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Abstract

The paper is devoted to the smoothing of discrete functions using the fuzzy
transform introduced by Perfilieva. We generalize a smoothing filter based on
the fuzzy transform recently proposed by us to obtain a better control on the
smoothed functions. For this purpose, a generalization of the concept of fuzzy
partition is suggested and the smoothing filter is defined as a combination of the
direct discrete fuzzy transform and a slightly modified inverse continuous fuzzy
transform. An approximation behavior, total variation of smoothed functions
and statistical properties including the description of the white noise reduction
and the asymptotic expression of bias and variance are investigated and dis-
cussed. The proposed filter is compared with the Nadaraya-Watson estimator
and the results are illustrated assuming financial data.
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1. Introduction

In statistics and image or signal processing, to smooth a data set means to
create an approximating function that attempts to capture important patterns
in the data, while leaving out noise or other fine-scale structures/rapid phenom-
ena. In literature, we can find many different smoothing and filter types that
are based, for example, on the stochastic processes, kernel regressions, integral
or wavelet transforms, or on the techniques of the fuzzy set theory (see e.g.
[10, 15, 16, 17, 19, 28, 34]). Obviously, nobody can imagine today’s life without
some smoothing techniques, for example, a noise reduction in television or radio
signals to improve the quality of telecast or broadcast, respectively, sometimes
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∗Corresponding author
Email addresses: michal.holcapek@osu.cz (Michal Holčapek), tomas.tichy@vsb.cz

(Tomáš Tichý)
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a defect reduction in photographs can be used to improve the quality of pic-
tures, or an outlier reduction in financial time series to better understanding of
financial process behavior .

The fuzzy transform (shortly, F-transform) is a simple approximation tech-
nique proposed by Perfilieva in [24] (see also [22]) based on fuzzy partitioning
of a closed real interval into fuzzy subsets. The F-transform is introduced and
investigated in a continuous and discrete design context. In both designs, a
(continuous or finite) function defined on a closed interval [a, b] is transformed,
using fuzzy sets (basic functions) that form a fuzzy partition of [a, b], to a finite
number of real numbers called the components of F-transform. This type of
F-transform is called the direct F-transform. An inverse F-transform assigns to
F-transform components a continuous function in the continuous design and a
finite function in the discrete design, which is an approximation of the original
function. A simplification and a good approximation of the original function
makes from the F-transform a powerful tool that can be applied, for example,
in data analysis or image processing (see e.g. [2, 4, 5, 6, 23, 32, 26, 33]). A
generalization of F-transform based on the strict continuous triangular norms
can be found in [3]. An interesting extension of the F-transform technique to
the case where its components are polynomials is presented in [25].

In [12], we presented an application of F-transform to the non-parametric
derivation of a probability density function (PDF) from a data sample. More
precisely, we introduced an FT-smoothing filter1 which is the combination of
the discrete direct and the continuous inverse F-transform and derived an op-
timization of parameters of uniform partitions to obtain the best estimation
of PDF with respect to the integrated square error (ISE). In comparison with
the results obtained by the Parzen window estimator,2 the FT-smoothing filter
provides very satisfactory estimates of PDFs. Moreover, similarly to the vector
quantization based on Parzen windows, or the finite Gaussian mixture, the FT-
smoothing filter decreases significantly the model complexity being proportional
for Parzen windows to the number of sample data which can lead to the mem-
ory storage problem. A disadvantage of the FT-smoothing filter is an overfitting
for a smaller bandwidth of basic functions which is among others caused by a
limitation of the original definition of fuzzy partition.

In this paper, we generalize the FT-smoothing filter proposed in [12], which
is based on the original conception of the fuzzy partition, to better check the
smooth property of the resulted function. As we have mentioned above, the
original definition of fuzzy partition has some limitations for smoothing func-
tions, since only two consecutive basic functions are important in the evaluation
of the inverse F-transform. This fact has been pointed out by Stefanini in [30],
where an extension of the fuzzy partition to a fuzzy r-partition (r is a natural

1Note that the abbreviation “FT” means “based on the fuzzy transform”.
2Note that the Parzen window estimator is one of the non-parametric methods as well

as the histogram, vector quantization based on Parzen windows, or finite Gaussian mixture,
using that one can estimate PDFs without any assumption on the shape and parameters of
PDFs (for a survey, see [11, 28]).
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number grater than 0) with 2r active basic functions3 and discrete and continu-
ous F(r)-transform are suggested. Note that the sum of membership values over
all basic functions for any point of the given interval is equal to r. Further,
Stefanini in [30] (see also [31]) uses advanced forms of fuzzy numbers for basic
functions modeling based on parametric shape functions and shows a smoothing
effect on functions obtained from the F(r)-transform. Following the Stefanini’s
idea, we propose an extended fuzzy r-partition as a special case of the fuzzy
r-cover, where we do not suppose that r is a natural number. Although, the
fuzzy r-partitions are considered for any real number r ≥ 1, practically, a re-
quest of a simple construction procedure based on Proposition 2.1 is to suppose
r as a natural number. In this case, our definition is equivalent to Stefanini’s
definition and the values of r refer to the numbers of active basic functions (see
Remark 2.3).

To check the quality of the generalized FT-smoothing filter we verify its
approximative behavior using the modulus of continuity, smoothing properties
expressed by the total variation of smoothed function and statistical properties
including the white noise reduction and the asymptotic properties of the filter
as an estimator.4 The approximation behavior using the modulus of continuity
has been investigated in [22] and we use here only a slight reformulation of the
modulus of continuity. An analysis of the smoothed functions from the total
variation point of view has been presented in [30]. Note that in this paper the
total variation of smoothed functions has a different form, which is required by
the considered discrete design, and the results are presented graphically. Here,
we prove a statement saying that under some conditions the total variation tends
to decrease for higher values of r (see Corollary 4.7). The fruitfulness of the F-
transform in many applications is closely related to the fact that the F-transform
components satisfy the weighted least square criterion (see Theorem 3.1 in [24]).
Here, one can recognize the derivation of the Nadaraya-Watson (NW) estimator
in the kernel regression to find unknown function from a data sample.5 This fact
leads one to carry-out a statistical analysis of the FT-smoothing filter estimator
analogously to the case of the NW estimator and to compare both results.
Note that the NW estimator belongs among the traditional approaches to the
kernel regression and it is a special case of local polynomial kernel estimators.6

Here, we restrict our study of the statistical properties of the FT-smoothing

3That means a number of basic functions giving a non zero value in the evaluation of the
inverse F-transform.

4The FT-smoothing filter as an estimator of an unknown function at a given point will be
called the FT-smoothing filter estimator.

5For the definition, see (16) on page 13. Note that the NW estimator was independently
introduced by Nadaraya [20] and Watson [35]. For the interested reader, we refer to [34] for
an excellent introduction to the kernel smoothing or to [10, 11, 21, 28, 29].

6It is to be remarkable that the NW estimator is derived as the polynomial of the degree 0.
There are many results on the estimators determined by the polynomial of the degree greater
than 0, and theoretically, provide a better estimates (see [8, 21, 11]). Hence, an extension of
the F-transform to higher order presented in [25] seems to be the right way how to improve
the quality of smoothing.
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filter estimator to the fixed design and express its bias (Bias) and variance
(Var).7 Further, we show that a white noise reduction can be ensured for the
denser fuzzy r-partitions. Note that this result can be used in many practical
applications.

As Stefanini has mentioned in [30], the F(r)-transform can be expressed in
terms of the linear filters as a moving average operator. Hence, we obtain
that the FT-smoothing filter estimator is asymptotically unbiased similarly to
the local polynomial kernel estimators. Nevertheless, this fact does not say
anything about the rate of convergence to compare different approaches and,
moreover, the asymptotic bias and variance are used to derive the optimal value
of bandwidth with respect to the asymptotic mean square error (see hNW

AMSE on
p. 15). Here, we propose convergence conditions and derive formulas for the
bias and variance of the estimator based on our filter. The results are compared
with that obtained by the NW estimator. Note that, for this purpose, we use
the equally spaced fixed design and fuzzy r-partitions are expressed in the terms
of kernels. A main reason for such restriction and the kernel expression is a high
complexity of the asymptotic expression of the covariance in (43) of Theorem 4.8
in the random design and the possibility to compare results of the FT-smoothing
filter estimator and NW estimator, respectively.

The paper is structured as follows. The following section gives formal defi-
nitions of countable fuzzy r-cover and fuzzy r-partition as a special case of the
fuzzy r-cover. Further, the concept of a (uniform) fuzzy r-partition determined
by a set of nodes and a set of basal fuzzy sets is introduced. A one-to-one
correspondence between basal fuzzy sets and kernels is proved. The third sec-
tion is devoted to the definition of the direct discrete F-transform including
a stochastic version. A comparison of the F-transform component as an es-
timator of unknown function values and the NW estimator is performed and
the asymptotic properties of the NW estimator in the fixed equally spaced de-
sign are recalled. The main part of this paper is the fourth section, where a
generalization of the FT-smoothing filter is given. Finally, the mentioned prop-
erties as the asymptotic behavior or statistical properties are investigated. An
illustrative example assuming financial data for a practical comparison of the
FT-smoother and NW smoother is given in the fifth section. The last section is
a conclusion.

2. Fuzzy r-partitions

We shall use N, Z and R to denote the set of all natural, integer and real
numbers, respectively. We shall use I to denote a (finite or denumerable) set of
consecutive integers. Usually, the set I has one of the form I = {1, . . . , n}, or

7Let ĝ(x) be an estimator of an unknown function g(x). The bias and variance of the
estimator ĝ(x) of g(x) is defined by Bias(ĝ(x)) = E(ĝ(x) − g(x)) = E(ĝ(x)) − g(x) and
Var(ĝ(x)) = E((ĝ(x) − g(x))2), respectively, where E denotes the expected value over the
sampling distribution of ĝ(x).
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I = {−n,−n + 1, . . . , n− 1, n} for some n ∈ N in the finite case, or I = Z in the
infinite case.

A fuzzy set on R is a function A : R → [0, 1]. We shall say that a fuzzy set
A is empty, if A(x) = 0 holds for any x ∈ R. Further, we shall use Ker(A) to
denote the set of all x ∈ R for which A(x) = 1. The set Ker(A) is called the
kernel of A. We shall say that a fuzzy set is convex, if

A(λx + (1− λ)y) ≥ min(A(x), A(y)) (1)

for any x, y ∈ R and λ ∈ [0, 1], continuous, if A(x) is a continuous function in
the common sense, and normal, if Ker(A) = {x} for a suitable x ∈ R. In this
paper, we shall suppose that each fuzzy set is continuous, convex and has the
non-empty kernel.8 Note that the choice of the fuzzy sets shapes is motivated
by the shapes of fuzzy sets used in the original definition of fuzzy partition [24]
and this choice seems to be natural. Finally, we denote R = [a, b].

In order to define a generalization of fuzzy partition proposed in [24], let
us start with more general concept called a fuzzy r-cover of a real interval R.
A motivation of this step is closely connected with a solution to the problem
of finding a better approximation of a function in the endpoints of the given
interval. An extension of the fuzzy partition has been also used in [25].

Definition 2.1 (Fuzzy r-cover). Let R be a real interval and r ≥ 1 be a real
number. A countable fuzzy r-cover of R is a collection A = {Ai | i ∈ I} of
non-empty fuzzy sets that satisfies

∑

i∈I
Ai(x) ≥ r (2)

for any x ∈ R.

Note that the condition (2) is motivated by a natural generalization of a
countable cover of a set by sets, i.e., R is covered by sets from a collection
A = {Ai | i ∈ I}, if R ⊆ ⋃

i∈IAi, whereas Ai ∩ Aj 6= ∅ for i 6= j is not
supposed in general. A simple but very useful consequence of the definition of
fuzzy r-cover is as follows.

Proposition 2.1. Let A1 and A2 be disjoint fuzzy r1-cover and r2-cover of a
real interval R, i.e. A1 ∩A2 = ∅. Then A1 ∪A2 is a fuzzy (r1 + r2)-cover of R.

According to the cardinality of the collection of A, we can distinguish two
cases of fuzzy r-covers. We shall say that a fuzzy r-cover is finite, if it contains a
finite number of fuzzy sets, and infinite, otherwise. If we deal with a finite fuzzy
r-cover of a real interval R, then we shall usually write A = {A1, . . . , An}, or
A = {Ai−n, . . . , Ai, . . . , Ai+n}. Notice that the sum in the r-Ruspini condition

8Note that if Supp(A) = cl{x ∈ R | A(x) > 0}, where cl is the closure operator, then the
considered fuzzy sets are fuzzy intervals or, accepting the assumption of the normality, fuzzy
numbers (see [13, 7]).
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is an infinite sum for infinite fuzzy r-covers of R which could be seen as a trouble
for a practical manipulation. However, for many infinite fuzzy r-partitions, the
infinite sum may be successfully transformed to a finite sum (see Example 2.1).

Since we work with a more general concept of fuzzy cover, it is useful to
know fuzzy sets giving a non-zero function value at a point x of R. Let A be a
fuzzy r-cover of R. Then we define a mapping

dA : R → 2Z (3)

such that Ai(x) > 0 for any i ∈ dA(x) and Ai(x) = 0 for any i ∈ I \ dA(x)
for any x ∈ R. A number of the “active” fuzzy sets at a point x of R is given
as a number of elements contained in the set dA(x). One can check easily that
if |dA(x)| = ∞, then A is an infinite fuzzy r-cover and if A is a finite fuzzy
r-cover, then |dA(x)| < ∞. Inverse implications are not true as the following
simple counter-example demonstrates.

Example 2.1. Let us consider R = (0, 1] and define

An(x) = f(x, 2−n−1, 2−n, 2−n+1)

for any n ∈ N, where

f(x, a, b, c) =





0, x < a;
x−a
b−a , a ≤ x < b;
c−x
c−b , b ≤ x ≤ c;
0, c < x.

One can see that min(An(x), An+1(x)) > 0 if and only if x ∈ (2−n−1, 2−n).
Since

An(x) + An+1(x) =
x− 1

2n+1

1
2n − 1

2n+1

+
1
2n − x

1
2n − 1

2n+1

= 1

for any x ∈ [2−n−1, 2−n], the set A = {Ai | n ∈ N} forms an infinite fuzzy
1-cover of R. On the other hand, we have |dA(x)| ≤ 2 for any x ∈ R.

Using the concept of fuzzy r-cover we can naturally generalize the concept
of fuzzy partition of an interval R. We shall use A » R to denote the restriction
of a function A to R.

Definition 2.2 (Fuzzy r-partition). Let R be a real interval and r ≥ 1 be
a real value. A collection A = {Ai | i ∈ I} of non-empty fuzzy sets is called a
countable fuzzy r-partition of R, if there exists a fuzzy r-cover B = {Bi | i ∈ I}
of R such that

1. Ai = Bi » R for any i ∈ I,
2.

∑
i∈IAi(x) = r for any x ∈ R.
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The fuzzy sets of A are called basic functions.

It is easy to see, if r = 1, then the condition 2 coincides with the Rus-
pini condition (see [27]) used in the original definition of the fuzzy partition
(Definition 1 in [22]). This motivates us to call the condition as the r-Ruspini
condition. Simply speaking, a fuzzy r-partition of R is the restriction of func-
tions of a fuzzy r-cover to R, where, moreover, a requirement on fuzzy sets to
be mutually disjoint is considered. In comparison with the original definition
in [24], the basic functions in our conception are also defined over nodes that
need not belong to R and more than one node can be contained in supports of
basic functions in general. This trick enables us to regulate the smoothness of
resulted functions better.

Similarly to the fuzzy r-cover denotation, we shall say that a fuzzy r-partition
of A is finite or infinite, if the set of all basic functions is finite or infinite,
respectively. In the case that A is a finite fuzzy r-partition, then we shall write
A = {A1, . . . , An} or A = {Ai−n, . . . , Ai, . . . , Ai+n}.

Remark 2.2. Obviously, one can reformulate Proposition 2.1 for the fuzzy r-
partitions to construct more complex fuzzy r-partitions from the simple ones.
Note that this procedure has been used in the construction of fuzzy r-partitions
in [31], where each fuzzy r-partition can be derived as the combination of fuzzy
1-partitions.

It is easy to see that the collection of all restricted fuzzy sets to the interval
(0, 1] introduced in Example 2.1 forms an infinite fuzzy 1-partition of (0, 1].
Further examples will be mentioned later.

In this paper, we are interested in a special case of fuzzy r-partitions, namely,
a uniform fuzzy r-partition determined by a basal fuzzy sets. A main reason for
this step is the investigation of the asymptotic properties of the FT-smoothing
filter estimator in a spirit of asymptotic properties of kernel smoothing estima-
tors, although, many results hold true without this restriction. Note that the
uniform fuzzy r-partition is also profitable from an optimization point of view
(see comments in [12]).

Definition 2.3. A basal fuzzy set is a continuous, convex, normal fuzzy set
S : R→ [0, 1] such that S(x) = S(−x) for any x ∈ R and

∫ ∞

−∞
x2S(x)dx < ∞.

Obviously, the condition S(x) = S(−x) for any x ∈ R says that each basal fuzzy
set is symmetric which implies

∫ ∞

−∞
xS(x)dx = 0. (4)

Note that this equality enables us to significantly simplify the description of
e.g. the Bias, Var, MSE, or AMSE, that will be investigated in the subsection

7

Fuzzy sets and systems. 2011, vol. 180, issue 1, p. 69-97. http://dx.doi.org/10.1016/j.fss.2011.05.028

DSpace VŠB-TUO Fuzzy sets and systems. 2011, vol. 180, issue 1, p. 69-97. 13/10/2011



devoted to the statistical analysis of the FT-smoothing filter. Let S be a basal
fuzzy set and h > 0 be a real number. On can check easily that also

Sh(x) = S
(x

h

)
(5)

is a basal fuzzy set. The value h is called the bandwidth or window width.

Definition 2.4. Let R be a real interval, T = {ti | i ∈ I} be an ordered set of
nodes from R with ti < ti+1 for any i ∈ I and S = {S(i) | i ∈ I} be a set of basal
fuzzy sets. A fuzzy r-partition of R determined by (T ,S) is a fuzzy r-partition
A = {Ai | i ∈ I} of R such that

Ai(x) = S(i)(x− ti) (6)

holds for any x ∈ R and i ∈ I. We shall say that a fuzzy r-partition of R
determined by (T ,S) is uniform, if S = S(i) for any i ∈ I and ti+1 − ti = u for
any consecutive nodes ti+1 and ti in T .

In the case, when a fuzzy r-partition determined by (T ,S) is uniform and
S(i) = S for all i ∈ I, we shall also write (T , S) instead of (T ,S). It is easy
to see that dA(x) for the finite uniform fuzzy r-partitions has a form {i0, i0 +
1, . . . , i0 + n} for a suitable i0 ∈ Z. Note that ti 6∈ R for some i ∈ I, in general,
however, S(i)(x− ti) > 0 for some x ∈ R.

Proposition 2.2. For any finite uniform fuzzy r-partitions A of R and for any
x, y ∈ R, we have ||dA(x)| − |dA(y)|| ≤ 1.

Proof. Let A be a finite uniform fuzzy r-partitions of R and x, y ∈ R. Without
loss of generality, let us suppose that S(z) = 0 for all z 6∈ (−1, 1) and dA(x) =
{i0, i0 + 1, . . . , i0 + n} and dA(y) = {j0, j0 + 1, . . . , j0 + m}. Put xi = ti0+i − x,
where i = 0, . . . , n, and yj = tj0+i−y, where j = 0, . . . ,m. It is easy to see that
xi = x1 + iu and yj = y1 + ju, where u = ti+1 − ti is the constant derived from
the uniformity of fuzzy r-partition. Moreover, we have −1 < x0 ≤ y0 ≤ −1 + u,
or −1 < y0 < x0 ≤ −1 + u, otherwise, ti0 6∈ dA(x) or tj0 6∈ dA(y).

Here, let us suppose that x0 ≤ y0. Analogously, one can prove the statement
for the second case. Notice that 1 − u ≤ xn ≤ ym < 1. A simple consequence
of the construction of points xi and yj is the fact that yn ∈ [1 − u, 1) or yn 6∈
[1 − u, 1). In the first case, we necessary obtain m = n and, hence, ||dA(x)| −
|dA(y)|| = 0. In the second one, we have m = n− 1 (recall that yn − yn−1 = u)
and thus ||dA(x)| − |dA(y)|| = 1. Hence, we may write ||dA(x)| − |dA(y)|| ≤ 1
in general.

Remark 2.3. It is not easy to show something about the structure of the uni-
form fuzzy r-partition in a general setting. To demonstrate the difficulty of such
investigation, we prove the claim: Let A be a finite uniform fuzzy r-partitions
of R determined by (T , Sh) (put u = ti+1 − ti) such that r is a natural number
and there is a real number a with 0 < a < 1 and Sh(su) = 1 − sa for any
s = 0, 1, 2, . . . Then ru = h.
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In fact, one can see from the assumption on the basal fuzzy set Sh and the
uniformity of the fuzzy r-partition A that

Sh(ti − ti) = Sh(0) = 1
Sh(ti − ti+1) = Sh(ti − ti−1) = 1− a

...
Sh(ti − ti+s−1) = Sh(ti − ti−s−1) = 1− (s− 1)a,

where s is the least natural number for which sa ≥ 1. One can check that s ≥ 2.
We shall prove that sa = 1 which gives that Sh(x−ti−s) > 0 and Sh(y−ti+s) > 0
for any x ∈ [ti−s, ti[ and y ∈]ti, ti+s], respectively, and Sh(ti − ti−s) = Sh(ti −
ti+s) = 0. A simple consequence of this fact is h = ti+s− ti = s(ti+1− ti) = su.
From the r-Ruspini condition, we have (note that under our assumption on r
we have 0 < (s− 1)a < 1):

r = 1 + 2(1− a) + 2(1− 2a) + · · ·+ 2(1− (s− 1)a) =
1 + 2(s− 1)− a(s− 1)s =

1 + (s− 1) + (s− 1)− a(s− 1)s = s + (1− as)(s− 1).

Let us suppose that sa > 1. It is easy to show that −1 < 1 − sa < 0. Since
s is a natural number and s ≥ 2, then s + (1 − sa)(s − 1) cannot be a natural
number which is a contradiction with the assumption on r. Hence, we obtain
sa = 1 and r = s, i.e. ru = h.

Analogous statements could be very interesting for the development of the
theory about the fuzzy r-partitions, but their realization is rather complex and
out of the scope of this paper. On the other hand, from the application per-
spective, the user can require some special conditions on the (uniform) fuzzy
r-partitions as, for example, ru = h (see Examples 2.4 and 2.5).

The following examples of uniform fuzzy r-partitions are based on the basic
functions that have been used in [24]. For an interesting example of a non-
uniform fuzzy r-partition based on the parameterized fuzzy numbers (see [31]),
we refer to [30].

Example 2.4 (Triangle fuzzy r-partition). The triangle basal fuzzy sets is
given by

Sh(x) = max
(

0,
h− |x|

h

)
(7)

and R = [0, 10]. Using Proposition 2.1, one can simply verify that fuzzy r-
partitions presented on Fig. 1 are a uniform fuzzy 2-partition of [0, 10] with the
bandwidth h = 2 and a uniform fuzzy 9-partition of [0, 10] with the bandwidth
h = 6. For a simpler orientation, we split the uniform fuzzy r-partitions onto
two parts pictured by normal and dashed lines that are again fuzzy partitions.

9
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Figure 1: Triangle uniform fuzzy 2-partition for h = 2 (left) and 9-partition for h = 6 (right).
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Figure 2: Raised cosine uniform fuzzy 2-partition (left) and 4-partition (right) for h = 4.

Example 2.5 (Raised Cosine fuzzy r-partition). The raised cosine basal
fuzzy set is given by

Sh(x) =

{
1
2

(
1 + cos

(
x
hπ

))
, x ∈ [−h, h];

0, otherwise
(8)

and R = [0, 10]. On Fig. 2, we can see a uniform fuzzy 2-partition and a uniform
fuzzy 4-partition of the interval [0, 10] with the same bandwidth h = 4. For a
simpler verification, we split these uniform fuzzy r-partitions onto two parts
pictured by normal and dashed lines.

Remark 2.6. One can notice that when fixing a bandwidth h a greater value
of r requires a greater number of basic functions and the fuzzy r-partition is
denser, i.e., the number of nodes ti is greater. It is easy to see that fixing the
value of r a smaller bandwidth leads to a denser fuzzy r-partition and vice versa.

As we have mentioned in Introduction, the components of the F-transform
are derived analogously to the values of the NW estimator. To show a relation
between both notions, let us establish the concept of kernel (see e.g. [9, 11, 21,
28, 34]). A kernel is a continuous, symmetric, unimodal function K : R →
[0,∞) having the following properties:

10
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(i)
∫∞
−∞K(x)dx = 1,

(ii)
∫∞
−∞ x2K(x)dx < ∞.

Obviously, each kernel is a symmetric density function with a single mode.
Typical examples of kernels are the Uniform, Triangular, Cosine, Epanechnikov
or Gaussian density functions (see e.g. [9, 11, 29]). Let h > 0 be a real number
and K be a kernel, then Kh(x) = 1/hK(x/h) is again a kernel, where h is the
bandwidth of K (see [34]). For our investigation, the following relation between
basal fuzzy sets and kernels is fundamental.

Proposition 2.3. There is a one-to-one correspondence between the classes of
all basal fuzzy sets and all kernels.

Proof. Define

F (S)(x) =
S(x)∫ +∞

−∞ S(x)dx
and G(K)(x) =

K(x)
K(0)

for any basal fuzzy set S and any kernel K. It is easy to see that F (S) is a
kernel and G(K) is a basal fuzzy set. One can simply check that F ◦G(K) = K
and G ◦ F (S) = S.

A valuable consequence of this proposition is the fact that the well known re-
sults for the kernels and kernel smoothers can be adopted for the basal fuzzy sets
and potentially for an FT-smoothing filter estimator based on the F-transform.

3. Direct discrete fuzzy transform

Let us introduce the concept of the (direct) discrete fuzzy transform which
assigns, using basic functions of fuzzy r-partitions, to a finite real function g
a vector of real numbers representing this function g. We shall use Dom(g) to
denote the domain of a function g.

Let R be a real interval and A = {Ai | i ∈ I} be a fuzzy r-partition of R
determined by (T ,S) and s ∈ N. We shall say that a set X = {xj | j = 1, . . . , n}
of reals is s-dense with respect to A, if for each Ai ∈ A there exist at least s
nodes xj1 , . . . , xjs ∈ X such that Ai(xjt) > 0 holds for any t = 1, . . . , s. If the
set X is 1-dense with respect to A, we shall say that X is sufficiently dense
with respect to A.9 Note that if a set {xj | j = 1, . . . , k} of reals is sufficiently
dense with respect to a fuzzy r-partition A and the domains of basic functions
of A are bounded, i.e. Dom(Ai) ⊆ [ai, bi] for any i ∈ I, then A is a finite fuzzy
r-partition.

9Usually, it is sufficient to suppose that sets of nodes are 1-dense. Nevertheless, there
are some cases when the assumption of s-density for s > 1 leads to a better result (see
Corollary 4.10).
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Definition 3.1 ([24]). Let R be a real interval, g be a finite real function given
at the nodes x1 < · · · < xn with Dom(g) ⊆ R and A = {Ai | i ∈ I} be a fuzzy
r-partition of R determined by (T ,S) such that Dom(g) is sufficiently dense
with respect to A. We shall say that a collection of real numbers {Fi | i ∈ I} is
the discrete fuzzy (F-)transform of g with respect to A, if

Fi =

∑n
j=1 g(xj)Ai(xj)∑n

j=1 Ai(xj)
. (9)

The numbers Fi are called components of the discrete F-transform.

Let us make useful simplifications and assumptions. First, we shall omit
“discrete” in the “discrete F-transform”. Then we shall omit “determined by
(T ,S)” in the “fuzzy r-partition of A determined by (T ,S)”, when it does not
induce any confusion. Finally, we shall suppose that each set of nodes, at which
a function is given, is sufficiently dense with respect to a given fuzzy r-partition.

Notice that the assumption of “being sufficiently dense” used in the previous
definition ensures the correctness of the formula (9), i.e. the denominator is
different from 0 for each basic function Ai. Since Ai are determined by basal
fuzzy sets S(i), then we may also write

Fi =

∑n
j=1 g(xj)S(i)(xj − ti)∑n

j=1 S(i)(xj − ti)
, (10)

or even

Fi =

∑n
j=1 g(xj)S(xj − ti)∑n

j=1 S(xj − ti)
, (11)

if a uniform fuzzy r-partition is supposed.
In [24], a very important statement mentioned below is presented. This

proposition shows that the components of F-transform satisfy the weighted least
square criterion.

Proposition 3.1. Let R be a real interval, g be a real function given at the
nodes x1 < · · · < xn with Dom(g) ⊆ R and A = {Ai | i ∈ I} be a fuzzy
r-partition of R. Then Fi minimizes the weighted least square criterion

Ψi(y) =
n∑

j=1

(g(xj)− y)2Ai(xj). (12)

The rest of this section is devoted to a statistical analysis of the F-transform
components based on a uniform fuzzy r-partition from the kernel-based non-
parametric regression perspective.10 More precisely, we are interested in the
fixed equally spaced design context.

10It is possible to deal with non-uniform fuzzy r-partitions, but the results are more com-
plicated and non-transparent.
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Before commencing our study, let us give some relevant terminology and
notation. A fixed design consists of x1, . . . , xn which are ordered non-random
numbers. We shall say that a fixed design is equally spaced, if xj+1 − xj is
constant for all j. Sometimes, a fixed equally spaced design has a form xj = j

n
for j = 0, . . . , n. For the fixed design the response variables are assumed to
satisfy

Yj = g(xj) + εj , j = 1, . . . , n, (13)

where g is a (non-random) function and εj is a random variable representing
the error in xj having the following expected value, variance and covariance

E(εj) = 0, Var(εj) < ∞ and Cov(εi, εj) = 0 (14)

for i 6= j, respectively. In our investigation, we restrict ourselves to the common
choice Var(εj) = σ2 for any j = 1, . . . , n (a homoscedastic model). One can
prove easily that E(Yj) = g(xj), Var(Yj) = Var(εj) = σ2 and Cov(Yi, Yj) = 0
for any i 6= j.11

Let R be a real interval, (x1, Y1), . . . , (xn, Yn) define a finite random function,
where Y1 . . . , Yn are given by (13) and X = {x1, . . . , xn} ⊆ R, and A = {Ai |
i ∈ I} be a uniform fuzzy r-partition of R determined by (T , S) such that X is
sufficiently dense with respect to A. We shall say that a collection of random
variables {Φi | i ∈ I} is the discrete stochastic F-transform of the finite random
function defined by (x1, Y1), . . . , (xn, Yn) with respect to A, if

Φi =

∑n
j=1 YjS(xj − ti)∑n

j=1 S(xj − ti)
. (15)

Note that if {Φi | i ∈ I} are the components of the stochastic F-transform of a
finite random function defined by (x1, Y1), . . . , (xn, Yn), where Yj = g(xj) + εj

for any j = 1, . . . , n, and {Fi | i ∈ I} are the F-transform components of the
(non-random) finite function g, then the expected value of the random variable
Φi is equal to Fi (i.e. E(Φi) = Fi) for any i ∈ I.

Let us recall that the aim of the kernel-based nonparametric regression is
to estimate the unknown function g. There are many methods based on one
or more than one kernels how to find a “good” estimation of g (see e.g. [9,
10, 11, 21, 28, 29, 34]). Here, we restrict ourselves to one of them called the
Nadaraya-Watson (NW) estimator:

ĝNW(x) =

∑n
j=1 YjK(xj − x)∑n

j=1 K(xj − x)
, (16)

where Yj is expressed by (13) and K is a kernel. Comparing the NW estimator
with the formula (15) for the stochastic F-transform components over a ran-
dom function given by (x1, Y1), . . . , (xn, Yn), one can see the similarity. More
precisely, we may state the following proposition.

11For example, Cov(Yi, Yj) = E((Yi−g(xi)(Yj−g(xj))) = E((εi−0)(εj−0)) = Cov(εi, εj) =
0
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Proposition 3.2. Let R be a real interval and A = {Ai | i ∈ I} be a uniform
fuzzy r-partition of R determined by (T , S). If Y1, . . . , Yn are random variables
defined by (13) and ĝNW is the NW estimator with

K(x) =
S(x)∫ +∞

−∞ S(x)dx
,

then Φi = ĝNW(ti) for any ti ∈ T .

Proof. This is a straightforward consequence of Proposition 2.3 and the defi-
nition of Φi.

Since the components Φi coincide with the estimates ĝNW(ti) of function
values g(ti), we may use the results of the NW estimator to investigate statistical
properties of our smoothing filter as an estimator.12 Recall several facts about
the asymptotic behavior of the NW estimator which are among others used to
compare the quality of kernel smoothers and to derive an optimal bandwidth
for the “best smoothing”.

Let R = [a, b] be an interval and consider the fixed equally spaced design
regression model

Yj = g(xj) + εj , j = 1, . . . , n, (17)

where xj = a + j
(

b−a
n

)
and Var(εj) = σ2. Note that one could also consider

x0 = a, but x0 6∈ dA(x) for any x ∈ [a + h, b− h] (see (A4) below) and thus x0

can be omitted in our analysis. We shall make the following assumptions in our
analysis (cf. [34]):

(A1) The function g′′ is continuous on [a, b].

(A2) K is a symmetric kernel with K(x) = 0 for any x 6∈ (−1, 1).

(A3) The bandwidth h = hn is a sequence satisfying hn → 0 and nhn →∞ as
n →∞.

(A4) The point x at which the estimation is taking place satisfies a+hn < x <
b− hn for all n0 ≤ n where n0 is fixed.

Note that usually the interval [a, b] in the fixed equally spaced design context
is considered to be the unit interval. Recall that Bias(ĝNW(x)) = E(ĝNW(x))−
g(x).

12Note that NW estimator is the simplest non-parametric estimator and can be improved
by, for example, a linear local regression (see e.g. [9, 11, 21, 34]).
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Theorem 3.3. Under the assumptions (A1)-(A4), we may write

Bias(ĝNW(x)) =
g′′(x)h2µ2(K)

2
+ O

(
1
n

)
+ o(h2), (18)

Var(ĝNW(x)) =
σ2(b− a)

nh
R(K) + o

(
1

nh

)
, (19)

where µ2(K) =
∫ 1

−1
z2K(z)dz and R(K) =

∫ 1

−1
K2(z)dz.

For the proof, we refer to e.g. [8, 9, 34]. Note that if one assumes the unit
interval as [a, b], then (19) can be rewritten as

Var(ĝNW(x)) =
σ2

nh
R(K) + o

(
1

nh

)
. (20)

Further, we can see that ĝNW(x) is an asymptotically unbiased estimator of g.
A simple consequence of this theorem is a computation of the mean square error

MSE(ĝNW(x)) = Var(ĝNW(x)) + Bias(ĝNW(x))2 =

σ2(b− a)
nh

R(K) + o

(
1

nh

)
+

(
g′′(x)h2µ2(K)

2
+ O

(
1
n

)
+ o(h2)

)2

=

σ2(b− a)
nh

R(K) +
(g′′(x))2h4µ2(K)2

4
+ o

(
1

nh
+ h4

)
.

Let us denote

AMSE(ĝNW(x)) =
σ2(b− a)

nh
R(K) +

(g′′(x))2h4µ2(K)2

4
(21)

as the asymptotic MSE. The optimal value of the bandwidth h can be derived
by setting the derivative of AMSE with respect to h equal to zero (for details,
we refer to [34, 9, 8]). By a simple calculation we obtain

hNW
AMSE =

(
σ2(b− a)
ng′′(x)

C(K)
) 1

5

(22)

where C(K) = R(K)
µ2(K)2 may be understood as a characterization of the kernel K.

4. FT-smoothing filter

In this section, we generalize the FT-smoothing filter based on the direct
discrete F-transform and the inverse continuous F-transform introduced in [12].
Further, we investigate approximation, total variation and statistical properties
of this smoothing filter.
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Figure 3: Application of the FT-smoothing filter on a geometric Brownian motion – triangle
(left) and raised cosine (right) uniform fuzzy 5-partitions with h = 5.

4.1. Definition
Let R be a real interval and A be a fuzzy r-partition of R. We shall use

F(R,A) to denote the set of all functions g such that Dom(g) ⊆ R and simul-
taneously it is sufficiently dense with respect to A. Obviously, the set F(R,A)
contains all functions on which the discrete F-transform may be applied. Fur-
ther, we shall use CF(R) to denote the set of all continuous real functions g
defined on R.

Definition 4.1 (FT-smoothing filter). Let R be a real interval and A =
{Ai | i ∈ I} be a fuzzy r-partition of R determined by (T ,S). An FT -smoothing
filter determined by A is a mapping FA : F(R,A) → CF(R) defined by

FA(g)(x) =
1
r

∑

i∈I
FiAi(x) (23)

for any x ∈ R, where Fi are the components of the discrete F-transform.

Note that the formula in (23) has been used in [30] for the inverse discrete
and continuous F(r)-transform. One can check easily that the linear combi-
nation of continuous functions is a continuous function. Hence, our definition
is correct and FA is really a mapping to the set of all continuous functions
on R. Comparing with the original approach to the inverse F-transform the
proposed definition of FT-smoothing filter is only a slight modification of the
inverse F-transform in the continuous design to obtain a linear combination for
all elements from R. On Fig. 3, one can see an application of the FT-smoothing
filter in smoothing a geometric Brownian motion in finance. In this way, a better
imagination about the structure of this process can be obtained. We use triangle
(left) and raised cosine (right) uniform fuzzy 5-partitions with the bandwidth
h = 5. Obviously, there is no significant difference between the choice of the
basal functions. Therefore, for the demonstrations in this paper, we restrict
ourselves to the triangle uniform fuzzy r-partitions.

Recall that in the discrete design the resulted function of the inverse F-
transform is again a finite function. More precisely, if g is a finite function with

16

Fuzzy sets and systems. 2011, vol. 180, issue 1, p. 69-97. http://dx.doi.org/10.1016/j.fss.2011.05.028

DSpace VŠB-TUO Fuzzy sets and systems. 2011, vol. 180, issue 1, p. 69-97. 13/10/2011



Dom(g) = {x1, . . . , xn}, then

ĝ(xi) = FA(g)(xi), (24)

i = 1, . . . , n, defines a finite function which is an approximation of the original
function g (cf. Definition 5 in [24]). The following subsections are devoted to
some properties of the FT-smoothing filter. To avoid some technical complica-
tions, we restrict ourselves to the finite fuzzy r-partition determined by (T ,S).
Nevertheless, most of the results are also true for the infinite fuzzy r-partition,
and even for the fuzzy r-partitions that are not determined by basal fuzzy sets.

4.2. Basic properties of FT-smoothing filters
Let us suppose that A = {A1, . . . , Ak} be a fixed fuzzy r-partition of a real

interval R determined by (T ,S). Let us define the partial addition on F(R,A)
(or on CF(R)) by

(f + g)(x) = f(x) + g(x), (25)

for any f, g ∈ F(R,A) such that Dom(f) = Dom(g) and the multiplication by a
real number on F(R,A) (or on CF(R)) by

(af)(x) = af(x) (26)

for any f ∈ F(R,A) and a ∈ R. Let f, g ∈ F(R,A) (or f, g ∈ CF(R)). We shall
say that f is less than or equal to g and write f ≤ g, if Dom(f) = Dom(g) and
f(x) ≤ g(x) for any x ∈ Dom(f). Obviously, the relation ≤ is a partial ordering
on F(R,A) (or on CF(R)).

Proposition 4.1. Let f, g ∈ F(R,A) such that Dom(f) = Dom(g) and a, b ∈ R.
Then

FA(af + bg) = aFA(f) + bFA(g). (27)

If f ≤ g in F(R,A), then FA(f) ≤ FA(g) in CF(R).

Proof. Let f, g ∈ F(R,A) with Dom(f) = Dom(g) = {x1, . . . , xn} and a, b ∈
R. Then

Hi =

∑n
j=1(af + bg)(xj)Ai(xj)∑n

j=1 Ai(xj)
=

a
∑n

j=1 f(xj)Ai(xj)∑n
j=1 Ai(xj)

+
b
∑n

j=1 g(xj)Ai(xj)∑n
j=1 Ai(xj)

= aFi + bGi

holds for any i = 1, . . . , k and hence

FA(af + bg)(x) =
1
r

k∑

i=1

HiAi(x) =
1
r

k∑

i=1

(aFi + bGi)Ai(x) =

a

r

k∑

i=1

FiAi(x) +
b

r

k∑

i=1

GiAi(x) = aFA(f) + bFA(g).
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If f ≤ g in F(R,A), then one can verify easily that Fi ≤ Gi for any i = 1, . . . , k
and, hence, we obtain FA(f) ≤ FA(g).

Proposition 4.2. Let g ∈ F(R,A), g(x) = c for any x ∈ Dom(g). Then
FA(g)(x) = c for any x ∈ R.

Proof. Let g ∈ F(R,A) and g(x) = c for any x ∈ Dom(g) = {x1, . . . , xn}.
Then

Fi =

∑n
j=1 cAi(xj)∑n
j=1 Ai(xj)

=
c
∑n

j=1 Ai(xj)∑n
j=1 Ai(xj)

= c

for any i = 1, . . . , k. Since 1
r

∑k
i=1 Ai(x) = 1 for any x ∈ R, then

FA(g)(x) =
1
r

k∑

i=1

FiAi(x) =
1
r

k∑

i=1

cAi(x) = c
1
r

k∑

k=1

Ak(x) = c

for any x ∈ R.

4.3. Approximation behavior of FT-smoothing filter
To investigate an approximation behavior of FT-smoothing filters we shall

define a parameterized modulus of continuity (cf. [14]). Let τ be a topology on
R. A mapping δ : R → τ is called a neighborhood function on R, if x ∈ δ(x)
holds for any x ∈ R. For example, if R = [a, b] and τ is determined by the
closed intervals on R, then a neighborhood function on R can be defined as
δ(x) = [x − 2h, x + 2h] ∩ R, where h is the bandwidth of a basal fuzzy set.
Intuitively, the mapping δ(x) should express some interesting neighborhood of
the point x. Now, a parameterized modulus of continuity determined by δ may
be introduced as follows.

Definition 4.2. Let g be a real function such that Dom(g) ⊆ R, τ be a topology
on R and δ : R → τ be a neighborhood mapping on R defined above. A
parameterized modulus of continuity of the function g determined by δ is a
mapping ωδ(g, ·) : R → R given by

ωδ(g, x) = sup
r,s∈δ(x)∩Dom(g)

|g(r)− g(s)|. (28)

Obviously, ωδ(g, x) is the value saying how close the function values of g
are at the points laying inside the neighborhood of the point x expressed by
δ(t). Hence, smaller values of ωδ(g, x) show that the function g is smoother or
continuous. If we want to have one number which characterizes the smoothness
of a function g, then, analogously to the common modulus of continuity, we can
consider

ωδ(g) = sup
x∈R

ωδ(g, x). (29)
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One can check easily that the common definition of modulus of continuity may
be obtained by putting δ(x) = [x − h, x + h] ∩ R for some h > 0. Obviously,
if g is a continuous function on R, then h → 0 implies ωδ(g) → 0, where
δ(x) = [x− h, x + h] ∩ R. Let Ai : R→ [0,∞) be a fuzzy set. We shall denote
Supp(Ai) = {x ∈ R | Ai(x) > 0} the support of the fuzzy set Ai.

Theorem 4.3. Let g ∈ F(R,A). Then

|g(x)−FA(g)(x)| ≤ ωδ(g, x), (30)

holds for any x ∈ Dom(g), where

δ(x) =
⋃

i∈dA(x)

Supp(Ai). (31)

Proof. Let x ∈ Dom(g) and i ∈ dA(x). Since Ai(xj) = 0 for any xj ∈ Dom(g)
such that xj 6∈ δ(x), then

|g(x)− Fi| ≤
∣∣∣∣∣g(x)−

∑n
j=1 g(xj)Ai(xj)∑n

j=1 Ai(xj)

∣∣∣∣∣ =

∣∣∣∣∣

∑n
j=1(g(x)− g(xj))Ai(xj)∑n

j=1 Ai(xj)

∣∣∣∣∣

≤
∑n

j=1 |g(x)− g(xj)|Ai(xj)∑n
j=1 Ai(xj)

=

∑
xj∈δ(x) |g(x)− g(xj)|Ai(xj)∑

xj∈δ(x) Ai(xj)
≤

∑
xj∈δ(x) ωδ(g, x)Ai(xj)∑

xj∈δ(x) Ai(xj)
= ωδ(g, x).

Hence, we obtain

|g(x)−FA(g)(x)| =
∣∣∣∣∣g(x)− 1

r

k∑

i=1

FiAi(x)

∣∣∣∣∣ =

∣∣∣∣∣∣
1
r

∑

i∈dA(x)

(g(x)− Fi)Ai(x)

∣∣∣∣∣∣
≤

1
r

∑

i∈dA(x)

|g(x)− Fi|Ai(x) ≤ 1
r

∑

i∈dA(x)

ωδ(g, x)Ai(x) = ωδ(g, x)

and the proof is finished.

Corollary 4.4. Let g ∈ F(R,A). Then

|g(x)−FA(g)(x)| ≤ ωδ(g), (32)

holds for any x ∈ Dom(g), where δ is defined by (31).

According to Remark 2.6, for a fixed bandwidth h and a higher value of
r there is a need to use a higher number of nodes ti (and vice versa) which
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generally implies a higher number of active basic functions for x described by
dA(x). Hence, the interval δ(x) defined by (31) has a greater width. A simple
consequence of the definition of the modulus of continuity and the inequality in
(30) is the fact that the distance between g(x) and FA(g)(x) may be greater for
higher values of r (and vice versa). An explanation of this performance is that
the higher values of r (for a fix bandwidth h) tend to more smoothed functions
and thus to greater distances from the original values g(x) (see the following
subsection). From Fig. 4, one can see, however, that the influence of the size of
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Figure 4: Approximation of a geometric Brownian motion for r = 2 (left) and r = 18 (right)
with the same h = 6.

the value of r with the same bandwidth h on the approximation of a function is
not too significant. Only the resulted function seems to be a bit more smoothed.

The effect for a fixed value of r can be derived similarly. In this case, lower
values of h tend to give smaller width of δ(x) in general even if dA(x) contains
more indexes. In fact, we can generally write δ(x) ⊆ [x − 2h, x + 2h]. Hence,
lower values of h give a smaller distance between g(x) and FA(g)(x) and the
FT-smoothing filter better approximates the original values g(x) as can be seen
on Fig 5. Clearly, nobody is surprised by such performance of the FT-smoothing
filter, because the major influence on the approximation of a function has the
bandwidth h. The same statement is also true for other kernel smoothing filters.
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Figure 5: Approximation of a geometric Brownian motion for h = 2 (left) and h = 12 (right)
with the same r = 4.
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Supposing a continuous function g on R that is known only at nodes x1 <
· · · < xn for some large number n, then obviously FA(g)(x) gives a very good
approximation of g for small values of h. Note that this fact has been also
pointed in the seminal paper [24].

4.4. Total variation of smoothed functions by FT-smoothing filter
In [30], Stefanini presented the influence of the values of r to the smoothness

of resulted functions. For this purpose, the total variation is used (see e.g. [36])
and the results are graphicly presented. In this part, we prove a statement
about the total variation of smoothed functions by the FT-smoothing filter.

Let us recall the definition of total variation of a real-valued function. A
partition of a real interval R = [a, b] is a finite order set P = {a = x1 ≤ · · · ≤
xn = b}. Let PR be the collections of all partitions of R. For a function g on R,
the total variation of g on R corresponding to a partition P ∈ PR is defined by

VR(g, P ) =
n−1∑

j=1

|g(xj+1)− g(xj)|. (33)

A total variation of a function g on R is defined by

VR(g) = sup
P∈PR

VR(g, P ). (34)

In what follows, let us suppose that R is a closed real interval. Recall that,
according to Remark 2.2, the union of two disjoint fuzzy r1-partition and r2-
partition is a fuzzy (r1 + r2)-partition, and this method is very profitable in the
construction of new fuzzy r-partitions with higher values of r.

Theorem 4.5. Let A1 and A2 be two disjoint fuzzy r1-partition and r2-partition,
respectively, and g ∈ F(R,A1) ∩ F(R,A2). Then

VR(FA1∪A2(g), P ) ≤ r1VR(FA1(g), P ) + r2VR(FA2(g), P )
r1 + r2

(35)

for any partition P ∈ PR.

Proof. Denote gr1+r2 = FA1∪A2(g), gr1 = FA1(g) and gr2 = FA2(g). Anal-
ogously, denote the components and basic functions of the F-transform, e.g.,
F r1+r2

i and Ar1+r2
i denote the i-th component and the basic function of the

F-transform, respectively. Now, the equality in (35) can be rewritten as

VR(gr1+r2 , P ) ≤ r1VR(gr1 , P ) + r2VR(gr2 , P )
r1 + r2

. (36)

Put nP = |P |, k1 = |A1|, k2 = |A2| and define π : {1, . . . , k1} → {1, . . . , k1 +k2}
and ρ : {1, . . . , k2} → {1, . . . , k1+k2} such that Ar1

s = Ar1+r2
π(s) and Ar2

t = Ar1+r2
ρ(t)
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are satisfied for any s = 1, . . . , k1 and t = 1, . . . , k2. Obviously, we have F r1
s =

F r1+r2
π(s) and F r2

t = F r1+r2
ρ(t) . Now, we have (in the new notation)

|gr1+r2(xj+1)− gr1+r2(xj)| =
1

r1 + r2

∣∣∣∣∣
k1+k2∑

i=1

F r1+r2
i Ar1+r2

i (xj+1)−
k1+k2∑

i=1

F r1+r2
i Ar1+r2

i (xj)

∣∣∣∣∣ =

1
r1 + r2

∣∣∣∣∣

(
k1∑

s=1

F r1+r2
π(s) Ar1+r2

π(s) (xj+1) +
k2∑

t=1

F r1+r2
ρ(t) Ar1+r2

ρ(t) (xj+1)

)

−
(

k1∑
s=1

F r1+r2
π(s) Ar1+r2

π(s) (xj) +
k2∑

t=1

F r1+r2
ρ(t) Ar1+r2

ρ(t) (xj)

)∣∣∣∣∣ =

1
r1 + r2

∣∣∣∣∣
r1

r1

(
k1∑

s=1

F r1
s Ar1

s (xj+1)−
k1∑

s=1

F r1
s Ar1

s (xj)

)

+
r2

r2

(
k2∑

t=1

F r2
t Ar2

t (xj+1)−
k2∑

t=1

F r2
t Ar2

t (xj)

)∣∣∣∣∣ =

1
r1 + r2

|r1(gr1(xj+1)− gr1(xj)) + r2(gr2(xj+1)− gr2(xj))| ≤
1

r1 + r2
(r1|gr1(xj+1)− gr1(xj)|+ r2|gr2(xj+1)− gr2(xj)|)

for any j = 1, . . . , nP − 1. Hence, we obtain

VR(gr1+r2 , P ) =
nP−1∑

j=1

|gr1+r2(xj+1)− gr1+r2(xj)| ≤

1
r1 + r2

nP−1∑

j=1

(r1|gr1(xj+1)− gr1(xj)|+ r2|gr2(xj+1)− gr2(xj)|) =

r1VR(gr1 , P ) + r2VR(gr2 , P )
r1 + r2

.

Straightforward consequences are contained in the following corollary.

Corollary 4.6. Let A1 and A2 be two disjoint fuzzy r1-partition and r2-partition,
respectively, and g ∈ F(R,A1) ∩ F(R,A2). Then

VR(FA1∪A2(g)) ≤ r1VR(FA1(g)) + r2VR(FA2(g))
r1 + r2

, (37)

VR(FA1∪A2(g)) ≤ max(VR(FA1(g)), VR(FA2(g))). (38)

The second statement of the previous corollary shows that, in general, we
cannot ensure a more smoothed function by increasing value of r. More precisely,
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Figure 6: Smoothed functions under the uniform fuzzy 20-partition (black line) and the uni-
form fuzzy 1-partition (grey line) for h = 4.

a higher value of r does not lead generally to a lower value of the total variation.
On Fig. 6, one can see a rather artificial example demonstrating that for the
same basal fuzzy sets the smoothed function constructed over the uniform fuzzy
1-partition gives a lower value of the total variation than over the uniform fuzzy
20-partition. For a detail, see the right part of Fig. 6.

A consequence of the first statement of the previous corollary is the fact
that for a combination of two disjoined fuzzy r-partitions the total variation
of the resulted function is more influenced by the fuzzy r-partition with the
higher value of r. Hence, the smoothness of the resulted function need not be
significantly changed for denser fuzzy r-partitions (consider the black curve in
Fig. 6).

Although, the higher smoothness is not generally guaranteed by higher val-
ues of r, we can show that, under some assumptions, the total variation of
the resulted functions can be higher for denser fuzzy r-partitions. Recall that
VR(g, P ) ≤ VR(g, P ′) for any P, P ′ ∈ PR such that P ⊆ P ′.

Corollary 4.7. Let A1 and A2 be disjoint fuzzy r1-partition and r2-partition,
respectively, and g ∈ F(R,A1) ∩ F(R,A2). If for any P ∈ PR there exist
P ′, P ′′ ∈ PR such that

VR(FA1∪A2(g), P ) ≤ min(VR(FA1(g), P ′), VR(FA2(g), P ′′)) (39)

then also VR(FA1∪A2(g)) ≤ min(VR(FA1(g)), VR(FA2(g))).

Proof. As a simple consequence of assumption (39), we obtain

VR(FA1∪A2(g), P ) ≤ VR(FA1(g)) and VR(FA1∪A2(g), P ) ≤ VR(FA2(g))

for any P ∈ PR. Hence, VR(FA1∪A2(g), P ) ≤ min(VR(FA1(g)), VR(FA2(g)))
which implies the desired conclusion.

As one could notice from Fig. 4 and Fig. 5, it is difficult to say precisely which
function is smoothed better. Clearly, it depends on further requirements. For
example, one can ask for a smoothed function which fits the original data from
a sample well, another one is looking for a smoothed function to reduce a white
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noise from data and so be able to recognize their structure (see Corollary 4.10)
and etc. Generally, we can say that, in many cases for the fixed bandwidth h
of a basal fuzzy set, a higher value of r (a denser uniform fuzzy r-partition)
ensures a more smoothed function, especially, if discrete functions with greater
variability are considered.

4.5. Statistical analysis of FT-smoothing filter estimator in the fixed design
In this part, we shall continue our statistical analysis of the F-transform

components from the kernel-based nonparametric regression perspective pre-
sented in the previous section and apply its results to the statistical analysis of
FT-smoothing filter.

Let R be a real interval, x1 < · · · < xn be a sequence of nodes of R and A
be a finite fuzzy r-partition of R determined by (T ,S). Further, let us suppose
that X = {x1, . . . , xn} is sufficiently dense with respect to A. Finally, put
Yj = g(xj) + εj , j = 1, . . . , n, where g is a (non-random) function and εj is a
random variable representing the error in xj with E(εj) = 0, Var(εj) = σ2 < ∞,
Cov(εi, εj) = 0 for i 6= j, and denote

ĝFT(x) =
1
r

k∑

i=1

ΦiAi(x) (40)

the FT-smoothing filter estimator of the function g at the point x, where Φi are
the stochastic F-transform components of the finite random function given by
(x1, Y1), . . . , (xn, Yn). Since E(Φi) = Fi for any i = 1, . . . , k, where Fi are the
F-transform components of the function g, one can prove easily that

E(ĝFT(x)) = FA(g)(x) (41)

for any x ∈ R.

Theorem 4.8. Let x ∈ R and ĝNW(x) denote the NW estimator of a function
g at the point x. Then

Bias(ĝFT(x)) =
1
r

k∑

i=1

Bias(ĝNW(ti))Ai(x) +
1
r

k∑

i=1

(g(ti)− g(x))Ai(x), (42)

Var(ĝFT(x)) =
1
r2

k∑

i=1

k∑

j=1

Cov(Φi, Φj)Ai(x)Aj(x). (43)

Proof. Let x ∈ R. A simple consequence of Φi = ĝNW(ti) (see Proposition 3.2)
is

E(ĝFT(x)) =
1
r

k∑

i=1

E(ĝNW(ti))Ai(x).
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Note that E(ĝNW(ti)Ai(x)) = E(ĝNW(ti))Ai(x) follows from the fact that Ai(x)
is a constant (i.e. a non-random number) for any i = 1, . . . , k. Hence, we obtain

Bias(ĝFT(x)) = E(ĝFT(x))− g(x) =

1
r

k∑

i=1

E(ĝNW(ti)− g(ti) + g(ti)− g(x))Ai(x),

which gives, after a simple modification, the first statement.
For the variability, we have

Var(ĝFT(x)) = E(ĝFT(x)2)− (E(ĝFT(x)))2 =

1
r2

E




k∑

i=1

k∑

j=1

ΦiΦjAi(x)Aj(x)


− 1

r2

(
k∑

i=1

E(Φi)Ai(x)

)2

=

1
r2

k∑

i=1

k∑

j=1

(E(ΦiΦj)− E(Φi)E(Φj))Ai(x)Aj(x) =

1
r2

k∑

i=1

k∑

j=1

Cov(Φi,Φj)Ai(x)Aj(x)

and the proof is finished.

One can see that a defect of the previous theorem is the expression of the
covariance of random variables Φi and Φj in the formula of Var(ĝFT(x)). In
the fixed design, we may find a better description as the following theorem
shows. Note that such expression is more or less meaningful for the random
design (cf. [21]). An asymptotic expressions of Cov(Φi, Φj) in the fixed equally
spaced design will be presented later. As we have mentioned in Introduction,
this expression is an open problem for the random design.

Theorem 4.9. Let x ∈ R. Then

Var(ĝFT(x)) =
σ2

r2

k∑

i=1

k∑

j=1

aijAi(x)Aj(x), (44)

where

aij =
∑n

s=1 Ai(xs)Aj(xs)∑n
s=1 Ai(xs)

∑n
s=1 Aj(xs)

. (45)

Proof. According to Theorem 4.8, it is sufficient to show that Cov(Φi,Φj) =
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σ2aij for any i, j = 1, . . . , k. Thus, for Cov(Φi,Φj), we have

Cov(Φi, Φj) = E(Φi, Φj)− E(Φi)E(Φj) =

E
(∑n

t=1

∑n
s=1 YtYsAi(xt)Aj(xs)∑n

t=1 Ai(xt)
∑n

s=1 Aj(xs)

)
−

∑n
t=1

∑n
s=1 E(Yt)E(Ys)Ai(xt)Aj(xs)∑n

t=1 Ai(xt)
∑n

s=1 Aj(xs)
=

∑n
t=1

∑n
s=1(E(YtYs)− E(Yt)E(Ys))Ai(xt)Aj(xs)∑n

t=1 Ai(xt)
∑n

s=1 Aj(xs)
=

∑n
t=1

∑n
s=1 Cov(Yi, Yj)Ai(xt)Aj(xs)∑n

t=1 Ai(xt)
∑n

s=1 Aj(xs)
.

According to the assumption on the random variables Yi and Yj (see (14) on
page 13), we have Cov(Yi, Yj) = 0 for any i 6= j (the different random variables
are independent) and Cov(Yi, Yi) = Var(Yi) = σ2. Applying these facts, we
obtain

Cov(Φi,Φj) = σ2

∑n
s=1 Ai(xs)Aj(xs)∑n

s=1 Ai(xs)
∑n

s=1 Aj(xs)
. (46)

Setting

aij =
∑n

s=1 Ai(xs)Aj(xs)∑n
s=1 Ai(xs)

∑n
s=1 Aj(xs)

(47)

we obtain Cov(Φi, Φj) = σ2aij for any i, j = 1, . . . , k.

A simple but very interesting consequence of the previous description of
Var(ĝFT(x)) is the following inequality saying that under some conditions the
FT-smoothing filter really reduces the white noise.

Corollary 4.10. If X = {x1, . . . , xn} be a set of nodes that is 2-dense with
respect to A. Then Var(ĝFT(x)) < σ2.

Proof. Put c = max{aij | i, j = 1, . . . , k}. Then

Var(ĝFT(x)) =
σ2

r2

k∑

i=1

k∑

j=1

aijAi(x)Aj(x) ≤ cσ2

r2

k∑

i=1

k∑

j=1

Ai(x)Aj(x) =

cσ2

r2

(
k∑

i=1

Ai(x)

)2

=
cσ2

r2
r2 = cσ2.

Since c ≤ 1, then Var(ĝFT(x)) ≤ σ2 holds in general. Let us suppose that X is
2-dense with respect to A. Then we obtain that c < 1. In fact, let us suppose
that aij = 1 for some i, j = 1, . . . , k. This case arises when

n∑
s=1

Ai(xs)Aj(xs) =
n∑

s=1

Ai(xs)
n∑

s=1

Aj(xs)
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or equivalently

n∑
s,t=1
s6=t

Ai(xs)Aj(xt) = 0.

But this is impossible with regard to the assumption on the 2-density of X.
Hence, aij < 1 for any i, j = 1, . . . , k. Note that the assumption on X to be
2-dense is important mainly for the case i = j.

Now, we shall study the asymptotic properties of the FT-smoothing filter
estimator. In order to use the results about the asymptotic behavior of the NW
estimator and to compare both smoothers, we shall express the FT-smoothing
filter estimator in terms of kernels. One can simply verify that if we consider a
uniform fuzzy r-partition determined by (T , S) for S(x) = K(x)/K(0), where
K is the kernel determined by S (see Proposition 2.3), then

ĝFT(x) =
1
r

k∑

i=1

ΦiS(x− ti) =
1

rK(0)

k∑

i=1

ΦiK(x− ti). (48)

Since
∑n

j=1 K(x − tj) = rK(0) for any x ∈ R and Φi = ĝNW(ti), we may
introduce a uniform kernel r′-partition determined by (T ,K) with r′ = rK(0)
and the FT-smoothing filter estimator defined in terms of kernels by

ĝFT(x) =
1
r′

k∑

i=1

ΦiK(x− ti). (49)

Let us stress that the interpretation of values of r′ is rather different from the
values of r for the fuzzy r-partitions. While the value of r roughly speaking
refers to a number of active basic functions (especially, basal fuzzy sets) for an
element x ∈ R over which the evaluation of the FT-smoothing filter estimator is
made (cf. [30]), the value of r′ is only an abstract value strongly depending on
the high K(0) of the kernel K. Obviously, r′ becomes interpretable for r′/K(0).
For simplicity, we shall omit the prime in r′ and write only r in the following
text.

Before commencing our study of asymptotic properties of the FT-smoothing
filter estimator in the fixed equally spaces design, let us recall that Yj = g(xj)+
εj , j = 1, . . . , n, where xj = a + j(b − a)/n, g is a (non-random) function and
εj is a random variable representing the error in xj with E(εj) = 0, Var(εj) =
σ2 < ∞, Cov(εi, εj) = 0 for i 6= j. Further, let K be a symmetric kernel with
K(x) = 0 for any x 6∈ [−1, 1] and An denote a uniform kernel rn-partition of a
real interval R determined by (Tkn

,Khn
), where kn is the number of nodes over

which the kernel rn-partition is constructed and hn is the bandwidth of Khn
.

Finally, define

α(x, y) =
∫ 1

−1

K(z)K
(

x− y

h
+ z

)
dz (50)
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and put un = u = ti+1−ti for ti, ti+1 ∈ Tkn . Obviously, α(x, x) = R(K). Notice
that un ≤ hn, otherwise, An cannot be a kernel rn-partition since

∑kn

i=1 Ai(x) =
0 for some x ∈ [a, b].

To show the asymptotic behavior of FT-smoothing filter, we shall make the
following assumptions in our analysis:

(FA1) The functions g is continuously differentiable up to the fourth order on
[a, b].

(FA2) K is a symmetric kernel with K(x) = 0 for any x 6∈ [−1, 1].

(FA3) The bandwidth h = hn is a sequence satisfying hn → 0 and nhn → ∞
as n →∞.

(FA4) The point x at which the estimation is taking place satisfies a + 2hn <
x < b− 2hn for all n ≥ n0, where n0 is fixed.

(FA5) An is a uniform kernel rn-partition of [a + hn, b − hn] for all n ≥ n0,
where n0 is fixed.

(FA6) k = kn, r = rn and u = un are sequences satisfying rn → ∞, nh3
nk2

n →
∞, h2

nr−1
n u−1

n → 0 and k2
nr−2

n n−1 → 0 as n →∞.

(FA7) α(x, y) has continuous partial derivatives in [a, b].

The condition (FA6) states the important convergences under which the
asymptotic expressions of the bias and variance of ĝFT(x) can be derived. The
first convergence r →∞ is a natural consequence of h → 0. Moreover, if h → 0,
then the number of basic functions k →∞. The convergence nh3k2 →∞ is an
analogy of nh →∞ and seems to be acceptable. As we have mentioned u ≤ h.
The rate hu−1 approximately characterizes the number |dA(x)| of active basic
functions. The convergence h2r−1u−1 → 0 is an important assumption ensuring
that ĝFT(x) is an asymptotically unbiased estimator (see also Remark 2.3).
Notice that a higher number k of basic functions in the closed interval implies
a greater sum in the r-Ruspini condition. The last convergence k2r−2n−1 → 0
says that the number of data has to be significantly greater than the rate k2r−2

and this can be insured.
Note that a problem can arise if one wants to verification of (FA7) for some

type of kernel. Unfortunately, this assumption is important to simplify the
expression of the coefficients aij in the proof of Var(ĝFT(x)). We checked up
(FA7) using numerical methods and this assumption seems to be satisfied for
the triangle and raised cosine kernels. A mathematical verification is still an
open problem.

An asymptotic characterization of Bias and Var of the estimator ĝFT(x) can
be described as follows.
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Theorem 4.11. Let the assumptions (FA1)-(FA7) be satisfied and 1
n ∈ O

(
1
r

)
,

then

Bias(ĝFT(x)) =
h2µ2(K)

ru
g′′(x) + o

(
h2

ru
+ h2

)
+ O

(
1
r

)
, (51)

Var(ĝFT(x)) =
k2σ2

r2nh(b− a)
R(K) + o

(
k2

nr2
+

1
nh3r2

)
, (52)

where µ2(K) =
∫ 1

−1
z2K(z)dz and R(K) =

∫ 1

−1
K2(z)dz.

Proof. According to Theorem 3.3 and Theorem 4.8, we have

Bias(ĝFT(x)) =
1
r

k∑

i=1

Bias(ĝNW(ti))Ai(x) +
1
r

k∑

i=1

(g(ti)− g(x))Ai(x) =

h2µ2(K)
2r

k∑

i=1

g′′(ti)Ai(x) +
1
r

k∑

i=1

(g(ti)− g(x))Ai(x)

+ O

(
1
n

)
+ o(h2).

(53)

where 1
r

∑k
i=1 Ai(x) = 1 is used. First, let us consider

1
r

k∑

i=1

g′′(ti)Ai(x) =
u

hur

k∑

i=1

g′′(ti)K
(

ti − x

h

)
,

where u = ti+1− ti. Note that K
(

ti−x
h

)
= K

(
x−ti

h

)
follows from the symmetry

of K. Put A = An. Since h → 0, then u → 0 and we obtain

u

h

k∑

i=1

g′′(ti)K
(

ti − x

h

)
=

1
h

∫ tk

t1

g′′(y)K
(

y − x

h

)
dy + O(u). (54)

In fact, put f(y) = g′′(y)K
(

y−x
h

)
. Obviously, f is a continuous function and

f(ti) = 0 for any ti 6∈ dA(x) and |dA(x)|u ≤ 2h.13 A straightforward conse-
quence of (FA5) and (FA6) is the existence of ti0 ∈ Tk such that ti < ti0 holds for
any i ∈ dA(x). Applying this fact and the mean value theorem for integration
we obtain
∣∣∣∣∣
1
h

k∑

i=1

f(ti)u− 1
h

∫ tk

t1

f(y)dy

∣∣∣∣∣ =

∣∣∣∣∣∣
1
h

∑

i∈dA(x)

f(ti)u− 1
h

∑

i∈dA(x)

∫ ti+1

ti

f(y)dy

∣∣∣∣∣∣
=

1
h

∣∣∣∣∣∣
∑

i∈dA(x)

f(ti)u−
∑

i∈dA(x)

f(ξi)u

∣∣∣∣∣∣
≤ 1

h

∑

i∈dA(x)

|f(ti)− f(ξi)|u ≤

1
h

∑

i∈dA(x)

(cu)u ≤ c

h
(|dA(x)|u)u ≤ c

h
2hu = 2cu

13Recall that ti ∈ dA(x) if and only if ti ∈]x− h, x + h[.
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where ξi ∈ [ti, ti+1] and c is a constant which existence follows from the conti-
nuity of f on [a, b]. Now, we may set up the considered integral as follows

1
h

∫ tk

t1

g′′(y)K
(

y − x

h

)
dy + O(u) =

∫ (tk−x)/h

(t1−x)/h

g′′(x + hz)K(z)dz + O(u) =
∫ 1

−1

g′′(x + hz)K(z)dz + O(u),

where we put z = (y−x)/h and use (b−x)/h ≥ 1, (a−x)/h ≤ −1 and K(x) = 0
for x 6∈ (−1, 1). Using (FA1), we may use the Taylor expansion of g′′(x+hz) as
follows

g′′(x + hz) = g′′(x) + g(3)(x)hz +
g(4)(x)

2
(hz)2 + o(h2).

Hence, we have
∫ 1

−1

g′′(x + hz)K(z)dz + O(u) = g′′(x)
∫ 1

−1

K(z)dz+

g(3)(x)h
∫ 1

−1

zK(z)dz + g(4)(x)h2

∫ 1

−1

z2K(z)dz + o(h2) + O(u) =

g′′(x) +
h2µ2(K)

2
g(4)(x) + o(h2) + O(u)

and thus

1
r

k∑

i=1

g′′(ti)Ai(x) =
1
ur

u

h

k∑

i=1

g′′(ti)K
(

ti − x

h

)
=

1
ur

(
g′′(x) +

h2µ2(K)
2

g(4)(x) + o(h2) + O(u)
)

=

1
ur

(
g′′(x) +

h2µ2(K)
2

g(4)(x)
)

+ o

(
h2

ur

)
+ O

(
1
r

)
.

(55)

Further, let us consider

1
r

k∑

i=1

(g(ti)− g(x))Ai(x) =
u

rhu

k∑

i=1

(g(ti)− g(x))K
(

ti − x

h

)
.

Analogously, one may derive

1
r

k∑

i=1

(g(ti)− g(x))Ai(x) =
h2µ2(K)

2ru
g′′(x) + o

(
h2

ru

)
+ O

(
1
r

)
. (56)
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Plugging (55) and (56) to the formula (53), we obtain

Bias(ĝFT(x)) =

h2µ2(K)
2

(
1
ru

(
g′′(x) +

h2µ2(K)
2

g(4)(x)
)

+ o

(
h2

ur

)
+ O

(
1
r

))
+

h2µ2(K)
2ru

g′′(x) + o

(
h2

ru

)
+ O

(
1
r

)
+ O

(
1
n

)
+ o(h2) =

h2µ2(K)
ru

g′′(x) + o

(
h2

ru
+ h2

)
+ O

(
1
r

)
,

where 1
n ∈ O

(
1
r

)
is applied and h4µ2(K)2

4ur g(4)(x) ∈ o
(

h2

ru

)
holds true, since

g(4)(x) is bounded according to (FA1).
In order to find the asymptotic expression of the variance of ĝFT(x), let us

start with the asymptotic expression of coefficients aij defined in Theorem 4.9.
Obviously, we have

aij =

(
b−a
n

)2 1
h2

∑n
s=1 K

(
xs−ti

h

)
K

(
xs−tj

h

)

(
b−a
n

)2 1
h2

∑n
s=1 K

(
xs−ti

h

) ∑n
s=1 K

(
xs−tj

h

) . (57)

Put

Ti =
(

b− a

hn

) n∑
s=1

K

(
xs − ti

h

)
, (58)

Tij =
(

b− a

hn

) n∑
s=1

K

(
xs − ti

h

)
K

(
xs − tj

h

)
. (59)

To simplify Ti, define f(y) = 1
hK(y−ti

h ) and put x0 = a. Then
∣∣∣∣∣Ti −

∫ b

a

f(y)dy

∣∣∣∣∣ =

∣∣∣∣∣
b− a

n

n∑
s=1

f(xs)−
∫ b

a

f(y)dy

∣∣∣∣∣ ≤

n∑
s=1

∣∣∣∣∣f(xs)
(

b− a

n

)
−

∫ xs

xs−1

f(y)dy

∣∣∣∣∣ =
n∑

s=1

∣∣∣∣f(xs)
(

b− a

n

)
− f(ξs)

(
b− a

n

)∣∣∣∣ =

n∑
s=1

|f(xs)− f(ξs)|
(

b− a

n

)
≤

n∑
s=1

c

(
b− a

n

)2

≤ c(b− a)2

n

where ξs ∈ [xs−1, xs] is the mean value14 and |f(xs)−f(ξs)| ≤ c|xs−ξs| ≤ c b−a
n

follows from the continuity of f in [a, b]. Hence, we obtain

Ti =
1
h

∫ b

a

K

(
y − ti

h

)
dy + O

(
1
n

)
. (60)

14Apply the first mean value theorem for integration.
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This integral can be rewritten as

1
h

∫ b

a

K

(
y − ti

h

)
dy =

∫ b−ti
h

a−ti
h

K(z)dz =
∫ 1

−1

K(z)dz = 1,

where z = (y − ti)/h, (b− ti)/h ≥ 1 and (a− ti)/h ≤ −1 and K(x) = 0 for any
z 6∈ (−1, 1) are applied. Thus, we obtain Ti = 1 + O(n−1). Analogously, after a
bit technical manipulation with terms inside Tij , one can derive

Tij =
1
h

∫ b

a

K

(
y − ti

h

)
K

(
y − tj

h

)
dy + O

(
1
n

)
.

The expression of Tij can be rewritten as

∫ (b−ti)/h

(a−ti)/h

K(z)K
(

ti − tj
h

+ z

)
dz + O

(
1
n

)
=

∫ 1

−1

K(z)K
(

ti − tj
h

+ z

)
dz + O

(
1
n

)
,

where z = (y − ti)/h, (b − ti)/h ≥ 1 and (a − ti)/h ≤ −1 are applied. Thus,
Tij = α(ti, tj) + O(n−1), where α(x, y) is defined in (50). Hence, we have

aij =
(b− a)

nh

Tij

TiTj
=

(b− a)
(
α(ti, tj) + O

(
1
n

))

nh
(
1 + O

(
1
n

))2 =

(b− a)
(
α(ti, tj) + O

(
1
n

))

nh
(
1 + O

(
1
n

)) =
(b− a)

nh

(
α(ti, tj) + O

(
1
n

))
=

(b− a)
nh

α(ti, tj) + o

(
1

nh

)
.

Plugging the results to (44), we obtain

Var(ĝFT(x)) =
σ2

r2h2

k∑

i=1

k∑

j=1

aijK

(
ti − x

h

)
K

(
tj − x

h

)
=

σ2

r2h2

k∑

i=1

k∑

j=1

(
(b− a)

nh
α(ti, tj) + o

(
1

nh

))
K

(
ti − x

h

)
K

(
tj − x

h

)
=

σ2

r2h2

k∑

i=1

k∑

j=1

(b− a)
nh

α(ti, tj)K
(

ti − x

h

)
K

(
tj − x

h

)
+ o

(
1

nh3r2

)
=

k2σ2
(

b−a
kh

)2

nr2h(b− a)

k∑

i=1

k∑

j=1

α(ti, tj)K
(

ti − x

h

)
K

(
tj − x

h

)
+ o

(
1

nh3r2

)
.
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Then
(

b− a

hk

)2 k∑

i=1

k∑

j=1

α(ti, tj)K
(

ti − x

h

)
K

(
tj − x

h

)
=

1
h2

∫ b

a

∫ b

a

α(u, v)K
(

u− x

h

)
K

(
v − x

h

)
dudv + O

(
1
k2

)
=

∫ (b−u)/h

(a−u)/h

∫ (b−v)/h

(a−v)/h

α(x + yh, x + y′h)K(y)K(y′)dydy′ + O

(
1
k2

)
=

∫ 1

−1

∫ 1

−1

α(x + yh, x + y′h)K(y)K(y′)dydy′ + O

(
1
k2

)
.

Note that |f(ti, tj) − f(ξi, ξj)| ≤ c|ti − ξi||tj − ξj | ≤ c(b − a)2/k2 is applied

to obtain O(k−2), where f(ti, tj) = α(ti, tj)K
(

ti−x
h

)
K

(
tj−x

h

)
is a continuous

function (see (FA7)). According to (FA7), we may use the Taylor expansion

α(u, v) = α(x + yh, x + y′h) = α(x, x) + αu(x, x)yh + αv(x, x)y′h + o(h).

Then
∫ 1

−1

∫ 1

−1

α(x + uh, x + vh)K(y)K(y′)dydy′ + O

(
1
k2

)
=

∫ 1

−1

∫ 1

−1

(α(x, x) + αu(x, x)yh + αv(x, x)y′h + o(h))K(y)K(y′)dydy′ + O

(
1
k2

)
=

α(x, x) + αu(x, x)h
∫ 1

−1

∫ 1

−1

yK(y)K(y′)dydy′+

αv(x, x)h
∫ 1

−1

∫ 1

−1

y′K(y)K(y′)dydy′ + o(h) + O

(
1
k2

)
=

α(x, x) + o(h) + O

(
1
k2

)
.

Plugging this result to the expression of Var(ĝFT(x)), we obtain

Var(ĝFT(x)) =
k2σ2

nhr2(b− a)

(
α(x, x) + o(h) + O

(
1
k2

))
+ o

(
1

nh3r2

)
=

k2σ2

nhr2(b− a)
R(K) + o

(
k2

nr2
+

1
nh3r2

)
,

where we use n−1h−1r−2 ∈ o(n−1h−3r−2).

Note that if one assumes the unit interval as [a, b], then formula (52) can be
rewritten as

Var(ĝFT(x)) =
k2σ2

r2nh
R(K) + o

(
k2

nr2
+

1
nh3r2

)
. (61)
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The assumptions on k → ∞, the bandwidth h → 0 and h2r−1u−1 → 0 imply
that ĝFT(x) is an asymptotically unbiased estimator of g similarly to the NW
estimator. Let us suppose that rnun/Khn(0) = hn (clearly, the bandwidth hn

is the same for a basal fuzzy set and its kernel counterpart). Since Kh(0) =
K(0)/h, then omitting the indexes for simplicity, one may derive ru/K(0) = 1
and thus ru = K(0). This allows us to rewrite the bias of ĝFT(x) as

Bias(ĝFT(x)) =
h2µ2(K)

K(0)
g′′(x) + o

(
h2

K(0)
+ h2

)
+ O

(
1
r

)
.

In comparison with the bias of ĝNW(x) obtained by the NW estimator, one can
see that the rate of the convergence in the case of the FT-smoothing filter esti-
mator is slower than in the case of the NW estimator, since h2/K(0)+h2 6∈ o(h2)
and, clearly, 1/r 6∈ O(1/n), otherwise, the original idea of partitioning of inter-
vals is missing. On the other hand, the model complexity for the FT-smoothing
filter estimator may be significantly smaller than for the NW estimator, if a
larger number of data is considered.

Since the MSE has a rather complicated form (mainly due to the expression
of limiting behavior described by the big O notation and the little o notation),
we omit it here. However, the AMSE has the form

AMSE(ĝFT(x)(x)) =
k2σ2

r2nh(b− a)
R(K) +

h4µ2(K)2

r2u2
g′′(x)2. (62)

The optimal value of bandwidth hAMSE can be derived putting to zero the
derivative of AMSE with respect to h. By a simple calculation we obtain

hFT
AMSE =

(
k2u2σ2

4ng′′(x)2(b− a)
C(K)

) 1
5

where C(K) = R(K)/µ2(K)2. Recall that u = ti+1 − ti and k denotes the
number of basic functions obtained by the kernel K. Since ti 6∈ R for some
i = 1, . . . , k, we can simply deduce ku ≥ b− a. One can notice that ku ≈ b− a
for small h and

hFT
AMSE ≈

(
(b− a)σ2

4ng′′(x)2
C(K)

) 1
5

.

Comparing this result with that provided by the NW estimator (see (22) on
page 15), we obtain an approximated equality

hFT
AMSE ≈ 0.76hNW

AMSE, (63)

where 0, 76 ≈ 5
√

1/4. Thus, a lower asymptotic bandwidth for the FT-smoothing
filter is needed to obtained an optimal model of an unknown function which
would correspond to the NW model.
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Figure 7: Comparison of hNW = hFT (left) and hNW = 1/0.76hFT (right) for hFT = 20 and
r = 2.
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Figure 8: Comparison of the smoothness of resulted functions for hNW = 1/0.76hFT with
hFT = 20 and r = 1 (left) and r = 8 (right)

5. Practical comparison of the FT-smoothing filter and NW estima-
tors

For a simple comparison, we chose data sets consisting of 500 and 75 daily
quotations of CZK/EUR exchange rate randomly selected from the original time
series covering the last eight years.

On Fig. 7, one can see a comparison of the resulted functions obtained by the
NW estimator (grey line) and by the FT-smoothing filter estimator (black line),
when we use hNW = hFT (left) and 1/0.76hNW = hFT (right) with hFT = 20
and r = 2. Although, a small number of h is not here supposed, the correction of
hFT against hNW works well. On Fig. 8, we demonstrate the smoothing property
which is clearly dependent on the level of r for the fixed values hFT = 20 and
hNW = 20/0.76. The both approaches give us practically identical resulted
functions. Note that 26 components are used and only 2 basic functions are
active (giving a non-zero value) for r = 1 to find the values of the smoothed
function. For r = 8, the number of components and basic functions used for
the calculation is naturally much greater, namely, 215 components and at most
16 basic functions. On the other hand, this is still less than the number of
values over which is the kernel active, namely, 40 values are used to evaluate
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Figure 9: Smoothed functions for financial data consisting of 75 daily quotations of CZK/EUR
exchange rate - hNW = hFT (left column) and hNW = 1/0.76hFT (right column), hFT =
4, 8, 12.

the function values using NW estimator. On Fig. 9, we present in the first
column further smoothed functions by the NW estimator (grey line) and the
FT-smoothing filter (black line) assuming the identical bandwidth hFT = 4, 8, 12
with r = hFT. The results assuming the correction on the bandwidth for the NW
estimator introduced in (63) are then presented in the second column. Again
both approaches provide similar behavior with respect to the same bandwidth
(the FT-smoothing filter estimator gives more smoothed functions) and become
nearly identical after the proposed correction. Moreover, the number of active
values for the kernel is still greater than the number of basic functions used for
the evaluation of the FT-smoothing filter estimator.

Summarizing our observation, the FT-smoothing filter can be advantageously
used in cases when larger numbers of data are considered to reduce the model
complexity of the NW estimator, but to retain the quality of estimates.
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6. Conclusion

The paper was devoted to a smoothing technique that generalizes the one
proposed in [12] and is based on the F-transform. To obtain better results of
the smoothing procedure, analogously as in [30], we extended the concept of
fuzzy partition to the fuzzy r-partition, where the sum of function values for
basic functions may be greater than or equal to 1, i.e. the fuzzy partitions
do not satisfy the Ruspini condition in general. Over such fuzzy r-partitions,
the components of the direct discrete F-transform and the FT-smoothing filter
were introduced including their stochastic versions. The FT-smoothing filter
was defined as a combination of the direct discrete F-transform introduced in
[24] and a formula for the inverse continuous F-transform proposed in [30]. An
interesting relation between the components of the stochastic F-transform and
the Nadaraya-Watson (NW) estimator were proved. Approximation, smoothing
and statistical properties of this filter such as the reduction of the white noise,
Bias, Var and AMSE were studied. Theoretical results were commented in some
details and demonstrated by figures including a comparison with the results
obtained by the NW estimator.

One could observe that the FT-smoothing filter (estimator) performs simi-
larly to other filters, mainly, to the NW estimator that is based on kernels and
belongs among the traditional smoothing methods of the kernel regression. For
example, smaller values of bandwidth h leads to a better approximation which
is one of the natural properties of kernel based filters. Further, the higher values
of r tend to increase the smoothness of the resulted function. The combination
of both parameters allows a user to extend the control over the smoothing pro-
cedure. This is a difference against the original definition of the FT-smoothing
filter in [12] and also for the NW estimator. For sample data, a reduction of the
white noise is ensured assuming a denser sets of data with respect to the fuzzy
r-partition. Practically, all samples satisfied this condition and thus a reduction
of the white noise is automatically afforded by the FT-smoothing filter. Finally,
a valuable relation 0.76hNW = hFT between the bandwidth hNW of the NW es-
timator and the bandwidth hFT of the FT-smoothing filter estimator allows us
to use estimates of the optimal value of hNW described in the literature related
to the kernel smoothing to derive an optimal value of hFT.

Summarizing all mentioned properties the FT-smoothing filter (estimator)
clearly belongs to the category of filters based on kernels and plays an analo-
gous role as the finite mixture models which use the mixture distributions to
represent the probability distribution of observations in the overall population.
An advantage of the FT-smoothing filter is its simpler model complexity against
the model complexity of the smoother based on kernels. We can conclude that
the FT-smoothing filter provides another useful application of the F-transform
which states besides the smoother based on the kernels.

In the future we would like to continue in the investigation of the properties
of the FT-smoothing filter defined over F-transform components derived from
polynomial. It would be interesting to compare the new results with those which
are well known for the local polynomial kernel estimators.
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