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Abstract

The photodissociation dynamics of the argon ionized trimer Ar+3 is revisited in light of recent

experimental results of (V. Lepère et al., J. Chem. Phys. 130, 194301, 2009), which show that

the fragment with little kinetic energy is always a neutral one, thus the available energy is shared

by a neutral and ionic fragments, as in Ar+2 . We show that these results can be interpreted as the

photodissociation of the linear isomer of the system. We perform a 3D quantum computation of the

vibrational spectrum of the system and study the relative populations of the linear (trimer-core)

and perpendicular (dimer-core) isomers. We then show that the charge initially located on the

central atom in the ground electronic state of the linear isomer migrates toward the extreme ones

in the photoexcitation process, such that photodissociation of the linear isomer produces a neutral

central atom at rest, in agreement with measured product state distributions.

PACS numbers: 33.20.-t, 33.20.Tp, 31.15.Ja, 34.80.Ht 36.40.-c, 36.40.Mr, 36.40.Wa
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I. INTRODUCTION

Photofragmentation of ionic rare gas clusters have been studied extensively over the past

decades both from theoretical and experimental points of view. One example of such systems

is the argon ionic trimer Ar+3 . On the theoretical side, structures of the different isomers

of the system [1, 2], photodissociation [3–6] or photoabsorption spectra [7–10] were studied

in details. On the experimental side, kinetic energy distributions of the photodissociation

products have been measured [11–16], but it is only recently that complete information on

products has been obtained using in coincidence detection of all ionic and neutral products

([17] and references therein). Indeed, measurement of the velocity vectors of all products

allows reconstruction of the kinematics of the fragmentation. A complete description of the

photodissociation dynamics of Ar+3 has been achieved for the first time in Ref. [17] for an

excitation at 527 nm. Such results allow a more detailed comparison between experiments

and models.

In the experimental results of Ref. 17, the dominant product configuration of the 3

body dissociation consists of a single fast neutral atom and a fast ion, the second neutral

atom being left as a spectator with little kinetic energy. A strong similarity between this

product configuration and the one obtained for the dimer photodissociation (in the UV

range, however) is pointed out in Ref. 17, the main difference being the existence of the

spectator atom in the trimer case. Another possible but less probable product configuration

is one where the two neutral atoms bring away most of the available energy, little being left to

the ionic fragment. These results have been interpreted in the light of the known theoretical

results. In its electronic ground state, the trimer has linear and isosceles triangular isomers.

The linear one is the most stable [1], its binding energy is 1.59 eV with respect to the

2Ar+Ar+ asymptotic limit (0.20 eV w.r.t. Ar+Ar+2 ), whereas the isosceles isomer binding

energy is 1.47 eV (0.08 eV). The linear isomer has 50% of the charge on the central atom and

25% on each of the extreme atoms. The isosceles one is formed by a dimer ionic core, the

charge being equally shared by its two atoms, the third atom at the principal vertex of the

triangle being quasi-neutral. It is therefore concluded in Ref. [17] that the perpendicular

isomer is the one which is observed in the coincidence experiment. The 2.35 eV energy

deposited in the system leads primarily to the breaking of the strong bond (1.39 eV) of the

Ar+2 ionic core, the excess energy, of about 0.86 eV, being released as kinetic energy of the
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two fragments leaving the third particle, the spectator Ar atom, with a very small energy.

The aim of the present letter is to propose an alternative interpretation of the experimen-

tal results. Performing exact 3D quantum calculations on many excited vibrational states

of Ar+3 and estimating the relative population of its two isomers, we show that the linear

isomer is the one which is dominantly populated over a large temperature range. Then,

from consideration of the charge distribution, not of the ground, but of the electronically

excited states which are involved in the dissociation process, we show that photodissociation

starting from the linear isomer is in full agreement with experimental results, in the sense

that it produces a non-negligible amount of slow neutral fragments.

II. ISOMER POPULATIONS

The objective is to compare the relative populations of both isomers as a function of

temperature. We first compute the vibrational partition function, which we then correct by

inclusion of rotational effects. The vibrational states are computed from the extended (Ref.

18, 19) diatomics-in-molecules (DIM) model [20] developed previously [1, 10]. For simplicity,

spin-orbit interaction is not taken into account in the present study which is not focused on

high accuracy spectroscopy, but on a global estimate of the relative populations of the two

isomers. This model leads to 9 electronic states, 6 of A’ symmetry (among which we find

the ground state) and 3 of A” symmetry with respect to the molecular plane (Cs group).

For linear symmetric configurations, the ground state symmetry is Σ+
u , and the excited

states of interest in the energy range considered here have Πu, Σ+
g and Πg symmetries

in increasing energy order. The vibrational energy spectrum is computed on the ground

electronic potential energy surface using the row-orthonormal hyperspherical coordinates

defined in Ref. 21. As this method has already been described in Ref. 22–25, we recall here

only its most important features. The 6 degrees of freedom of the system in the center of mass

frame are parametrized by a hyperradius ρ, which defines the global size of the system, and

five angles collectively labeled by Ω. Three of them are Euler angles (a, b, c), which define the

orientation of a body frame tied to the principal axes of inertia, and two additional angles θ

and δ specifying the shape of the molecular triangle. These angles are defined in the intervals

θ ∈ [0 ◦, 45 ◦] and δ ∈ [0 ◦, 180 ◦] (see Ref. 21). Linear configurations are obtained for θ = 0 ◦,

whereas θ = 45 ◦ corresponds to the equilateral triangular configuration. Isosceles triangular
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configurations are obtained when δ is a multiple of 30◦. δ = 0 ◦, 60 ◦, 120 ◦ correspond to

obtuse isosceles configurations, where the principal vertex angle of the triangle is larger than

60◦. Particular cases among these configurations are the linear symmetric ones obtained for

θ = 0 ◦. The 3 different values for δ correspond to the 3 possible choices for the central

atom. δ = 30 ◦, 90 ◦, 150 ◦ correspond to acute isosceles configurations. In these cases, when

θ = 0 ◦, 2 of the 3 atoms coincide.

The Hamiltonian reads:

H = − ~
2

2µ
ρ−5 ∂

∂ρ
ρ5

∂

∂ρ
+

Λ̂2

2µρ2
+ V (ρ, θ, δ), (1)

where Λ̂ is the grand canonical angular momentum, µ the 3-body reduced mass of the system,

and V (ρ, θ, δ) the ground state Born-Oppenheimer electronic potential energy. The nuclear

wavefunction of the system, ΨJMΠ
i , is labeled by the nuclear total angular momentum, J ,

its projection onto a space-fixed axis, M , and the parity, Π. i is the bound state number.

ΨJMΠ
i is expanded on a product basis

ΨJMΠ
i (ρ,Ω) =

∑

j,k

aijkdk(ρ)Φ
JMΠ
j (Ω; ρk), (2)

where dk(ρ) (k = 1, . . . , Nρ) are discrete variable representation (DVR) functions [26, 27]

which are obtained from a basis of sine functions on a regular grid of Nρ grid points ρk in

the interval [ρmin, ρmax]. The Ns surface functions, Φ
JMΠ
j (j = 1, . . . , Ns), are eigenfunctions

of the fixed ρ Hamiltonian,
(

Λ̂2

2µρ2
+ V (ρ, θ, δ)

)
ΦJMΠ

j (Ω; ρ) = εJ Π
j (ρ)ΦJMΠ

j (Ω; ρ), (3)

and are needed only at the grid points, ρ = ρk. The coefficients aijk of the expansion (Eq. 2)

are obtained by diagonalizing the matrix representation of the Hamiltonian in the product

basis, the size of which is NρNs. Notice that at a given grid point, ρl, Eq. 2 simplifies into

ΨJMΠ
i (ρl,Ω) =

∑
j

aijlΦ
JMΠ
j (Ω; ρl). (4)

Eq. 3 is solved by expanding the surface functions on a basis set of Nh principal-axes-of-

inertia hyperspherical harmonics [28–30]. These harmonics are simultaneous eigenfunctions

of the nuclear angular momentum operator, its projection on a space fixed axis, parity, as well

as of the grand canonical angular momentum squared, Λ̂2, and of an internal hyperangular
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momentum operator, L̂ = −i~ ∂
∂δ
. These harmonics are generated on a 2 dimensional grid

of Nθ ×Nδ points.

This formalism can be used for any value of the total angular momentum, J , to compute

high accuracy rovibrational spectra, as was done for instance in Ref. 23 for the neutral Ar3

system. The present paper focuses on the vibrational spectrum for the case J = 0 (even

parity Π) and incorporates rotational corrections in a subsequent step.

This spectrum should also correspond to a well defined permutation symmetry of the 3

identical nuclei. As argon has zero nuclear spin, the total electronuclear wavefunction must

belong to the A1 irreducible representation of the permutation group S3. In the vicinity

of equilateral triangular configurations, the ground electronic state forms a conical inter-

section with the first excited one which affects its nuclear permutation symmetry. Upon

traversing a closed loop in nuclear configuration space around this conical intersection, the

electronic wavefunction is changed to its opposite. The appropriate group to describe nu-

clear permutation properties of the electronic and nuclear components of the electronuclear

wavefunction is the double group associated to S3 and these two components each belong

to the Ā2 irreducible representation (for a review on this topic, see Ref. 31). We therefore

consider in the following J = 0 nuclear vibrational wavefunctions belonging only to the Ā2

irreducible representation of the permutation group.

Convergence parameters were tuned to obtain the 500 lowest vibrational energies with an

absolute error less then 10−3 eV. This was achieved by comparing pairs of results involving

the change of a single convergence parameter. Changing the number of angular grid points

from Nθ = Nδ = 200 to 250 changed bound state energies by less than 10−6 eV. Changing

the number of harmonics on which we expand the surface functions from Nh = 1925 to

3400 shifted these energies by less than 10−5 eV. Changing the number of surface functions

from Ns = 115 to 230, or the number of grid points from Nρ = 64 to 128, changed them

by less than 10−4 eV. We therefore used the following input parameters in our calculations:

Nθ = Nδ = 200, Nh = 1925, Ns = 115, Nρ = 64. The hyperradius interval was bounded by

ρmin = 6.5 a.u. and ρmax = 13.5 a.u. All calculations were performed with M = 39.95 u for

the 40Ar mass.

The surface function energy curves shown in Fig. 1 are the eigenvalues εJ=0Π=even
i (ρ) of

Eq. 3. Their shapes closely reflect the topology of the potential energy surface illustrated in

Fig. 2 by means of polar plots for fixed ρ values (Fig. 2a) [32, 33]. The centers of these plots
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correspond to equilateral triangular geometries, where the conical intersection between the

two lowest potential energy surfaces is located. The minimum on surface function energy

curves for ρ = 7.85 a.u. correspond to the three equivalent local minima of the potential

energy surface associated to acute isosceles (T-shaped, C2v) configuration. They are also

shown as black dots in Fig. 2c, where the corresponding polar angles are 0◦ (δ = 90◦) 120◦

(δ = 150◦) or 240◦ (δ = 30◦) for θ = 32.75 ◦. The same character of the potential energy

surface is preserved in short-range region too (Fig. 2b). The minima seen in Fig. 1 for

ρ = 9.05 a.u. are associated to the three equivalent global minima corresponding to linear

symmetric configurations (dots in Fig. 2e). The polar angles are 60◦ (δ = 120◦), 180◦ (δ = 0◦

or 180◦) or 300◦ (δ = 60◦) for θ = 0◦. Transition states on reaction path between the linear

and perpendicular isomers correspond to six equivalent saddle points for ρlim = 8.82 a.u.

shown as dots in Fig. 2d. The corresponding polar angles are [(k · 120± 39.20) mod 360] ◦

(δ = [(k · 60 ± 10.40) mod 180] ◦, k = 1, 2, 3) for θ = 23.04 ◦. At large hyperradius (ρ = 13

a.u. in Figs. 1 and 2), one of the three atoms is far from the two others, the potential

energy surface converges into the Ar+2 two body potential (potential valleys in Fig. 2f) and

the surface function energies correlate to the rovibrational energies of the diatomics, Ar+2

(large ρ of Fig. 1). There is a transition in Fig. 1 near ρ ≈ ρlim where many weakly avoided

crossings between different energy curves are observed. These are the result of a sudden

change in the nature of the corresponding surface functions, from a perpendicular dominant

character when ρ < ρlim to a linear one at larger ρ. Another basis set alternative to the

present surface function one could be a diabatic one, where true crossings can occur and

where the character of the states, linear or perpendicular, would change more gradually with

ρ. Instead of two minima, the corresponding energy curves would have a single one, which

would be the linear or perpendicular one according to the character of the corresponding

state.

Approximate quantum numbers can be assigned to the surface functions, following the

methodology described in Ref. 24 for linear configurations and in Ref. 23 for perpendicular

ones. For the linear case, the appropriate quantum numbers, vla and vlb
K , are associated to

the antisymmetric stretch and bending vibrational modes. The vibrational angular momen-

tum K is always 0 (J = 0) and vlb is constrained to be even. vla is also even because we

consider A1 permutation symmetry [24]. The lowest surface functions energies minima at

ρ ≈ 9.05 a.u. correspond to vlb = 0, 2, 4... and vla = 0. As was shown in Ref. 24, only linear
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states with even vibrational quantum numbers have to be considered, even in presence of

a conical intersection. The surface functions minimum for larger ρ (the lowest one has a

minimum near 9.25 a.u.) correspond to the antisymmetric stretch excitation (vla = 2 for the

lowest one). The perpendicular isomer can be described by the two quantum numbers vpa and

vpb , where v
p
a refers to the vibration of the ionic Ar+2 core and vpb to the bending motion of the

neutral Ar with respect to the ionic core. The electronic wavefunction being antisymmetric

with respect to permutation of the atoms of the ionic core, the vibrational wavefunction also

has to be antisymmetric (with respect to δ = π/2) for the total electronuclear wavefunction

to be symmetric. This enforces vpb to be odd. Notice, however, that the stretching motion

(quantum number vps) of Ar with respect to the ionic core is strongly mixed with bending

motion in the hyperspherical representation. The series of potential energy curves spaced

by roughly 0.01 eV with increasingly higher minima above ρ ≈ 7.85 a.u. correspond to

increasing vpb (mixed with vps) for v
p
a = 0. The lowest potential energy curve for vpa = 1 has a

minimum at ρ = 7.85 a.u. like the ground one, but is shifted upward by more than 0.03 eV.

The surface function basis is used to expand the wavefunction according to Eq. 2 and

to generate a vibrational spectrum of 500 lowest states. The highest energy considered is

-1.39 eV, the ground state corresponds to the linear isomer and its energy is -1.5877 eV. The

lowest perpendicular isomer energy is 121.44 meV above this ground state. The vibrational

zero point energies for linear and perpendicular energies are 26 and 32 meV respectively.

A small subset of this spectrum is shown in Table I, as well as corresponding approximate

vibrational quantum numbers. In an harmonic approximation, frequencies corresponding

to different modes can be found out. For the linear isomer, these are 20, 7 and 17 meV

(158, 56 and 136 cm−1) for symmetric stretch, bending, and antisymmetric stretch modes,

respectively. For the perpendicular isomer, these are 37 meV (298 cm−1) for the vibration

of Ar+2 ionic core, and 7 and 5 meV (60 and 45 cm−1) for the stretch and bending motion of

the third atom with respect to this core, respectively. Notice that the vibrational frequency

of the core is only weakly affected by the presence of the third atom. Indeed, a vibrational

frequency of 38 meV (306 cm−1) has been extracted for ground electronic state Ar+2 from

high resolution zero-kinetic-energy photoelectron spectra [34]. Recall also that nuclear spin

and geometric phase constraints enforce bending quantum number to be even for the linear

isomer and odd for the perpendicular one.

The energy difference between the ground states of the two isomers is large, 121.44 meV or
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1415 K. This suggests that in experimental conditions not too far from thermal equilibrium,

the linear isomer should be by far the most populated. This can be investigated further

at thermal equilibrium by looking at the partition functions for both isomers. However,

for sufficient excitation energy Ei, the bound state (number i) may be delocalized in the

configuration space. Some criterion must be defined to assign a linear or perpendicular

character to each state, e.g., a dividing surface between linear and perpendicular regions

must be defined in configuration space, and linear and perpendicular weights wl
i and wp

i

obtained as the presence probability of the bound state in each region. A temperature

dependent population of the linear isomer can then be defined as Pl(T ) =
∑

iw
l
ie

−Ei/(kT ),

where k is the Boltzmann constant, and Pp(T ) can be defined similarly for the perpendicular

isomer. We have already noticed previously a sharp transition for the surface functions from

perpendicular to linear character near ρlim = 8.82 a.u., which corresponds to the transition

state, so, we define the dividing surface by ρ = ρlim. Using Eq. 4 and integrating over

hyperangles, we obtain

wp
i =

∑
j

∑

l : ρl<ρlim

ai 2jl = 1− wl
i, (5)

where the sum is performed over grid points l such that ρl < ρlim. Relative perpendicular

population Pp(T )/(Pl(T ) + Pp(T )) is depicted in Fig. 3 for 500 bound states. As expected,

perpendicular isomer population is smaller than the linear one over a broad temperature

range. This suggests that if experimental conditions are not too far from equilibrium in Ref.

17, the linear isomer should be the dominant one.

The limits of the results shown in Fig. 3 should be also considered. First, rotational effects

have not been included. The simplest way to include them is to consider the rotational

partition function in the approximation of rigid rotor for fixed geometries corresponding

to the equilibrium geometries of both isomers in the classical limit. For the linear isomer

and perpendicular isomers, these partition functions are : Zl(T ) = 1
σ
2I
~2kT and Zp(T ) =

π
1
2

σ

(
2kT
~2

) 3
2 (I1I2I3)

1
2 [35]. I is the moment of inertia of the linear isomer, I1, I2 and I3 those of

the perpendicular one, σ = 2 the symmetry factor. The relative rovibrational perpendicular

population obtained by multiplying the vibrational ones with rotational partition functions

is also shown in Fig. 3. There is a strong increase of the relative perpendicular population

induced by the larger value of the perpendicular partition function, as compared to the linear

one. This in turn is due to the larger dimensionality of the parameter space for non linear
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configurations (three Euler angles) as compared to the linear ones (2 angles). However, the

smaller rotational space for linear isomer should be compensated by a larger vibrational

space, resulting from the fact that bending occurs in a two dimensional space. This should

be reflected in degeneracies of the vibrational modes which could be found out, either by

computing the spectrum for a large number of non-zero angular momentum values or by

assigning proper quantum numbers to all states of the spectrum. This, however, was not

taken into account in our model, since for J = 0, the vibrational angular number is equal

to 0 and both bending directions are excited in a similar fashion. In other words, we expect

our relative perpendicular population without rotational correction to be closer to the true

ro-vibrational one because it underestimates linear vibrational bending degeneracy and thus

indirectly accounts for the larger rotational perpendicular partition function.

However, our definition of the dividing surface between linear and perpendicular zones

is also subject to a discussion. One possibility would be to use a random walk method

with importance sampling – wavefunction of Eq. 2 squared, as discussed in Ref. 36. An

alternative definition would be based on the diabatic surface functions mentioned above

which transform the sharply avoided crossings near ρlim into true crossings. Such surface

functions would have a well defined perpendicular or linear character, and the coefficients

of the expansion of the bound states on these states would provide their isomeric character.

However, this diabatization would be technically difficult. One can anticipate that the re-

sulting perpendicular relative population would be larger than the one obtained here. Such

perpendicular diabatic surface functions would indeed extend for ρ values larger than ρlim.

This larger importance of perpendicular isomers for higher temperatures is not surprising

if we consider results from thermodynamics simulations of ionic rare gas trimers [2, 37]. It

was found that the Ar+3 cluster is very stable in its linear ground state geometry up to about

300 K, and only then isomerizes to a T-shaped isomer in which a quasineutral atom moves

around a charged dimer. As a result, our vibrational spectrum suggests dominance of the

linear isomer unless very high temperatures are involved or the system is far from thermal

equilibrium. Notice that under the experimental conditions of Ref. 17, the temperature is

not clearly defined. Indeed, Ar+3 is obtained after ionization of large neutral clusters, fol-

lowed by evaporative relaxation. This process leads to an ionized trimer at a not well defined

rovibrational temperature, but probably with significant internal energy [38]. A more real-

istic way of the modeling of distributions of Ar+3 rovibronic states prior to photoexcitation,
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namely injecting the output of post-ionization fragmentation simulations [39–43] into pho-

todynamics calculations, is not possible at present due to the lack of relevant post-ionization

fragmentation data and will require more extensive and detailed investigations in the future.

III. CHARGE MIGRATION IN PHOTOEXCITATION

We now concentrate on the photodissociation of the linear isomer and consider potentials,

charges and transition dipole moments for slightly distorted configurations away from linear-

ity (θ = 2 ◦, δ = 1 ◦; corresponding to the angles 173.07 ◦, 3.36 ◦, and 3.57 ◦ of the molecular

triangle). For such configurations, the states can be labeled by their exact symmetries (A’

or A”, Cs group) or approximate ones valid for strictly linear configurations (D∞h) [6–8, 10].

As shown in Fig. 4, the ground state is A′(Σ+
u ), the first and second excited states are Πu,

the third one is Σ+
g , and the fourth and fifth excited states are Πg. However, in the Franck-

Condon region, the only significant transition dipole moment is the one which connects the

ground state to the Σ+
g one. Fig. 4b shows that for such transitions, charge localization on

atoms is changed. Originally, about 50% of the positive charge is localized on the central

atom, the remaining part being equally shared by the extreme atoms. Photoexcitation leads

to a rearrangement of charges, such that all charge migrates to the extreme atoms, leaving

the central atom neutral (Fig. 4b). This Σ+
g potential is strongly repulsive as a function of

hyperradius and leads to direct dissociation of the trimer, where the extreme, now ionized

atoms gain gradually kinetic energy and leave the central neutral atom essentially at rest.

It is conceivable that electronic non-adiabatic couplings have some effect at large distance

where the different potential energy surfaces are close to each other (Fig. 4a). These non-

adiabatic couplings may mix the Σ+
g state with the other ones, bringing back some positive

charge on the central atom. This could generate the small contribution observed in Ref. 17

with a slow ion and two fast neutrals. The fact that this contribution is small indicates that

the charge back donation mechanism is not dominant and that the central atom, neutral-

ized in the electronic excitation process, remains essentially in this state while dissociation

takes place. This scenario was also the one predicted by many simulations on the photodis-

sociation of Ar+3 when excited in the main visible band around 530 nm [3–9] and is fully

compatible with experimental results of Ref. 17.

It should be also emphasized that the ionic dimer has an absorption band in the UV part
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of the electromagnetic spectrum mainly while, here, a visible excitation is considered. For

such energies, Franck-Condon factors favor excitation to the 2Πu state for the perpendicular

isomer and Σ+
g for the linear case. However, as the dipole excitation from the ground 2Σ+

u

state of Ar+2 to the 2Πu state is forbidden by symmetry, absorption from the perpendicular

isomer is expected to be much weaker than the one of the parallel one. This is an additional

reason for favoring the interpretation of the results of Ref. 17 in terms of photodissociation

of the linear isomer.

IV. CONCLUSIONS

The recent detailed in coincidence measurements of the photodissociation of Ar+3 has led

us to a reconsideration of the modeling of the process. We have presented a detailed analysis

of the vibrational spectrum of the system and discussed the relative linear and perpendicular

isomer populations. We have shown that under a wide range of experimental conditions, the

linear isomer is likely to be the most populated. Although this isomer has a large positive

charge on the central atom, photoexcitation leads to its neutralization, which means that

the product of the photodissociation is a neutral atom essentially at rest and the charge is

taken off by a fast ion. This model leads to an alternative interpretation of the experimental

results of Ref. 17 which is compatible with the dominance of the linear isomer and which

does not rest on the presumption of the key role of the perpendicular isomer.
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mun. 145, 126 (2002).

[11] A. B. Jones, A. L. M. Buxey, P. R. Jukes, J. A. Smith, and A. J. Stace, J. Chem. Phys. 103,

474 (1995).

[12] H. Haberland, B. von Issendorf, and A. Hofmann, J. Chem. Phys. 103, 3450 (1995).

[13] T. Nagata, J. Hirokawa, and T. Kondow, Chem. Phys. Lett. 176, 526 (1991).

[14] T. Ikegami, T. Kondow, and S. Iwata, J. Chem. Phys. 93, 3038 (1993).

[15] N. E. Levinger, D. Ray, K. K. Murray, A. S. Mullin, C. P. Schulz, and W. C. Lineberger, J.

Chem. Phys. 91, 4019 (1989).

[16] J. T. Snodgrass, C. M. Roehl, and M. T. Bowers, Chem. Phys. Lett. 159, 10 (1989).
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TABLE I: Vibrational energy levels and approximate quantum numbers, for linear and perpendic-

ular isomers. The reference energy is the one of the ground state, which lies 1,5877 eV below the

energy of the fully dissociated configuration Ar++Ar+Ar. vls, v
l
b, v

l
a are the symmetric, bending,

and antisymmetric stretch vibrational quantum numbers of the linear isomer. K is the vibrational

angular momentum (K = 0 since J = 0). For the perpendicular isomer, vpa is the vibrational quan-

tum number of the Ar+2 ionic core, and vps ,v
p
b describe stretching and bending of the 3rd atom with

respect to this core. Several states referred to as ”...” are omitted in the list for the perpendicular

isomer to show the first ionic core excitation (va = 1).

Linear isomer Perpendicular isomer

Energy (meV) vls,v
l
b
K ,vla Energy (meV) vps ,v

p
b ,v

p
a

0. 0 00 0 121.44 0 1 0

13.88 0 20 0 128.93 1 1 0

19.59 1 00 0 132.66 0 3 0

27.55 0 40 0 135.88 2 1 0

33.35 1 20 0 138.65 1 3 0

33.67 0 00 2 141.94 3 1 0

39.58 2 00 0 143.07 0 5 0

41.03 0 60 0 144.47 2 3 0

46.11 0 20 2 ... ...

46.92 1 40 0 158.83 0 1 1
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Figure captions

Fig. 1 Surface function potential energy curves εJ=0Π=0
i (ρ) as a function of the hy-

perradius (see Eq. 3), for the ground electronic potential energy curve of Ar+3 .

Fig. 2 Topology of the electronic ground-state PES of Ar+3 shown for five representa-

tive hyperradii in an equatorial view (see Fig. 1 of Ref. 33). Plots are polar ones, the

distance to the center of each plot is proportional to π/2 − 2θ and the polar angle is given

by (2δ − π) mod 2π. (a) General scheme of trimer configurations for a fixed value of ρ;

(b) ρ = 7.00 a.u. (short-range region); (c) ρ = 7.85 a.u. (local minimum region, dots are

located at the three equivalent local minima on the PES corresponding to acute isosceles

C2v configurations); (c) ρ = 8.82 a.u. (transition state region, dots are located at the six

equivalent transition states of the system corresponding to asymetric configurations); (c)

ρ = 9.05 a.u. (global minimum region, dots are located at the three equivalent absolute

minima on the PES corresponding to linear symmetric configurations); (d) ρ = 13.00

a.u. (asymptotic, long-range region where one atom is far from the two others). All en-

ergies are given in eV, the zero of energy corresponds to the fully dissociate state, Ar++2Ar.

Fig. 3 The relative population of the perpendicular isomer of Ar+3 at thermal equi-

librium as a function of temperature. The curve labelled ”No rot” results from the partition

functions computed from the J = 0 vibrational spectrum, the one labelled ”Rot” includes

the correction of the rotational partition functions.

Fig. 4 Potential energy (a), charge on the middle atom (b), and transition dipole

momentum squared (c) of six lowest electronic states of Ar+3 as a function of hyperradius

ρ. The considered geometry is θ = 2 ◦, δ = 1 ◦, close but not exactly linear, corresponding

to the molecular triangle angles 173.07 ◦, 3.36 ◦, and 3.57 ◦.
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FIG. 2:
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FIG. 3:
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FIG. 4:
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