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Abstract 

Global optimization is an essential component of econometric modeling. Optimization in econometrics is often 
difficult due to irregular cost functions characterized by multiple local optima. The goal of this paper is to apply 
a relatively new stochastic global technique, particle swarm optimization, to the well-known but difficult disequi-
librium problem. Because of its co-operative nature and balance of local and global search, particle swarm is 
successful in optimizing the disequilibrium maximum likelihood function, providing better values than those 
reported in the literature obtained using other stochastic techniques. These encouraging results suggest that 
particle swarm optimization may be successfully applied to difficult econometrics problems, possibly in conjunc-
tion with existing methods. 
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1. Introduction 

Global optimization is the determination of the global-
ly best solution of models – which, in econometrics, 
are typically nonlinear – in the presence of many local 
minima. Optimization is a key component in estima-
tion and modeling problems that are intractable by 
using standard numerical methods (see Gilli and 
Winker, 2009). Because these problems are ubiquitous 
in econometrics, there is a growing need for robust 
and efficient global optimization techniques. Typical 
problems include long-term financial planning (see 
Maranas et al., 1997), portfolio management (see 
Dallagnol et al., 2009), time series forecasting models 
(see Behnamian and Fatemi Ghomi, 2010), estimating 
GARCH models (see Jerrell and Campione, 2001), 
and numerous applications in the emerging field of 

spatial econometrics (see LeSage, 2005), to name just 
a few. 

Because models of substantial explanatory and 
predictive power (models that are not overly-
simplified and that can be used for prediction and 
extrapolation) are frequently quite complex systems, 
global optimization has been required in parameter 
estimation problems, where data observations are 
frequently incomplete or noisy. Parameter estimation 
techniques range from ordinary least squares (OLS) 
for relatively simple autoregressive models to ad-
vanced global optimization methods (see Jerrell and 
Campione, 2001). The latter approaches are frequently 
needed when a model unit or observation reacts 
instantaneously to other units, without a time delay. 
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For these situations, techniques such as OLS fail, and 
other methods must be applied. 

In this paper, a global optimization approach based 
upon computational intelligence is proposed to specify 
a complex econometric model, and to motivate its use 
for more advanced applications. Specifically, the 
efficacy of particle swarm optimization (PSO) to 
estimate parameters of an important class of econo-
metrics problems, the disequilibrium model, is 
demonstrated. The disequilibrium problem was chosen 
primarily because of its complexity, its analytical cost 
function, and because of its utility in comparing 
various approaches (see Jerrell and Campione (2001), 
Fair and Jaffe (1972)). 

The remainder of the paper is organized as fol-
lows: Section 2 describes the maximum likelihood 
estimator (MLE) cost function, which is to be opti-
mized. Section 3 introduces particle swarm optimiza-
tion. Section 4 describes the specific econometrics 
problem studied in this paper – the disequilibrium 
problem. In Section 5, the MLE cost function for the 
disequilibrium probem is given. Improvements to and 
adaptations of the particle swarm approach to the 
disequilibrium problem are also described. Experi-
mental results on realistic simulated data are provided 
in Section 6, and comparisons are made to results 
using other optimization methods found in the litera-
ture, while Section 7 discusses these results in the 
context of other, more complex econometrics prob-
lems, and offers some suggestions for future im-
provements and directions. 

2. Fitness Functions in Econometrics 

Assume that an economic model can be represented as
( ) ttt fy ε+= βx , , where ty  is a scalar-valued obser-

vation at time tt x,  is a vector of explanatory (predic-
tor, or independent) variables, β  is a vector of param-
eters, and tε  represents the sampling error for obser-
vation .t  The goal is to obtain estimates of β so that 
the model best predicts the behavior of the modeled 
entity. The maximum likelihood estimator (MLE) 
finds the parameter estimates that give the highest 
probability of generating the observed sample. Given 
T samples, the goal is to find estimates of β  and 2σ  
that maximize the likelihood L (see Jerrell and Cam-
pione, 2001): 
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In the case of linear models, the problem results in 
a system of linear equations that can be solved using 
standard linear algebra techniques. However, in large 
or nonlinear models, maximizing likelihood may pose 
numerical problems. For instance, even simple model 
specifications can produce near-flat likelihood func-
tions or functions with numerous local optima. As 
a result, standard numerical approximation algorithms 
may fail (see Gilli and Winker, 2009). 

Derivative-based optimization methods are pre-
ferred if derivatives are available or can be accurately 
estimated. However, for many MLE functions, deriva-
tives can be complex and difficult to compute, and, in 
some cases, the functions may not even be differentia-
ble. Numerical derivative calculations may also fail 
because of truncation or rounding errors. Therefore, 
deterministic, derivative-based optimization methods 
are often not effective, and may fail completely. 

Stochastic methods – many of which are inspired 
by natural phenomena – rely on some degree of 
randomness. They address the shortcomings of deter-
ministic optimization, and are robust in the presence 
of difficult, non-smooth functions characterized by 
many local optima. They have also been shown to 
provide remarkably robust solutions to difficult 
optimization problems, where traditional techniques 
have failed because of entrapment in local optima (see 
Gilli and Winker, 2009), (see Riders on a Swarm 
(2010) for a non-technical account of computational 
intelligence). However, these methods generally 
require greater computation time, and multiple runs of 
the same technique on the same problem may produce 
different results. Several of these stochastic techniques 
have been applied to the disequilibrium problem, 
including genetic algorithms (GA) and evolutionary 
strategies (ES), both of which are population-based 
competitive algorithms, simulated annealing, tabu 
search, and hybrid methods (see Gilli and Winker 
(2009), Jerrell and Campione (2001)). The current 
paper proposes the application of a different nature 
based method: particle swarm optimization. 

3. Particle Swarm Optimization 

PSO is a relatively new stochastic global optimization 
algorithm (see Kennedy and Eberhart (1995), Kenne-
dy et al. (2001), Parsopoulos and Vrahatis (2002)). 
Like GA and ES, PSO is an iterative, stochastic 
population-based technique. However, in contrast to 
GAs and ESs, which exploit the competitive charac-
teristics of biological evolution, PSO simulates coop-
erative and social behavior, such as fish schooling, 
birds flocking, or insects swarming. A diffuse popula-
tion of P individuals, now termed as particles, ex-
plores the search space, gradually forming smaller 
swarms in minima regions. PSO has been successful 
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in many problems, including those in econometrics 
and manufacturing (see Dallagnol et al. (2009), 
Behnamian and Fatemi Ghomi (2010), Liu et al. 
(2006)), discrete scheduling problems (see Liao et al., 
2007), and in multi-objective problems (see Yang et 
al., 2008). Investigation into the theoretical and 
convergence properties of PSO is an active, on-going 
research pursuit (see Parsopoulos and Vrahatis (2002), 
Niknam and Amiri (2010), Pedersen and Chipperfield 
(2010), Zhan et al. (2009), Mendes et al. (2004)). 

At each iteration, a d-dimensional particle ,ip  
,,,1 Pi =  representing a point in the search space, 

evaluates ( ),if p  where f denotes the cost function. 
The particle then moves through the search space by 
the addition of a velocity vector, which is a function of 
the best position found by that particle – its personal 
best ( )bestp i  – and of the best position – the global best 
( )bestg  – found so far among all particles. In this way, 
particles tend to swarm around the best position, and 
to converge about this point. During this process, 
particles may move on a trajectory in which a better 
response is encountered, in which case the other 
particles adjust their movements to gather around the 
new point. However, there is considerable freedom in 
the particle’s movement, as it is influenced not only 
by the best global position, but also by its personal 
best position and by random effects. Details of the 
algorithm are found in Kennedy et al. (2001). PSO 
offers several benefits: it requires only simple mathe-
matical operators; it is computationally inexpensive, in 
terms of both memory requirements and speed; its 
population-based aspects make PSO resistant to the 
problem of local minima; very few parameters are 
needed, often resulting in less fine-tuning; PSO 
exhibits diverse response in that the search does not 
occur along excessively narrow channels in the search 
space (see Parsopoulos and Vrahatis, 2002); and, very 
importantly, the algorithm is inherently parallel, and 
can make use of new, inexpensive parallel computer 
hardware. In addition, PSO provides good solutions to 
global optimization problems in noisy or continuously 
changing environments (see Parsopoulos and Vrahatis, 
2002). 

Of the parameters that PSO does require, the iner-
tial weight w indicates the relative influence of the 
velocity in the previous iteration and determines the 
degree to which the particle should move in the same 
direction as in the last iteration. It is usually a mono-
tonically decreasing function of the iteration t, but can 
be adjusted adaptively depending upon the progress of 
the search. This parameter is critical, as it regulates the 
balance between global (over the entire search space) 
and local (nearby) searches. Large values of w facili-
tate global exploration, while small values tend to 

improve solutions in small neighborhoods (see Par-
sopoulos and Vrahatis, 2002). Two other parameters, 

1C  and ,2C  are not critical for the operation of PSO, 
but tuning these parameters may result in better 
convergence and avoidance of local optima. 1C  is 
known as a cognitive (self or personal) parameter, 
while 2C  is the social (swarm) parameter. Usually, 

,21 CC =  but some investigators have suggested that 
the cognitive parameter be set higher than the social 
parameter (see Parsopoulos and Vrahatis, 2002).  

With these parameters, the basic velocity update 
equation for particle i is given as: 
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where ( )tiv  is the velocity of a particle i at time t, 
( )1+tiv  is the velocity in the next time period ,1+t  

bestp i  denotes the best position of p i thus far in the 
search, ( )tix  denotes the particle’s current position at 
time t, and random numbers ,1ϕ  ( )1,02 U=ϕ  add 
stochasticity to the update and diversity to the swarm 
population.  

After the new velocity is computed, the position of 
the i-th particle is updated as:  

 ( ) ( ) ( ).11 ++=+ ttt iii vxx  (3) 

Convergence criteria for PSO include reaching 
a pre-specified maximum number of iterations, reach-
ing a pre-specified number of iterations without 
improvement in the cost function, and attaining 
a variance of the responses from all particles falling 
below a threshold. A flowchart of the basic PSO 
algorithm is shown in Figure 1.  

Numerous adaptations and enhancements have 
been made to PSO, many of which were designed to 
solve specific optimization problems, or to address 
shortcomings to which PSO is susceptible (see Par-
sopoulos and Vrahatis, 2002).  

4. The Disequilibrium Problem 

Markets, especially those for commodities, are con-
sidered to be in equilibrium if the supply for that 
market is equal to the demand. However, whether 
markets are in equilibrium cannot be accurately 
determined due to the long acquisition time of eco-
nomic data. The difficulty lies in estimating supply 
and demand schedules for disequilibrium markets. 
That is, in such markets, it cannot be determined 
whether a particular quantity traded was a supply or 
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Figure 1 The PSO algorithm. 

demand quantity. Because consumers cannot buy 
more than what is offered, and do not in general 
purchase more than they demand, the observed quanti-
ty purchased (or traded) at a particular time period t is 
the lesser of the quantity supplied ( )tS  and the quanti-
ty demanded ( )tD  (see Jerrell and Campione, 2001). 
Specifically,  
 ( ).,min,, 2211 ttttttttt SDQvSuD =+′=+′= βXβX (4) 

Here, tD  and tS  respectively denote the quantities 
demanded and supplied during time period t, tQ  
denotes the quantity transacted, t1X  and t2X  are k-
dimensional vectors of explanatory variables, and tu  
and tv  denote independently distributed error terms 
(see Sapra, 1986). 

5. Methods 

In the disequilibrium model discussed above, it is 
assumed that the error terms are distributed such that 

( )1,0 σNut =  and ( ).,0 2σNvt =  1β  and 2β  are the 
parameters to be estimated. The number of 1β  and 2β  
parameters are the same as the number of the explana-
tory variables t1X  and ,2tX  respectively. The cost 
function is the MLE for the disequilibrium model, 
which is then given as follows (see Maddala and 
Nelson, 1974):  
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and the log-likelihood is given as: 

 ( ),log
1

1221∑
=

+=
T

t
tttt FfFfL  (6) 

where T indicates the number of samples. 
A disequilibrium problem was used to test the effi-

cacy of PSO for this particular model. Eight (8) 
parameters are to be estimated from simulated data for 
the following model: 

 
 ,12110 tttt uPXD +++= −ααα  
 ,12210 tttt vPXS +++= −βββ  (7) 
 ( ).,min ttt SDQ =  

Here, tD  and tS  respectively denote the quantities 
demanded and supplied during time period t, tP  is the 
price in period t, and tX 1  and tX 2  are explanatory 
variables for time period t (see Sapra, 1986). During 
time period t, tQ  and tP  are the only observed quanti-
ties. In this model, 
 ( ) ( ),1,0,1,0 21 UXUX tt ==  

 ,3
2
1

1 D
SDPP tt

−
= −  (8) 

and   
 ( ),,0 2

1σNut = ( ).,0 2
2σNvt =  

The goal is to estimate ,iα  ,iβ  ,2,1,0=i  as well 
as 1σ  and .2σ  

Simulated data of 100=T  samples are generated 
with the following parameters (see Maddala and 
Nelson, 1974): ,0.10 =P  ,0625.02 =uσ  ,01.02 =vσ  

,0.20 =α  ,0.11 =α  ,5.02 −=α  ,4.10 =β  0.11 =β  and 

DSpace VSB-TUO http://hdl.handle.net/10084/90120



M.P. Wachowiak, R. Wachowiak-Smolíková, D.Smolík – Parameter estimation of nonlinear econometric models 
 

197 

.1.02 =β  The search space was constrained to 
,30 iα<−  30<iβ  and ,10 26

uσ<−  .502 <vσ  An 
example of 100 observations of tQ  is shown in Figure 
2. 

One of the shortcomings of PSO (and many other 
global optimization methods) is stagnation, where 
there is no improvement in the cost function for 
several iterations. In the current work, the inertial 
parameter w was adaptively adjusted during the search 
to avoid stagnation. If no improvement is made in the 
global best solution after 50 iterations, the parameter 
is initially increased by 0.01, decreasing the effect of 
the globally best particle, and resulting in a more 
global search. After reaching a maximum of 1.03, the 
parameter is decreased in increments of 0.01, to 
a minimum of 0.97, to facilitate a more intense local 
search around the current global best. It was empiri-
cally noted that for this problem, w < 0.97 results in 
pre-mature convergence. This method of adaptive 
adjustment was found to provide faster convergence 
and high quality solutions. 

Twenty-five (25) experiments were performed us-
ing PSO with an adaptive inertial parameter w, as 
described above. The population consisted of 1000 
particles. The experiments are terminated when an 
expansion of w to 1.03 followed by a contraction to 
0.97 does not improve the result after 50 iterations. 

 
Figure 2 Quantity transacted (Qt) for the disequilibrium problem 
over 100 periods. 

6. Results 

The experimental results obtained by using PSO 
estimation were compared with those obtained by 
Jerrell and Campione from stochastic evolutionary 
strategies (ES), genetic algorithms (GA), and simulat-
ed annealing (SA) (see Jerrell and Campione, 2001). 
The true parameter values, as given above, that were 
used to generate the simulated data resulted in an 
MLE of 63.0330. Using the data obtained in the 
current experiment, the values reported by Jerrel and 
Campione (2001) resulted in a log-likelihood of 

57.8038. The success rates were: 100% for ES, 90% 
for GA, and 100% for SA (see Table 5 in Jerrell and 
Campione, 2001). The Euclidean distance between the 
obtained parameters (see Table 4 in Jerrell and Cam-
pione, 2001) and the true values was 0.2724.  

For the PSO method, of the 25 trials, one trial re-
sulted in a failure in which the final optimum was 
unacceptably far from the true values, with a low log-
likelihood. The remaining 24 successful trials (a 96% 
success rate) yielded an average log-likelihood value 
of 66.0185, with an average Euclidean distance 
between the obtained and true parameters of 0.2390. 
PSO therefore had a better MLE (66.0185 > 57.8038) 
and a smaller Euclidean distance between the estimat-
ed and true values (0.2390 < 0.2724). 

The average number of iterations for the successful 
trials was 8 207.42. The sorted results are shown in 
Figure 3. For the 1000 particles, this results in an 
average of about 8.2 million function evaluations. The 
total times for the methods tested by Jerrel and Cam-
pione are given in Table 5 in Jerell and Campione, 
(2001), but timing results are highly dependent upon 
the computer hardware platform (processor, memory, 
etc.), as well as the software running the experiments.  

As mentioned above, one of the advantages of 
PSO is its ability to escape local optima. An example 
of this characteristic behavior is shown in Figure 4, 
where the swarm is represented along three of the 
eight coordinate axes of the disequilibrium cost 
function ( 21,αα  and 1β ). 

 
Figure 3 Sorted number of iterations until convergence for success-
ful trials. 

As is common among stochastic methods, a draw-
back of PSO is the high number of function evalua-
tions required for convergence. However, with the 
advent of multicore CPUs and the offloading of 
computational tasks to relatively inexpensive and 
massively parallel graphics processing units (GPUs), 
the inherently parallel nature of PSO can be exploited 
to reduce overall computation time. Consequently, the 
number of function evaluations is not as great 
a concern as it has been in the past. Another concern 
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(a) Swarm is concentrated about local 
minimum. 

(b) Swarm begins to escape local minimum. (c) Swarm is now more concentrated about 
global minimum. 

Figure 4 Progress of PSO as the swarm escapes from a local minimum. 

with PSO, shared with other stochastic global optimi-
zation techniques, is the variation in the convergence 
time. This is the direct result of stochasticity, which 
provides robustness in probing the search space and in 
finding good solutions, but sometimes at the expense 
of computation time. The results presented in this 
paper exhibit a large standard deviation (> 4 000 
iterations) for the 24 successful experiments. One 
possible solution is to apply a local optimization when 
local optima are suspected, or when the search begins 
to stagnate. Since local techniques generally require 
fewer iterations, excessive computation time would 
not be expended exploring these local optima (see 
Wachowiak et al. (2004), Tsoulos and Stavrakoudis 
(2010)). 

7. Conclusion 

The present paper focused on one instance of a dise-
quilibrium model. However, this model is an excellent 
test problem, as it was devised to study model mis-
specification and difficulites in parameter estimation 
(see Jerrell and Campione (2001), Maddala and 
Nelson (1974)). The MLE of other models of real data 
can also be determined, and various estimation ap-
proaches can be compared on these functions. Alt-
hough a comparative study of these methods on real 
data is a topic of future research, one may expect that 
the success rate, quality of solutions, and convergence 
time will be analogous to the results presented here, 
primarily because of the robustness of PSO in opti-
mizing objective functions that are noisy or imprecise-
ly defined (see Parsopoulos and Vrahatis, 2002). 

Econometric models are becoming increasingly 
complex and higher in dimensionality. Accurately 
determining the parameters of these models will 
require more robust global optimization techniques. 
Although widely accepted in many other fields, these 
methods still find only limited use in econometric 
modeling and estimation (see Gilli and Winker, 2009). 
However, as shown in this paper and in others in the 
literature, stochastic methods, such as PSO, have 
demonstrated efficacy in a variety of econometrics 
applications, including the disequilibrium problem 

presented here. The high quality of the solutions 
obtained after convergence, the relative simplicity of 
parameter tuning in the algorithm, and its heuristic 
capability to be tailored to specialized applications 
make PSO an attractive choice for global optimization 
of econometrics functions. However, a drawback of 
this technique is the high number of iterations required 
for convergence, which affects overall efficiency. 
Although the focus in the current work is the quality 
of the solutions obtained (which is of primary perfor-
mance, as it is not helpful to converge quickly to a bad 
solution), there exist several efficiency enhancements 
that can be easily incorporated (see Tsoulos and 
Stavrakoudis, 2010). Furthermore, as indicated earlier, 
PSO is an inherently parallel population-based tech-
nique, and can greatly benefit from low-cost multicore 
and GPU hardware. The success of PSO in solving a 
model disequilibrium problem, along with other 
numerous economics applications cited in this paper, 
encourage its use in other, more complex models. 
Although derivatives can be analytically computed in 
the current test problem, there are many useful prob-
lems in econometrics where derivatives are not availa-
ble, and, furthermore, are characterized by multiple 
strong local optima in high dimensions. For this 
reason, it is necessary to continue to develop deriva-
tive-free, stochastic global methods to address some of 
these important problems. Because stochastic global 
optimization methods can solve problems more 
complex than those that can be solved by linear least 
squares, they are expected to become more common in 
econometrics. However, issues such as efficiency, the 
random nature of these methods, and the development 
of a common standard for presentation and evaluation 
of results are necessary for more widespread ac-
ceptance (see Gilli and Winker, 2009). 

Future work will concentrate on: (1) Improving the 
efficiency of PSO and mapping function evaluations 
to GPUs, (2) Hybridizing PSO with local (and possi-
bly other global) search techniques (which is especial-
ly important in higher-dimensional problems), (3) 
Rigorous comparison of PSO and other stochastic and 
deterministic optimization methods, and (4) Applying 
PSO and its variants to instantaneous spatial lag 
problems in spatial econometrics. Because of the high 

DSpace VSB-TUO http://hdl.handle.net/10084/90120



M.P. Wachowiak, R. Wachowiak-Smolíková, D.Smolík – Parameter estimation of nonlinear econometric models 
 

199 

complexity of cost functions typically found in spatial 
econometrics, the inherent parallelism of PSO and its 
implementation on multicore and GPU hardware are 
particularly promising areas to exploit. 
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