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Summary The article presents a mathematical model of thyristor inverter including a series-parallel resonant circuit with the 
aid of state variable method. Maple procedures are used to compute current and voltage waveforms in the inverter. 

 
1. INTRODUCTION 

Resonant thyristor inverters are applied in 
induction heating, welding, dielectric heating, and 
other areas where heating processes are utilised which 
occur effectively in broad frequency ranges. Design of 
the inverters includes a resonant circuit that overloads 
at the inverter’s switching frequency [1, 2]. Voltage at 
load of resonant inverters is sinusoidal in nature where 
the inverter’s operating frequency ranges from several 
hundred to a dozen thousand Hertz. 

This article will present a mathematical model of 
the inverter’s resonant circuit with the aid of operator 
state variable method by means of Maple software 
procedures. 

 
2. DESIGN OF THE INVERTER 

The main circuit of the inverter is show in Figure 1 
[3, 4]. Inductance L and resistance R represent loads of 
the inverter. Capacitance C is a parallel capacitor to 
compensate reactive power. Capacitance Cs constitutes 
a series capacitor that participates in oscillations of 
supply current id. The presence of Ld affects the 
current nature of source supplying non-continuous 
current id. The choke Ld also helps to restrict did/dt of 
supply current conducted by thyristors and to reduce 
dynamic loses across thyristors. 

 
Fig.1. The main circuit of the resonant inverter 

The authors assume that the inverter operates in the 
range of natural commutation [2]. Thyristors T1, T2 
and T3, T4 are alternately switched on at frequency f 
in time intervals T/2. The conductance angle of a 
thyristor pair is λ (λ < π).  (Fig.2). 
 

3. MATHEMATICAL ANALYSIS OF THE 
INVERTER'S OPERATION 

Mathematical analysis of electromagnetic phenomena 
in the inverter involves 4 magnitudes which are 
functions of time t: currents )(tii LL = , )(tii dd =  and 
voltages )(tuu CC = , )(tuu CSCS =  (Fig.1). Parameters 
of elements used in the converter's analysis conform 
with parameters of simulation model’s elements as 
stated in Table 1. 
  

Table 1. Parameters of the inverter’s elements 

Parameter L R C E 
Unit [mH] [�] [µF] [V] 
 0.139 0.25 218 540 
Parameter CS Ld f  
Unit [µF] [mH] [Hz]  
 153 0.209 1000  

 
Four time intervals are distinguished in the 

inverter’s operation cycle [4]. The mathematical 
analysis of currents and voltages of the inverter’s 
resonant circuit is presented on the basis of the 
operator method [5]. The method implies that end 
conditions of each interval become initial conditions 
of the subsequent interval. Mathematical description 
of the inverter’s operation in each of the intervals 
under analysis comprises systems of linear 1-st  
degree differential equations including the four 
magnitudes specified before, designated as state 
variables  )(txi  at 41÷=i . 

 
)()( 1 txtiL = , )()( 2 txtid = , )()( 3 txtuC = , 

)()( 4 txtuCS = ,    (1) 

The system of four differential equations that describe 
operation of the inverter in the kth time interval can be 
presented as a matrix:  
 

( ) ( ) ( )ttkktk
dt
d

UBXAX ⋅+⋅=  (2) 

 
where: 
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- state vector of the system in kth time interval 
(k=1,…,4),   
where:  )(txki  - state variables in the system, 
Ak - system matrix for kth time interval, 
B - control matrix, 
U(t) = 1(t) – input function. 

After Laplace transformation of (2), the transform 
[ ])()( tksk XX �=  of the (3) results: 

 

( )
�
�
	



�
� ⋅+⋅= −

s
kksk

1
)0(1 BX�X   (4) 

 
where: [ ]ksk AI� −=  - matrix inverse to k� , 
Xk(0) – initial conditions vector for kth time interval 
(values of variables xki(0) at the start of kth interval).  
Determinant of k�  is a characteristic polynomial  

( ) ksMk �det=  of the transform (4). Roots of ( )sMk  
have essential impact on the circuit’s dynamics. The 
solution of (2) – the state vector ( ) [ ])(1 sktk XX −= �  is 
the original transform (4). 

Table 2 summarises factors in the differential 
equations that describe the inverter’s dynamics in four 
consecutive time intervals. They depend on 
parameters of the circuit under analysis, presented in 
Table 1.  
 
Table 2. Factors in the differential equations that describe 

the inverter’s operation in four time intervals 

L
R

a =  
R

b
1=  

dL
c

1=  

dL
E

g =
 C

h
1=

 sC
k

1=
 

In the analysis of the inverter’s operation, values 
of components of the initial condition vector )0(1X  
for the first time interval are determined on the basis 
of waveforms obtained in simulation testing of the 
inverter with the aid of Simplorer software [4]. Final 
conditions of each interval become initial conditions 
of the subsequent interval. 

 
 
 
 
  

 
Fig.2.  Current and voltage waveforms in the inverter 

obtained from simulation; operating frequency f=1000Hz, 
output power P0=112kW 

Values of { )( k
iA , )(k

iB , )( k
iC , )(k

iD , )( k
iE } in the state 

variable expressions )(txki  of the state vector )(tkX  
for kth time interval were determined with the help of 
Maple software.  

Interval 1 

In the first time interval: 10 , ttt ∈  (Fig.2) T1 and T2 
conduct. The resonant circuit for the first interval is 
shown in figure 3.  

 
Fig.3. Resonant circuit in the first time interval 10 , ttt ∈  

The circuit in Figure3 is described in the differential 
equation (2) at k=1,  
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(5)

 

Transform of the solution to X1(t) becomes (4) for 
k=1.  
In the event, the characteristic polynomial )(1 sM  
becomes:  

( ) ( ) ( ) hkbcskhacshbkchcasssM +++++++= 2341  
(6) 

Taking into account values of {a, b, c, h, k} in 
Table 2, )(1 sM  (6) becomes: 

 ( ) ( )( )( )( )22221 qpsnmssM ++++=            (7) 

where: 260.616=m , 815.3762=n , 020.283=p , 
534.8420=q . Values of (10) roots were calculated 

using relevant procedures of Maple 10. 
The vector of initial conditions )0(1X  at k=1 is: 
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Taking into account the initial conditions (8), the 
transform of )(1 sX  in the first time interval is: 
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where: 
( )

bkcbhgbhc

skchcbsssL
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By determining originals of )(1 sx i  in the vector (9), 

system state variables  )(1)(1 41 txtx ÷  are expressed 

for the time interval 10 , ttt ∈ , ( st 3
0 10067.3 −⋅= , 

st 3
1 10431.3 −⋅= ). The initial time 01 =pt , duration of 

the first time interval 3
011 10364.0 −⋅=−= tttk s are 

assumed. Waveforms of  )(1)(1 41 txtx ÷  in the first 

time interval 10 , ttt ∈  are presented in Figures 4, 5, 
6, 7. 
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Fig. 4. Interval 1 – the waveform of variable )(11 tx - current 

)()1( tiL  at 10 , ttt ∈  
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Fig. 5. Interval 1 – the waveform of variable )(12 tx - 

current )()1( tid  at 10 , ttt ∈  
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Fig. 6. Interval 1 – the waveform of variable )(13 tx - 

voltage )()1( tuC  at 10 , ttt ∈  
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Fig. 7. Interval 1 – the waveform of variable )(14 tx - 

voltage )()1( tuCS  at 10 , ttt ∈  

End values )10364.0(1 3
1

−⋅=ki tx  of X1(t) variables for 
the first interval become initial values of these 
variables in the second time interval: 
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Interval 2 

The second time interval 21 ,ttt ∈  (Fig.2) starts when 
T1, T2 are off and continues until T3, T4 are on. The 
resonant circuit switched off the supply voltage is 
illustrated in Figure 8. In the second time interval, 
supply current 0)( 2 =tid  (Fig. 2). 

 

 
Fig.8. Resonant circuit in the second time interval 

21 ,ttt ∈  

The circuit in Fig.8 is described in the system of 
differential equations (2) at k=2, where: 
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Transform of the solution to (16) has the form of (4) at 
k=2. 
Characteristic polynomial ( )sM 2 :  

( )hbassssM ++= 22)(2   (16) 

Taking into account roots of (16), the characteristic 
polynomial ( )sM 2  can be presented: 

( )( )222)(2 rgsssM ++=   (17) 

where: 280.899=g , 836.5673=r . 
Taking into account the values of initial conditions 
vector (14) for k=2, transform of X2(s) in the second 
time interval results: 
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By determining the originals of transforms  
[ ])(2)(2 1 sxtx ii

−= �  ( 41÷=i ) of (18), the system’s 

state variables )(2)(2 41 txtx ÷  are expressed for the 

time interval 21 ,ttt ∈  ( 3
1 10431.3 −⋅=t s, 

3
2 10559.3 −⋅=t s). The waveforms of variables 

)(2)(2 41 txtx ÷  in the second time interval 21, ttt ∈  

are presented in Figures 9, 10, 11, 12. 

( ) ( ) ( )( ))sin(cos)(2 )2(
1

)2(
1

)2(
1 rtBrtAetitx gt

L +== −    (19) 
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Fig. 9. Interval 2 – the waveform of variable )(21 tx - 

current )()2( tiL  at 21 ,ttt ∈  

5.0)()(2 )2(
2 == titx d   (20) 

 
Fig. 10. Interval 2 – the waveform of variable )(22 tx - 

current )()2( tid  at 21 ,ttt ∈  

( ) ( ) ( )( ))sin(cos)(2 )2(
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C +== −       (21) 

 
Fig. 11. Interval 2 – the waveform of variable )(23 tx - 

voltage )()2( tuC  at 21 ,ttt ∈  

389)()(2 )2(
4 == tutx CS    (22) 

 
Fig. 12. Interval 2 – the waveform of variable )(24 tx - 

voltage )()2( tuCS  at 21 ,ttt ∈  

Like in the previous time interval, the end values 
)10128.0(2 3

2
−⋅=ki tx  of X2(t) variables for the second 

interval become the initial values of the same 
variables in the third time interval. 

In the third time interval 32, ttt ∈  (Fig.2), T3 and 
T4 are on. The resonant circuit for the third interval is 
shown in Figure 13. In this case, time waveforms are 
presented like in the first interval, with the initial 
conditions of the third interval assume end values of 
variables in the second operating interval of the 
inverter. 

 
Fig.13. Resonant circuit in the third time interval of the 

inverter 

The fourth operating interval 43 ,ttt ∈  (Fig.2) 
begins when T3, T4 are off and continues until T1, T2 
are on. The resonant circuit, switched off the supply 
voltage, functions like in the second interval and is 
illustrated in Figure 8. 

4. CONCLUSION 

The article has presented a mathematical model of 
electromagnetic phenomena that occur during stable 
operation of thyristor inverter including a series-
parallel resonant circuit. Phenomena of current 
commutation among the circuit elements are excluded 
from this analytical method. Calculation results have 
the form of current and voltage waveforms in the 
circuit which are continuous at boundaries of time 
interval in the inverter’s operation cycle. Analytical 
results show conformity with results of the system’s 
simulation testing. The presented mathematical 
dependencies enable to analyse the system’s 
sensitivity to variations of its parameters. However, 
they are highly complex. 
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