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Abstract 

This paper is focused on the electricity market and electricity prices. The electricity sector is one of the key 
strategic sectors of every economy and knowledge of demand, supply and prices is very important. Because of the 
features occurring in the time series of electricity prices (i.e. high frequency, non-constant mean, autocorrelation, 
non-normal distribution, heteroscedasticity, seasonality, etc.), it is necessary to employ more sophisticated models 
for the purposes of their modeling. The goal of this paper is to propose the empirical model for modeling daily 
electricity prices in three selected regions (California, North Europe and Austria). To exploit non-linearity, we 
apply the SETAR (Self Exciting Threshold Auto-Regressive) models that imply and distinct regimes in time series 
dynamics with potentially different parameters (and thus dynamics properties) of each regime. First, the most 
appropriate SETAR model for modeling electricity prices at selected markets is developed; next, statistical 
verification of each model is performed in accordance with Hansen (1997, 2000); finally, it is verified whether the 
proposed non-linear models give satisfactory results in the sense of data fitting and diagnostic checks. 
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1. Introduction 

In many parts of the world, the sector of electricity 
generation is gradually converting to the competitive 
market structure replacing the traditional monopolistic 
environment and therefore there arises a need to 
model the time series of electricity price for selected 
groups of market participants. 

An accurate modeling (possibly forecasting) of 
electricity prices including analyzing the factors 
affecting these prices has become a very important 
tool for generators and consumers. In a short time 
period, a generating company needs to model 

electricity prices to set its generating strategy and to 
optimally schedule energy resources. This is important 
for profit planning and that is why accurate electricity 
price models are crucial tool for any decision-making 
by generating companies and costumers.  

There is another important feature of electricity 
price formation – the instantaneous nature of the 
product. This results into that when the electricity is 
generated, due to the non-storability, it must be 
immediately delivered to the market (even if the 
electricity can be indirectly stored via hydroelectric 
schemes). That is why electricity production and 
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consumption must be continuously balanced. But if 
some shocks on supply or demand appear, and, they 
cannot be smoothed out, then this can have an 
important impact on electricity prices.  

Electricity prices gather characteristics which 
reflect in the time series evolution and in which they 
differ from other commodities: high frequency, non 
constant mean, autocorrelation, non-normal 
distribution, heteroscedasticity, seasonality, high 
volatility and high frequency of occurrence of unusual 
prices etc. This can incur the occurrence of outages, 
blackouts, and price peaks, which happen seldom in a 
regulated environment. All those features incur high 
requirements placed on the empirical model. 

Therefore, there is a wide range of papers and 
empirical studies concentrating on electricity price, its 
modeling and analyzing features of the time series of 
this commodity. Most of the authors pay attention to 
electricity price model development. Research is 
divided into development of statistical models 
(parameters of the price processes are estimated from 
the available historical market data) and fundamental 
models (price processes are modeled according to 
production costs and consumption). Results of 
statistical models confirm that the time series of the 
electricity prices have the tendency to revert to a long-
term equilibrium level and are mostly modeled as 
mean-reversion jump diffusion processes, see Kian 
and Keyhani (2001), Escribiano et al. (2002), Audet et 
al (2004), Deng and Jiang (2005), De Sanctis and Mari 
(2006), Kanamura and Ohashi (2007) etc. In contrast, 
some authors, see Rambhara et al. (2004), apply TAR 
model and conclude that results outperform traditional 
existing stochastic jump diffusion models for some 
regions if other effects (transitory spikes, temperature 
effects, etc.) are taken into account. Next, an 
occurrence of typical features in the time series has 
been deeply studied by a group of authors, see Shapiro 
and Wilk (1965), Box and Pierce (1970), Jarque and 
Bera (1980), Jarque and Bera (1981), Deng (1999), 
Barlow (2002), Geman and Roncoroni (2003), Fan 
and Yao (2005) etc. They concluded that some of the 
above mentioned features (jumps, high volatility, 
unusual prices, etc.) are the results of high sensitivity 
on changes in demand, shortages in electricity 
generation, forced outages, peaks in electricity 
demand, etc. 

Thus in this paper, we propose the empirical model 
for modeling daily electricity prices in the three 
selected regions (California, North Europe and 
Austria), during the years 2006 – 2008; further, we 
provide the evidence that the non-linear models give 
better results than linear ones. 

We estimate the empirical SETAR model and 
perform the full statistical verification of all estimated 

parameters, and the models themselves, compare the 
results with each other and with the AR models. We 
place emphasis on the proof whether application of 
such non-linear models really give better results than 
linear ones. On the one hand, we prove that non-linear 
models really fit the data better than linear models, 
but, on the other hand, we show that employing non-
linear SETAR models does not require the 
improvement of the diagnostic checks of residuals in 
regards to heteroscedasticity and non-normality 
testing. 

The paper is organized as follows: first, general 
AR and SETAR model is described in Section 2 
including the description of the methods for 
parameters estimation and confidence interval 
constructing. Section 3 is devoted to the statistical 
verification of the proposed model (testing of 
parameters significance and residuals checks). Results 
of the non-linear and linear model are compared in 
Section 4. Section 5 concludes this paper.  

2. Model description 

Let p is an integer positive number representing the 
order of auto-regressive model and let the time series 

ty  follow the AR model in the form of 

 
, (1) 

where  are the slope parameters and  is the error 

term. 

When a process comprising more particular AR 
processes is considered, we can formulate a k-regime 
SETAR model that is followed by the time series  

with threshold variable , thus 

 
,(2) 

where  are the integer positive numbers 

representing the order of particular autoregressive 
models,  is a delay parameter,  are the slope 

parameters of i-th regime,  is the indicator 

function, 
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where r is the threshold parameter. If the model takes 
on the form (4), the particular linear autoregressive 
process is partitioned by threshold value  with 

delay d and in assistance with threshold parameters . 
In this paper, the process  is assumed to be to be 

iid , although it can be heteroscedastic, as 

well. 

2.1 Estimation of SETAR model 

The model form of (4) can be rewritten in the 
following representation, 
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where  and 

 for . 

The unknown parameters  and the 

threshold parameter r must be estimated from the 
observed data , moreover delay 

parameter d the order of  is also necessary to be 

determined. For this purpose, the sequential 
conditional LS estimator is employed under the 
auxiliary condition that process  is iid . 

Under this condition, the LS estimator is equivalent to 
the maximum likelihood estimation. 

LS estimation of parameters for a given value of r 
is as follows, 

 
, (6) 

with residuals  and residual 

variance 

 
. (7) 

In order to estimate the parameter r, ordinary LS 
regression is run, setting  for all  and 

for each regression, the residual variance  is 

computed, then founded the value of r corresponding 
to the smallest variance, thus  

 
, (8) 

where  is a set of all possible threshold 

parameters comprising all observed data and 
, . It is obvious that one 

needs to run T regressions in order to find parameters 
.  

The same problem arises in the determination of 
the delay variable , where d is the maximum 

considered delay. It follows, that the number of the T 
regressions is not final. The minimization problem of 
(8) is augmented to include a search over d, so instead 

of T regressions, the search method requires  
number of regressions, these parameters are used for 
the slope parameters estimation satisfying following 
function, 

 
. (9) 

Finally, we add some remarks concerning the 
practical implementation of this framework. When 
employing non-linear models, practitioners can find 
several appropriate models for fitting data. Therefore, 
there also exists some goodness of fit measures of an 
estimated model. We present Akaike’s information 
criterion for k regimes in the form of  

 
. (10) 

Next, it is also necessary to note that for the 
purpose of reliable model reliability, a set of threshold 
parameters R must be selected so that each regime 
contains the sufficient observations. Therefore, the set 
of threshold parameter R is not bounded by the 
observed data, but by the technique ensuring a 
sufficient number of observations in each regime. For 
instance, the 15th and 85th quartile are used to 
determinate the boundary of set R. 

2.2 Confidence intervals 

To test the statistical significance of estimated 
parameters, firstly, the confidence intervals must be 
constructed. First, we explain the difficulties occurring 
in the confidence interval construction of threshold 
parameters and afterwards the same problems for the 
slope parameters will be presented. 

The confidence interval of threshold parameter is 
given by 
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and  is -level critical value that is available in 

Hansen (1997, 2000). The graphical method of finding 
the confidence interval relies on plotting values of 

 against r and drawing the horizontal line at 

value of . Needless to say, there might arise a 

problem in practice because the region can be 
disjointed and, for that reason, applicably difficult. 
Therefore, the convexified region is constructed and 

used , where  and 

. 

The confidence interval of the estimated slope 
parameters can be constructed in the standard way as 
in the case of linear models. Let  be an estimated 
threshold parameter, the -level confidence interval 

 of the slope parameters  is given by  

 
, (13) 

where  is-level critical value for the normal 

distribution and  denotes a standard error. 

Hansen (1996) pointed out, that such constructed 
confidence intervals are not reliable in the case of the 
finite sample because the threshold parameter does not 
have to be estimated very precisely and can 
contaminate the estimate of . Therefore, he 
proposed to take the union of all constructed 

confidence interval of  for all , thus 

 

. (14) 

3. Model verification 

After the model is estimated, it is necessary to verify 
it. First and foremost, the estimated model of (5) has 
to be statistically significant relative to the linear AR 
model. Consequently, obtained residuals  have 

to meet the assumption of the white noise and the 
slope parameters are needed to be statistically 
significant. 

Firstly, we show the linearity test according to 
Hansen (1996, 1997) under the conditions that the 
parameter r is known and  is assumed to be iid. The 

relevant null hypothesis  is tested against 

alternative hypothesis . 

The relevant F-statistics  is equivalent to 

the supremum over the set R of the point-wise test-
statistic , 
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is OLS estimate of the parameters  from linear 

autoregressive model of order p. 

When testing the slope parameters, one is allowed 
to use standard T-test by employing the united 
confidence interval from (14), see Hansen (1996, 
2000). 

The last step of the statistical verification consists 
in the necessity to perform diagnostic checks of 
residuals . Some tests that are used in the 

traditional linear framework can be applied for testing 
of the non-linear models. For instance, Jarque-Bera 
test can be used for normality testing in both 
frameworks. On the other hand, common Ljung-Box 
test does not remain valid; see Eitrheim and Teräsvirta 
(1996). 

Here, generalized LM test is employed for serial 
correlation in AR(p) model of Breusch and Pagan 
(1979), which is based on the auxiliary regression, 
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The LM test for q-th order serial dependence in  

is obtained as , where  is coefficient 
determination from the regression  on , where  

are relevant partial derivations of non-linear model, 
thus  
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and  is non-linear SETAR model (4) and 

 are estimated parameters. 
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Figure 1 Confidence intervals for threshold parameters 

 

4. Empirical results 

In this part, the empirical results that we gathered in 
daily electricity price modeling by applying non-linear 
SETAR models will be presented. We employed this 
approach on daily electricity price data series from 
California (prices obtained from Energy Information 
Administration), North Europe (prices obtained from 
Nord Pool) and Austria (prices obtained from Energy 
Exchange Austria). Data sets obtained consists of 
eight annual time series from 2006 – 2008 and 
contains daily electricity prices. To obtain our data 
sample, we worked with discrete daily returns. 

Firstly, we estimated all SETAR models and 
constructed confidence intervals of all parameters in 
accordance with Hansen (1997, 2000), but we perform 
the full enumeration in order to obtain the optimal 
order of particular AR regime and the optimal delay 
parameter. For them, we estimate the other model 
parameters. That is why we do not start with ACF and 
PACF functions as is usual in time series analyzis.  

Then we conducted the diagnostic checks and 
compared the gathered empirical results with linear 
models. Thus, we verify if the non-linear model really 
provides better results than the linear for the purpose 
of modeling time series. The accuracy of fitting the 
time series by non-linear and linear model was 
compared under criterions of residual variance and 
results of diagnostic checks were used. We also test 
whether the residuals variance of linear and non-linear 
models are statistically different. 

4.1 Model estimation 

The crucial problem in SETAR estimation poses is a 
determination of delay parameter and order of the 
particular autoregressive process. The main slope 
parameters estimation follows immediately after that. 
One can explicitly define the delay parameter and 
order of the AR processes, but this approach is 
susceptible to be misspecified. Therefore, we 
employed a special algorithm representing the 

complete enumeration of all possible models 
combining our conditions. 

We form a set of possible delay parameter
, a set representing the order of 

autoregressive model  and the set 

of threshold parameter , where  

and  is 15th and 85th percentile. For all 

combinations, we estimated the slope parameters. We 
chosen order of autoregressive part corresponding to 
the minimal AIC criterion of (10) and selected the 
delay and threshold parameter corresponding to the 
minimal residual variance. Thus, we needed to 
perform 172,970 of estimations for each time series. 

The estimation results are summarized in the 
following tables. Table 1 reports determined delay 
parameters, estimated threshold parameters and order 
of the autoregressive parts for each time series.  

Table 1 Threshold parameters and orders of delay and 
autoregressive parts 

  North Europe California Austria 

Delay parameter 1 1 1 

Threshold parameter 5.1600 –1.3876 –27.0497 

 

Next, the construction of confidence intervals 
follows. For this purpose, we perform a Monte-Carlo 
experiment. We generated 3,500 values of threshold 
parameters and for each of them we computed LR 
statistics according to (12). Then we plotted them 
against generated threshold parameters and draw the 
line  at the critical value of 7.35, see Hansen (1997, 

2000). Figure 1 depicts the results of our experiment. 

We can see that the 95% confidence intervals are 
not really tight in some cases (especially for 
California) and are disjointed (Austria). Therefore, we 
have to convexify the obtained regions in accordance 
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with the above-mentioned technique in Section 2.2. 
Table 2 records the results.  

Table 2 Convexifed 95% confidence intervals of threshold 
parameters 

  North Europe California Austria 

min 4.832 –1.850 –28.291 

threshold parameter 5.160 –1.388 –27.050 

max 5.788 –0.918 –26.366 
 

For precision assessment of the estimated 
threshold parameters, we spit our sample data into 
regime 1 for  (left column in Table 3) and 

into regime 2 for  (right column). We also 

extracted the data belonging to the gray zone, thus
, see next Table.  

Table 3 Regime splitting of data 

  Regime 1 Gray Zone Regime 2 

North Europe 800 79.60% 36 3.58% 169 16.82%

California 403 40.10% 50 4.98% 552 54.93%

Austria 153 15.25% 5 0.50% 845 84.25%
 

The threshold parameters are estimated precisely 
in all cases, especially for Austria. For this time series, 
more than 99.5% of all observations fall into one of 
the two regimes with certainty and only 0.5 percent of 
all data are in gray zone.  

Next Table 4 presents estimated slope parameters 
of particular regimes and for all time series. 
Statistically significant coefficients are in bold. In the 
last row of the Table, we show the number of 
observations used for slope parameters estimation in 
each regime. 

Table 4 Slope parameters of non-linear SETAR model 

Parameter 

North Europe California Austria 

regime regime regime 

1 2 1 2 1 2 

p0 10.218 –3.310 5.091 –6.963 9.596 –44.809

p1 –0.515 0.005 0.255 –0.356 –0.237 –0.088

p2 –0.479 –0.008 –0.081 –0.363 –0.350 –0.286

p3 –0.372 –0.065 0.002 –0.239 –0.186 –0.225

p4 –0.498 –0.079 –0.040 –0.323 –0.168 –0.146

p5  –0.199 0.036 0.021 –0.097 –0.397

p6   –0.026 –0.062 0.017  

# of obs. 894 201 427 578 155 848 

 

We can note here that particular AR processes of 
the SETAR model are not in higher order than 5 (all 
coefficients of the 6th order are not statistically 

significant). Next, we can point out that while the 
model of North Europe and Austria comprise AR 
processes of incomplete order (some coefficients of 
lower order are not statistically significant), the orders 
of AR processes of the California SETAR model are 
complete.  

The last step poses a diagnostic checking of 
residuals. This is presented in the next Section 4.2, 
where we compared non-linear models with linear 
autoregressive models. Nevertheless, we can say that 
estimated models face the same problem as many 
other models (heteroscedasticity and autocorrelation 
presence and non-normality of residuals). Our models 
are not an exception and they suffer from the same 
imperfections as the linear AR models, see next 
section.  

4.2 Comparison with linear AR model 

In this section, we provide a comparison of linear and 
non-linear AR models. Using the same data sets, we 
estimated linear AR model by employing LS estimator 
and determined the order process with a similar 
principle described in Section 4.1. Thus, for a 
particular value from a predetermined set of orders, 

, we run LS estimate and choose the 

one that is corresponding to the minimal residual 
variance. From obtained residuals, we also performed 
diagnostic checks and compared all results with non-
linear SETAR models. 

Next, Table 5 records the estimated slope 
parameters of AR models. Coefficients p1 – p6 are 
statistically significant. 

Table 5 Slope parameters of linear AR model 

Parameter North Europe California Austria 

p0 0.025 0.626 0.173 

p1 –0.326 –0.162 –0.530 

p2 –0.367 –0.314 –0.644 

p3 –0.301 –0.153 –0.545 

p4 –0.328 –0.223 –0.566 

p5 –0.347 –0.121 –0.596 

p6 –0.233 –0.120 –0.486 

# of obs. 1089 1089 1089 
 

According to the results stated in Table 5, we can 
highlight that all parameters (except for constants) are 
statistically significant in contrast to parameters from 
non-linear models. 

Hereafter, the main comparison of models is 
following. We perform the Levene test proposed by 
Levene (1960) which was found to be robust under 
non-normality and then F-test to test the non-linear 

t dX r 

t dX r 

 ,t dX r r 

 1,2, ,6p 
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models against the linear. Next Table 6 summarizes all 
the results.  

Table 6 Variance summary 

Model North Europe California Austria 

Variance of  
linear AR 

100.317 150.304 450.888 

Variance of  
non-linear SETAR 

55.222 68.935 191.181 

F statistics  
(p-values) 

0.000 0.000 0.000 

Levene test  
(p-values) 

0.00000107 0.00000064 0.00000000

 

According to the results, it is obvious that the non-
linear models are better and the residual variance of 
linear and non-linear models is statistically different. 
Further, we can see that the residual variances were 
decreased by nearly half. 

Next, comparison consists in the potential 
improvement of the diagnostic checks under the 
conditions they give better results. Whereas we tested 
autocorrelation in linear models by Portmanteau test 
with order lag , we are made to employ the 
modified Breusch-Pagan test (described in Section 3) 
in order to test the same lag order of autocorrelation in 
non-linear model. To detect heteroscedasticity, we 
employed the ARCH effect test and for testing of non-
normality we used the Jarque-Bera test. Results in the 
form of p-values are summarized in Table 7. 

It is apparent from the results, that using non-linear 
SETAR models does not improve the diagnostic check 
results significantly. The autocorrelation of residuals 
was getting rid of in the non-linear model of the 
California time series, but all the other results are 
almost the same. Heteroscedasticity is present for all 
time series and it is not dependent on the model 
employed. In every case, the ARCH effect test 
indicates the non-constant conditional residual 
variance. Thereafter, using the non-linear model is 
related to the following consequence: the normal 
distribution of residuals is more skewed in two cases 
(Nord Pool and Austria) and kurtosis is non-normal 
for both types of models. In the end, the Jarque Bera 
test of normality indicates non-normality of residuals 
for all estimated econometric models. 

5. Conclusion 

In the paper, we proposed the empirical models for 
modeling daily electricity prices in the three selected 
regions (California, North Europe and Austria), during 
the period 2006 – 2008, performed the full statistical 
verification and further, we compared the models 
estimated with the empirical auto-regressive ones. 

On the basis of the obtained results, we can 
conclude that non-linear models for electricity price 
modeling at all the selected markets fit the data better 
than the linear AR model. The residual variance of the 
non-linear models was half, in comparison to the 
residual variance of the linear model. On the other 
hand, using non-linear models did not improve the 
diagnostic checks and in our cases we obtained the 
same or very similar results. Next, we proved that 
while all slope parameters (except for constants) of 
AR models were significant, only some of the 
parameters of non-linear models were significant. 
Furthermore, the particular AR processes of SETAR 
models were of lower order than empirical AR 
models. 

Generally, we can conclude that the non-linear 
SETAR models are more appropriate to model the 
electricity prices than the linear AR model, but neither 
of them captures the time-varying conditional variance 
and non-normality of probability distributions. This 
crucial problem lies in the fact that electricity prices 
are affected by many factors (i.e. seasonality, 
occurrence of price peaks, etc.) and the process of 
time series is characteristic with very high volatility 
and with high frequency of spikes resulting in the fact 
that electricity time series seems to be rather mean-
reverting or even non-linearly mean-reverting. 
Furthermore, the dynamics of time series can be so 
tangled that the process comprises a lot of process. 
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Table 7 Diagnostic checks – p-values of particular tests 

 
Autocorrelation Heteroscedasticity Skewness Kurtosis Normality 

lin (non) lin (non) lin (non) lin (non) lin (non) 

North Europe 0 0 0 0 0.006 0 0 0 0 0 

California 0 0.674 0 0 0 0 0 0 0 0 

Austria 0 0 0 0 0.417 0 0 0 0 0 

20k 
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