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Abstract 

Forecast accuracy of economic and financial processes is a popular measure for quantifying the risk in decision 
making. In this paper, we develop forecasting models based on statistical (stochastic) methods, sometimes called 
hard computing, and on a soft method using granular computing. We consider the accuracy of forecasting models 
as a measure for risk evaluation. It is found that the risk estimation process based on soft methods is simplified 
and less critical to the question whether the data is true crisp or white noise. 
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1. Introduction  

The evaluation of risk is a key element of management 
decision making. The ultimate effectiveness of any 
decision depends on the ability to predict the 
uncontrollable aspects of events following the 
decision. The purpose of forecasting is to reduce the 
risk in decision making. The concept of forecast 
accuracy has been adopted as a measure for 
quantifying the risk relatively recently. By devoting 
more resource to forecasting, we should be able to 
improve our forecasting accuracy and thereby 
eliminate some of the losses resulting from uncertainty 
in the decision-making process. 

The term risk has numerous different meanings. To 
emphasize the negative aspects of risk we refer to the 
definition of Huang and Raun (2008): Risk is a scene 
in the future associated with some adverse incident. 
Based on knowledge and information about risks, the 
risk is classified into five categories (as in Huang, 
2007): pseudo risk, probability risk, fuzzy risk, 
uncertain risk, and fuzzy-stochastic risk. Fuzzy and 

uncertain risk is modeled by fuzzy methodology 
where input data are not determined precisely but only 
softly. For example these methodologies are used for 
the concept of the value at risk for the measuring of 
their trading portfolios. This approach uses fuzzy 
numbers (see e.g. Yoshida (2003), Zmeškal (2005). 
Probability risk is defined as a scene in the future with 
a specific adverse incident that we are able to 
statistically predict by using probability models and a 
lot of data. Probability risk, in contrast with fuzzy 
measures, can be assessed in terms of probability. 
Input data and model’s parameters are determined as 
real numbers. These assumptions are fulfilled in many 
economic and financial situations by risk measuring, 
e.g. in time series modeling and forecasting and VaR 
methods Marček (2009), Zmeškal (2005)), methods 
based on the extreme value theory (Havlický (2009), 
Lévy models (Tichý (2006), Applebaum (2004)) and 
so on.  

Machine (artificial) intelligence systems as neural 
networks are dynamical trainable adaptive systems 
defined with many arbitrarily interacted differential or 
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difference equations. Unlike statistical estimators they 
learn from experience with numerical sample data. 
Dynamical systems may or may not by stable. Their 
state variables change over time. Any change of the 
system consumes energy. In Kosko (1992) the 
stability of neural networks has been proven by global 
Lyapunov energy functions. One of most methods for 
finding the optimal weights of dynamical systems, i.e. 
a minimum of energy functions, is the gradient 
method. For more details about energy equations of 
generalized mechanical systems see Han and Zhang 
(2001). 

Forecasting systems are usually a part of larger 
management systems and, as a subsystem, interacts 
with other components of the total system to 
determine overall performance. Ideally the forecasting 
system should provide a description of forecast error 
as well as a forecast. The forecasting process should 
result in an estimate of the probability distribution of 
the variable being predicted. This permits risk to be 
objectively incorporated into the decision-making 
process. If the forecasting system yields unbiased 
estimates, then the traditional statistical summary 
measure of forecast accuracy used by academicians 
and practitioners is expected the Root Mean Squared 
Error (RMSE) that is equal to the standard forecast 
error. Another measure of the uncertainty of forecasts 
is the coefficient of variations (CV) defined as RMSE 
/ y  which expresses the unexplained variability 
remaining in the data relative to the average value y  
of the modeled variable. If the CV is less than 0.05, 
then we have a fairly good model. It is seen that the 
risk value of the predicted variable is proportional to 
the accuracy of forecasting models. 

This article develops nonlinear forecasting models, 
analyses, discusses and compares the forecast 
accuracy from models which are derived from 
competing statistical and Radial Basic Function (RBF) 
neural network (NN) specifications. Our motivation 
for this comparative study lies in both the difficulty 
for constructing of appropriate statistical 
Autoregressive/Generalised Conditionally Hetero-
scedastic (ARCH-GARCH) models (so called hard 
computing) to forecast volatility even in ex post 
simulations and the recently emerging problem-
solving methods that exploit tolerance for impression 
to achieve low solution costs (soft computing). The 
aim of the paper is to explain, and to show the 
achieved aspects of both the statistical and soft 
approach for quantifying forecast accuracy applied to 
daily VUB bond price time series which is, according 
to the definition by Zivot and Wang (2005), the high 
frequency data sequence.  

The paper is organized in the following manner. In 
Section 2 we briefly describe the basic methodology 

of ARCH-GARCH models. In Section 3 we present 
the data, conduct some preliminary analysis of the 
time series and demonstrate the forecasting abilities of 
ARCH-GARCH modes of an application. Section 4 is 
devoted to a granular computing approach applied for 
RBF neural networks. This approach is suggested as 
an alternative to the approach analyzed in Section 3. 
In Section 5 we put an empirical comparison. Section 
6 briefly concludes. 

2. Some ARCH-GARCH models for financial data 

ARCH models are considered as some specific non-
linear time series models, which allows for quite an 
exhaustive study of the underlying dynamics. ARCH-
GARCH models are designed to capture certain 
characteristics that are commonly associated with 
financial time series. They are among others: fat tails, 
volatility clustering, persistence, mean-reversion and 
leverage effect. As far as fat tails, it is well known that 
the distribution of many high frequency financial time 
series usually have fatter tails than a normal 
distribution. The phenomenon of fatter tails is also 
called excess kurtosis. In addition, financial time 
series usually exhibits a characteristics known as 
volatility clustering in which large changes tend to 
follow large changes, and small changes tend to 
follow small changes. Volatility is often persistent, or 
has a long memory if the current level of volatility 
affects the future level for more time periods ahead. 
Although financial time series can exhibit excessive 
volatility from time to time, volatility will eventually 
settle down to a long run level. The leverage effect 
expresses the asymmetric impact of positive and 
negative changes in financial time series. It means that 
the negative shocks in price influence the volatility 
differently than positive shocks of the same size. This 
effect appears as a form of negative correlation 
between the changes in prices and the changes in 
volatility. 

The first model that provides a systematic 
framework for volatility modeling is the ARCH model 
introduced by Engle (1982). Bollerslev (1986) 
proposes a useful extension of Engle’s ARCH model 
known as the generalized ARCH (GARCH) model for 
time sequence { ty } in the following form  

 ,ttt hy ε=  
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where { tε } is a sequence of iid random variables with 
zero mean and unit variance, iα and iβ  are the ARCH 
and GARCH parameters, ht represent the conditional 
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variance of time series conditional on all the 
information to time t–1. 

In the literature several variants of basic ARCH-
GARCH model (1) has been derived. If only the 
squared residuals it−ε  enter into the equation, the signs 
of the residuals or shocks have no effects on 
conditional volatility. However, a stylized fact of 
financial volatility is that bad news (negative shocks) 
tends to have a larger impact on volatility than good 
news (positive shocks). Nelson (1991) proposed the 
exponential GARCH model abbreviated as EGARCH 
to allow for leverage effects in the form 
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where it−ε̂  are residuals, iγ  denotes the coefficient of 
leverage effects. Note if it−ε̂  is positive or there is 
good news, the total effect of it−ε̂  is ( ) iti −+ εγ ˆ1 . 
However contrary to the good news, if it−ε̂  is negative 
or there is bad news, the total effect of it−ε̂  is 

iti −− εγ ˆ)1( . Bad news can have a larger impact on the 
volatility. Then the value of iγ  would be expected to 
be negative (see Zivot and Wang (2005)).  

The basic GARCH model can be extended to allow 
for leverage effects. This is performed by treating the 
basic GARCH model as a special case of the power 
GARCH (PGARCH) model proposed by Ding et al. 
(1993), Granger and Engle (see also Zivot and Wang 
(2005)): 
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where d is a positive exponent (see Zivot and Wang, 
2005). Another ARCH-GARCH models as the 
ARCH-GARCH regression and ARCH-GARCH mean 
model can be found in Marček (2009, 105–130). 

3. An Application of ARCH-GARCH Models 

We illustrate the ARCH-GARCH methodology on the 
developing of the forecast model. The data is taken 
from the commercial VUB bank of the Slovak 
Republic.1 The data consist of daily observations for 
the price time series of the bond fund of VUB 
(BPSVUB). The data was collected for the period May 
7, 2004 to February 28, 2008 which provided 954 
observations (see Figure 1). All the data are expressed 
in natural logarithms. To build a forecast model the 

                                                             
1 The data are available at http://www.vubam.sk/ 
Default.aspx?CatID=40&fundId=4. 

sample period r1, ..., r900 (training data set) for 
analysis was defined, and the ex post forecast period 
r901, ..., r954 (validation data set). By only using the 
actual and forecast values within the ex post 
forecasting period only, the accuracy of the model can 
be calculated. 

Input selection is of crucial importance to the 
successful development of an ARCH-GARCH model. 
Potential inputs were chosen based on traditional 
statistical analysis: these included the raw BPSVUB 
and lags thereof. The relevant lag structure of potential 
inputs was analyzed using traditional statistical tools, 
i.e. using the autocorrelation function (ACF), partial 
autocorrelation function (PCF) and the Akaike/ 
Bayesian information criterion (AIC/BIC). We looked 
to determine the maximum lag for which the PACF 
coefficient was statistically significant and the lag 
given the minimum AIC. According to these criterions 
the ARMA(5) model was specified as 
 ,5544332211 ttttttt rrrrrr εφφφφφξ ++++++= −−−−− (4) 

where 521 ,...,,, φφφξ  are unknown parameters of the 
model, tε  is independent random variable drawn from 
stable probability distribution with mean zero and 
variance 2

εσ . The maximum likelihood procedure was 
used for estimation of the parameters of an ARCH or 
GARCH model. The quantification of the model was 
performed by means of R2.6.02 and resulted in the 
following mean equation: 
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where te  are residuals of estimated error term tε  from 
(4). The fitted vs. actual values are graphically 
displayed by means of Eviews3 in Figure 1.  

The significance of the estimated parameters of the 
model was performed using the LM test. The BDS 
method of testing for idd was used. All the parameters 
of the model (6) are significant at 5% level of 
significance. Identically, the BDS test performed on 
standardized residuals showed no evidence of 
nonlinearity in standardized residuals of tr . An 
interested reader should refer to Brock et al. (1996) for 
the theoretical background of these tests. 

                                                             
2 http://cran.r-project.org. 
3 http://www.eviews.com. 
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Next, for catching the leverage effect, the model 
ARMA(5,0)+EGARCH(1,1) was estimated. The 

coefficient for leverage effect γ from (2) is statistically

 
Figure 1 Actual and fitted values of the VUB fund: ARMA(5,0)+GARCH(1,1) model (5) (left). Residuals are at the bottom. 
Actual time series represents the solid line, the fitted values represents the dotted line. Actual (solid) and forecast (dotted) 
values of the VUB fund generated from model ARMA(5,0)+GARCH(1,1) with GED error distribution (right). 

significant and equals –0.2099535. This coefficient is 
negative which means that bad news has larger impact 
onto volatility (see Figure 2). If we compare the 
estimated volatility in Figure 2 with the residuals of 
the VUB fund in Figure 1, we can see that in the 
period of depression the leverage effects and the bad 
news cause the asymmetric jump in the volatility. 

 
Figure 2 The estimated volatility for ARMA(5,0)+ 
ARCH(1,1) process, see (5) and (6). 

In many cases, the basic ARCH-GARCH model 
(1) with Gaussian standard error distribution provides 
a reasonably good model for analyzing financial time 
series and estimating conditional volatility. However, 
there are some aspects of the model which can be 
improved so that it can better capture the 
characteristics and dynamics of a particular time 
series. For this purpose the quantile-quantile (QQ) 
plots are used. Furthermore, the R system assists in 

performing residual analysis (computes the Gaussian, 
Student and generalized residuals with generalized 
error distribution – GED). The selection of the best 
model may also be conducted by calculating the 
values of AIC/BIC criterions. These values are shown 
in Table 1. The GED error distribution provides the 
best fit of model (5) because AIC and BIC criterions 
are the smallest. 

As we mentioned above, the estimation of 
EGARCH model shows the presence of leverage 
effects. The assumption of normal error distribution is 
also violated because the alternative error distributions 
provide better goodness of their fit. These findings 
indicate the chance of gaining better results in 
forecasting with using some of these models. Our 
suspicion was confirmed by computing the statistical 
summary measure of the model´s forecast RMSE. As 
we can see in Table 2 the smallest RMSE value has 
just the GARCH model with GED error distribution.  

After these findings we can make predictions for 
the next 54 trading days using the model with the 
smallest RMSE, i.e. by the ARMA(5,0)+ 
GARCH(1,1) model with GED error distribution. 
These predictions are calculated by means software 
Eviews and shown in Figure 1. 

4. An Alternative Approach 

In this section we show a new approach of function 
estimation based on granular computing (GC) 
components for representing neurons in hidden layer 
of RBF neural network with cloud activation function 
(CAF).  
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The basic components of GC are granules. The 
granule is defined as a small particle, especially one of 
numerous particles forming a larger unit. The basic 
property of a granule is its size. For example, in the 
cluster analysis, the size of granule can be regarded as 
the number of elements in the cluster. An important 
property of granules and granular levels is the 
granularity. The granularity of a level refers to the 
collective properties with respect to their size. 
Granularities are reflected by the size of all granules 
involved in levels. It enables us to construct a 
hierarchical structure called a hierarchy. The term 
hierarchy is used to denote a family of partially 
ordered granulated levels in which each level consists 
of a family of interacting granules (see Yao (2008)). 
The basic function of GC is the granulation. From GC 
point of view, the process of granulation consists of 
three basic components: granules, granulated levels 
and hierarchies. There are two types of the 
granulation: top-down decomposition of large 
granules to smaller granules, and the bottom-up 
combination of smaller granules into larger granules. 

 
Figure 3 RBF neural network architecture 

The structure of a granular neural network is 
defined by its architecture (see Figure 3). In Figure 3 
each circle or node represents the neuron. This neural 

network consists of an input layer with input vector x 
and an output layer with the output value tŷ .  

The output signals of the hidden layer are  

 ,)(2 jjo wx −=ψ  (7) 

where x is a k-dimensional neural input vector, jw  

represents the hidden layer weights, and 2ψ  is radial 
basis (Gaussian) activation function. Note that for an 
RBF network, the hidden layer weights jw  represent 

the centers jc  of activation functions 2ψ .  

To find the weights wj or centers of activation 
functions we used the adaptive (learning) version of 
K-means clustering algorithm for s clusters (see 
Marček et al. (2008, 189)). Cluster analysis is 
regarded as one of the granulation methods, i.e. it say 
why and how to put objects into the same granule. 
Granules are extracted from data in the form of 
clusters, i.e. these entities receive collections of 
numerical data that exhibit some functional or 
descriptive commonalities. The final number of 
clusters provides the number of granules representing 
RBF neurons in the hidden layer. The centers of 
clusters are regarded as the means of granules. A 
family of granules containing every value of input 
data is called a granulated view. The granulated view 
of input data consists of a family of overlapping 
granules (see Figure 4). The above mentioned learning 
algorithm based on the clustering is regarded as one of 
the granular methods presenting bottom-up 
granulation, i.e. input data are combined into larger 
granules. 

The RBF network computes the output data set as 

(8)                                                        ,21=   
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where N is the size of data samples, s denotes the 
number of the hidden layer neurons (RBF neurons) 
and tŷ  corresponds to the estimated variable tr  used 
in models (4) and (5).  

Table 1 AIC, BIC and likelihood function for various types error distribution (model (5) and (6)) made by R system software 
Model model.n (Gaussian) model.t (Student) model.GED 
AIC criterion –10 576 –10 778 –10 792 
BIC criterion –10 533 –10 730 –10 744 
Likelihood function 5 297 5 399 5 406 

Table 2 Ex post forecast RMSEs for various extensions of GARCH  

Model distribution AR(5)+GARCH(1,1) AR(5)+EGARCH(1,1) AR(5)+PGARCH(1,1) 

Gaussian 0.003461 0.001066 0.001064 
t-distribution 0.002345 0.001064 0.001063 
GED-distribution 0.001056 0.001063 0.001062 
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Figure 4 Derivation of granules from input data and their 
description by normal cloud model. 

If the output values tjo ,  from the hidden layer will 
be normalized, where the normalization means that the 
sum of the outputs from the hidden layer is equal to 1, 
then the RBF network will compute the “normalized” 
output data set tŷ  as follows 

 
(9)                                                                . ..., 2, 1,    

,]),(/[)],([),,( ˆ
1 1
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The network with one hidden layer and normalized 
output values tjo ,  is the fuzzy logic model or the soft 
RBF network (see Kecman (2001)). In our case, the 
subjects of learning are the weights tjv ,  only. These 
weights can be adapted by the error back-propagation 
algorithm. The learning rule has the form 

 
, N,, , t

, ..., s,, j
eovv ttjtjtj

…=
=

+←

21
21

, , , , η

 (10) 

where the term η , )1,0(∈η  is a constant called the 
learning rate, te  is the error given by te  = ty – tŷ . 

Next, to improve the abstraction ability of soft 
RBF neural networks with architecture depicted in 
Figure 3, we replaced the standard Gaussian activation 
(membership) function of RBF neurons with functions 
based on the normal cloud concept (see Marček et al. 
(2008, 212), Marček and Marček (2008)). Then, in the 
case of soft RBF network, the Gaussian membership 
function .)/(. 2ψ  in Equation (9) has the form 

 
,])(2/)(exp[
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jt
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where nE ′  is a normally distributed random number 
with mean En  (entropy) and standard deviation He 
(hyper entropy) which represents the uncertain degree 
of entropy. E is the expectation operator.  

5. Empirical Comparison 

The RBF NN was trained using the variables and data 
sets as each ARCH-GARCH model above. In the 
granular RBF neural network framework, the non-
linear forecasting function f(x) was estimated 
according to the expressions (9) with RB function 

.)/(.2ψ  given by (11). The detailed computational 
algorithm for the forecast MSE values and the weight 
update rule for the granular network are shown in 
Marček and Marček (2008). The results of this 
application for various architectures of granular RBF 
networks are shown in Table 3.  

Table 3 Ex post forecast RMSEs for various granular RBF 
NNs (see text for details). 

Number of RBF 
neurons (s) K* RMSE 

1 
1.25 
4.0 

0.00719 
0.00716 

5 
1.25 
4.0 

0.00756 
0.00758 

10 
1.25 
4.0 

0.00720 
0.00715 

*The value of K, (K ≥ 1) is regarded as the rate of 
overlapping in the distribution of input data. For more 
details see Marček et al. (2008). 

A direct comparison between statistical ARCH-
GARCH (see Table 2; the RMSE measure for AR(5)+ 
GARCH(1,1) model with GED distribution is 
0.001056). Therefore, the statistical approach is better 
than the neural network competitor. The achieved ex 
post accuracy of RBF NN (RMSE = 0.00715), but is 
still reasonable and acceptable for use in forecasting 
systems that routinely predict values of variables 
important in decision making processes. Moreover, as 
we could see, the RBF NN has such attributes as 
computational efficiency, simplicity, and ease 
adjusting to changes in the process being forecast. 
ARCH-GARCH models require more costs of 
development, installation and operation in a 
management system, management comprehension and 
co-operation, and often a lot of computational time. 
Another disadvantage of ARCH-GARCH models is 
that there is not a convenient way to modify or update 
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the estimates of the model parameters as each new 
observation becomes available. One has to 
periodically completely develop and refit the model. 
There are no efficient methods for algorithmic 
estimating the measures of forecasting accuracies 
(risks) and responsiveness properties. As mentioned in 
Montgomery et al. (1990) a serious drawback of 
ARIMA-GARCH models is the investment in time 
and other resources required to build a satisfactory 
model. It is doubtful that the improvements in forecast 
accuracy possible through ARCH-GARCH modeling 
methodology could justify the cost of the model-
building process. 

6. Conclusion 

We have proposed two approaches for determining the 
forecast accuracy of the forecasting system applied to 
VUB bond price time series. The first one was based 
on the latest statistical ARCH-GARCH methodology, 
the second one on the d granular RBF NN.  

At present, there is not a single universally 
accepted measure of risk in time series forecasting. 
Because the purpose of forecasting is to reduce the 
risk in decision making, in our application, we have 
taken the forecast accuracy (judged by RMSE) as a 
measure for quantifying the risk.  

In direct comparison between statistical ARCH-
GARCH models and granular RBF NN, the 
experiment with the daily data indicates that both 
methodologies yield very little and similar RMSE 
values. But our experiment shows that RBF NN 
models are economical and computationally very 
efficient, well suited for high frequency forecasting. In 
future research we plan to extend the presented 
methodologies by applying the exponential smoothing 
concept to give more weight to recent forecast errors 
than the older data. 
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