iFziFA
kzkkkkzki 0.025max<10.025= 1

max
1

max
−− ≤−

for 2,...,39=i ; and  
( ){ }.0.975>max= 1

max40
−

kzkkk FzA  

Thus, we suggest using different linear correlation 
measures to perform a PCA that identifies the main 
portfolio factors whose dispersion is significantly 
different from zero. These factors are then used to 
approximate the portfolio returns in large-scale portfo-
lio selection problems. Therefore, using more than 
1,300 assets of the US stock market, we analyse the 
results obtained by the PCA applied to different linear 
correlation matrices. Then, we compare the perfor-
mances of some large-scale portfolio selection strate-
gies based on different return approximations. 

In this context, we propose new portfolio optimisa-
tion models that account for logical investor behaviour 
in two ways:  

a) Investors want to maximise the concordance 
and/or association with the upper stochastic 
bound of the market; and 

b) Investors want to minimise the concordance 
and/or association with the lower stochastic 
bound of the market. 

These results are provided in Table 1. We can ob-
serve very small differences between the 

12,ℑO  and 

22,ℑO  measures, including both conditional and un-
conditional versions. Moreover, we need more than 
12% (22%)4 of the principal components to explain 
most of the variability using the Kaiser rule applied to 
the conditional (unconditional) measure. Therefore, 
the number of principal components selected with the 
Kaiser rule is still too big to apply a portfolio selection 
of type (14) to the approximated portfolio of gross 
returns. In addition, fewer than 20 components are 
sufficient to explain more than 50% of the variability 
when we use conditional correlation measures, while 
using only 35 principal components for the uncondi-
tional (conditional) correlation measures can explain 
more than 40% (61%) of the variability. 

                                                             
4 According to the results in Table 1, 12% is about 157/1304 
and 22% is about 294/1304. 
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Table 1 Portfolio dimensionality reduction: Number of 
principal components used for the Kaiser rule and to explain 
the 50% of the variability with conditional and uncondition-
al correlation measures. Similarly, percentages explained 
with the Kaiser rule and with the first 35 principal compo-
nents using conditional and unconditional correlation 
measures. 

Measure cor 
12,ℑO  

22,ℑO  

U
nc

on
di

tio
na

l # PCs Kaiser rule 294 300 300 

% explained Kaiser r. 69.48% 69.55% 69.60% 

# PCs to explain 50% 97 102 102 

% explained 35 PCs 40.92% 40.15% 40.13% 

C
on

di
tio

na
l # PCs Kaiser rule 158 157 157 

% explained Kaiser r. 99.80% 99.73% 99.73% 

# PCs to explain 50% 19 18 18 

% explained 35 PCs 61.98% 63.03% 62.95% 

Given these results, we want to compare the port-
folio strategies considering two different approxima-
tions of gross returns: one based on 35 factors derived 
from the conditional and unconditional Pearson 
correlation measures and the second based on 35 
factors derived from the conditional and unconditional 

12,ℑO  correlation measures. Here we only include 

,
12,ℑO  because we do not observe very big differences 

by using .
22,ℑO  In both cases, we regress the gross 

return series on 35 factors jf  (i.e. 

ijjijii fbbz ε++∑ ,

35

1=,0= ) and we approximate the 

vector of gross returns jjj
fbbz ˆˆˆ 35

1=0 ∑+≈  using 

ordinary least square estimates of parameters jb . In 

particular, in the first case the 35 factors jf  are 
obtained as follows:  

• The first 19 principal components obtained us-
ing the conditional Pearson correlation measure 
(since they explain at least 50% of the condi-
tional dispersion) and the first 16 principal 
components obtained using the unconditional 
Pearson correlation measure.  

Similarly, in the second case we combine:  
• The first 18 principal components obtained us-

ing the conditional 
12,ℑO  correlation measure 

(that explain at least 50% of the conditional 
dispersion) and the first 17 principal compo-
nents obtained using the unconditional 

12,ℑO  
correlation measure.  

Using an approximation of gross returns 

jjj
fbb ˆˆ 35

1=0 ∑+  the randomness of the choices is 

uniquely determined by the 35 factors .jf  We propose 

an ex-post portfolio comparison where the portfolio 
decision is taken using the approximated returns and 
the valuation of future wealth is made using real ex-
post gross returns. 

In particular, we recalibrate the portfolio every six 
months (125 working days) using the daily approxi-
mated observations over the past 10 years (i.e. 2,600 
working days). Recall that the objective function has 
already been given in (14) with a reward measure 

)ˆ( zxv ′  as follows: 
 ( ) ( )[ ].0.95|E 1−

′≥′′=′ zxFxxzxv zz  (15) 
Moreover, the risk measure 
 ( ) ( )( )zzz ˆEˆ=ˆ 0.05 xxAVaRxq ′−′′  (16) 
is the average value at risk of the centred approximat-
ed portfolio, see Rockafellar et al. (2006). 

We consider three possible strategies based on dif-
ferent association measures. The first strategy (Spe-
aAVaR) is based on the Spearman concordance 
measure (i.e. Sρρρ == 21 ); the second strategy 
(PearAVaR) is based on the Pearson correlation 
measure (i.e. cor== 21 ρρ ); and the third strategy 
(KendAVaR) uses as ρ  the Kendall correlation 
measure (i.e. Kτρρ == 21 ). 

Then, we value the effects in the portfolio selec-
tion of the two different dimensional reductions. In 
particular, we compare the ex-post wealth sample 
paths of the three strategies obtained considering 
either the dimensional reduction derived from the 
(conditional and unconditional) Pearson correlation 
measures or the reduction derived from the (condi-
tional and unconditional) 

12,ℑO  correlation measures. 
The results of this comparison are reported in  
Figure 1. 

According to the particular results, it is apparent 
that in general it is better to reduce the dimensionality 
using 

12,ℑO  (instead of using Pearson linear correla-
tion). Thus, it makes sense to introduce other linear 
correlations into the PCA and its usage in the portfolio 
reduction of dimensionality. 

Moreover, although Kendall provides the best ex-
post wealth, it also presents the highest ex-post varia-
bility. In this sense, the Spearman strategy provides 
a better performance in terms of the ex-post Sharpe 
ratio. From the figure, we can also observe that there 
is a strong impact of both recent crises; in particular, 
the usage of Kendall τ in the portfolio strategy gives 
us the highest sensitivity. 

5. Conclusion 

In this paper, we discussed when and how association 
measures can be used in portfolio problems. First, we
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Figure 1 Ex-post final wealth after dimensionality reduction 
Ex-post final wealth obtained using three portfolio strategies (PearAVaR, SpeaAVaR, KendAVaR) considering returns 
approximated either with the dimensional reduction derived from the Pearson correlation measure (namely, Approx. Pear) or 
with the reduction derived from the 

12,ℑO  correlation measures (namely, Approx. O2F). 

characterised the semidefinite positive association 
measures. Then, we discussed the use of association 
measures concerning portfolio performance optimisa-
tion and portfolio dimensionality reduction.  

In particular, we formulated new portfolio selec-
tion problems using the association between portfolios 
and the stochastic bounds of the market; this was 
based on the approximated portfolio of returns. Final-
ly, we carried out an empirical experiment showing 
the impact of particular measures of the dependency 
on (i) dimensionality reduction and (ii) portfolio 
performance. As the main results, we documented that 
the strategies using Kendall and Spearman present 
much better performances compared with similar 
strategies based on Pearson linear correlation.  

Clearly this preliminary empirical analysis is the 
starting point for several new theoretical and empirical 
studies which are necessary in order to understand the 
class of linear correlation measures and their connec-
tion with the portfolio selection problem. 
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