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Summary  In electrical impedance tomography (EIT) currents are applied through the electrodes attached on the surface of 
the object, and the resulting voltages are measured using the same or additional electrodes. Internal conductivity distribution 
is recalculated from the measured voltages and currents. The problem is very ill posed, and therefore, regularization has to be 
used. The aim is to reconstruct, as accurately as possible, the conductivity distribution σ in phantom using finite element 
method (FEM). In this paper are proposed variations of the regularization term, which are applied to non-destructive 
identification of defects (voids or cracks) in conductive material. 
 
1. INTRODUCTION 

 
EIT is a soft-field tomographic modality, where 

images of the electrical conductivity distribution in a 
volume can be reconstructed from voltage 
measurement captured on its boundaries. Usually, a 
set of voltage measurements is acquired from the 
boundaries of a conductive volume, whilst this is 
subjected to a sequence of low-frequency current 
patterns. In principle, measuring both the amplitude 
and the phase angle of the voltage can result in 
images of the electric conductivity and permitivity in 
the interior of a body. Alternating current patterns 
are preferred to DC to avoid polarization effects. In 
the usual frequency range (below 1 MHz) the field 
can be considered a steady current field, which is 
governed by the Laplace equation. The theoretical 
background of EIT is given in [1]. 

The forward EIT calculation yields an 
estimation of the electric potential field in the 
interior of the volume under some Neumann and 
Dirichlet boundary conditions. The Finite Element 
Method in two or three dimensions is exploited for 
the forward problem with current sources.  

The EIT image reconstruction problem is an ill-
posed inverse problem of finding such σ  that 
minimizes some optimisation criterion. The 
optimization necessitates algorithms that impose 
regularization and some prior information constraint. 
The regularization techniques vary in their 
complexity. This paper proposes some new 
possibilities to be used for the acquirement of more 
accurate reconstruction results.  

 
2. FORWARD SOLUTION 

 
EIT is used to reconstruct the conductivity 

distribution by the measured surface electric 
potential distribution around the phantom when 
injecting current into the object. The electric field 
intensity is supposed to be on frequencies up to 
1 MHz irrotational due to the low conductivity of a 
medium. The scalar potential U can be therefore 
introduced, so that the resulting field is conservative 

and the continuity equation for the volume current 
density can be expressed from the potential U 

( )div grad 0Uσ = .                         (1) 

Equation (1) together with the modified complete 
electrode model equations [2] is discretized by the 
FEM in the usual way. Using FEM we calculate 
approximate values of electrode voltages for the 
approximate element conductivity vector σ  (NE x 
1), NE is the number of finite elements. In the 
following we assume only constant value of σ on 
each finite element.  
 
3. INVERSE PROBLEM  

 
Image reconstruction of EIT is an inverse 

problem, in which with the aid of known current 
patterns and corresponding measured voltages the 
volume conductivity distribution of the interior is 
estimated. In this paper we use a deterministic 
approach based on the Least Squares (LS) method. 
Due to ill-posed nature of the problem, 
regularization has to be used. The regularized 
solution is the solution of the following nonlinear 
minimization problem: 

minσ ( )Ψ σ , 

here Ψ(σ) is the suitable objective function. 
  

A    Generalized Tikhonov Regularization Method 
At first the standard (General) Tikhonov 

Regularization Method (GTRM) described in [3], 
was used for the solution of this inverse EIT 
problem. So, we have to minimize the objective 
function Ψ(σ) 

( ) 2 2
MEAS FEM

1
2

Ψ σ α= − +� U U Rσσσσ .       (2) 

Here, σ is the vector of iterated volume 
conductivities in 2D or 3D, respectively. UMEAS is 
the vector of nodal voltages, calculated from the 
phantom with the known volume conductivities, 
UFEM is the vector iteratively calculated by using the 
FEM applied to (1). Further, α is the regularization 
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parameter, and R is a suitable regularization matrix, 
connecting adjacent elements of the different 
conductivity values.  

For the solution of (2) we can used a Newton-
type method and after the linearization we used the 
iteration procedure  

1
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Here i is the i-th iteration and J is the Jacobian 
for forward operator UFEM and can be calculated 
very effectively, for example by using the 
reciprocity principle [4].  
 

B   Primal Dual Interior Point Method Algorithm  
To recover conductivity distribution we used the 

widely known method Total Variation PD-IPM, too. 
We again minimize the primal objective function 

Ψ(σ) 

( )2
MEAS FEM

1
( ) TV

2 βΨ σ α= − +� U U            (4) 

where UFEM is the vector iteratively calculated 
using the FEM, UMEAS is the vector of nodal voltages 
calculated from the model with the known 
conductivities, α is the regularization parameter and 

2
TV grad .

all elements

dβ Ω β= = +� �� σ σσ σσ σσ σR        (5) 

Here R is a suitable regularization matrix and β 
is a small positive parameter, which represents an 
influence on the smoothing of Ψ(σ). To find 
homogenous σ we used the PD-IPM algorithm 
similar to that described in [5].  

There is often very difficult to ensure the 
stability and the sufficient accuracy of the required 
solution in applying both described reconstruction 
algorithms, because they are very sensitive on the 
suitable choice of the regularization parameter α as 
well as of the initialize values (starting value) of 
conductivity σ. 

The stability of the GTRM algorithm is less 
sensitive to the setting of the starting value of 
conductivity than the Total Variation PD-IPM 
algorithm, which is in mostly cases unstable. Based 
on the results of many numerical experiments, we 
can say that we obtain the higher accuracy of the 
reconstruction results for smaller value of the 
parameter α, but with the decreasing of this  
parameter the instability of the system is increasing.  

 
4. NUMERICAL SIMULATIONS 

 
To recover conductivity distributions was used 

LS method with different type of the regularization’s 
way. Furthermore, we compare the results obtained 
by the GTRM, by the PD-IPM algorithm and by 
their combination with different values of the 
regularization parameter α during reconstruction 

process and of the initialize values of 
conductivityσ . To evaluate the quality of 
simulation results, the total error Err of the 
recovered conductivity distribution σ is defined as  
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Here σorig (in S/m) is the actual (original) value, 
σ is the value recovered by EIT. 

The above proposed algorithms for 2D model 
have been implemented into the modification of 
program [6], which has been written in MATLAB 
7.0. An example of 2D arrangement for a numerical 
experiment is given in Fig. 1. A model of an annular 
ring is shown with outer radius 10 cm and inner 
radius 7cm, the total number of electrodes is 20. We 
applied a total of 20 different cosine current 
excitations calculating 19 independent nodal 
voltages for each excitation. 

 
 

 
Fig. 1.  Arrangement of 2D model 

 
Example 1 

In the Fig. 2 you can see the FEM mesh for the 
calculations of the gradients, voltage reference 
values, and the Jacobians during iterations. The total 
number of elements is 400; the number of nodes is 
269. We assume a homogeneous object with 
conductivity 0.5 S/m on all elements except the 
chosen ones, where values of conductivity (on eight 
darkly marked elements in Fig. 2) are 0 S/m. These 
elements can represent some cracks or voids.  

The example of a numerical experiment using the 
Tikhonov regularization is shown in Fig. 3. In Fig. 
3a) the conductivity σ (in S/m) is the value on each 
of elements recovered by EIT after iterations 
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process. The starting values of conductivity are 
0.5 S/m on all elements; the starting value of 
parameter α is 5.10-5.  

 
Fig. 2. FEM grid and regions with non-homogeneity 

 
a) 

 
b) 

 
Fig. 3. GTRM algorithm 

 
In Fig. 3b) are shown places of identified non 

homogeneity. The value of parameter α decreased 
during regularization process and this process 
becomes unstable for parameter α  which is less than 
2.10-13, value of the objective function Ψ is 7.8 10-16 
and total error Err is 11 %. The sufficient number of 
iterations for each parameter α is 5.  

The similar results we obtain using the PD-IPM 
algorithm for regularization. The recovered value of 

conductivity σ on each of elements is shown in 
Fig. 4a). As in the previous example the starting 
values of conductivity are 0.5 S/m on all elements; 
the starting value of parameter α is 5.10-8.  
a) 

 
b) 

 
Fig. 4. TV PD-IPM algorithm 

 
In Fig. 4b) are shown recovered places of 

identified non homogeneity. The value of parameter 
α decreased during regularization process and this 
process becomes unstable for parameter α  which is 
less than 5.10-13, value of the objective function Ψ is 
0.08 and total error Err is 10.8 %. The sufficient 
number of iterations for each parameter α is 10.  
 
Example 2  

 
Fig. 5. FEM grid and regions with non-homogeneity 
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In the Fig. 5 you can see ten darkly marked 
elements on FEM grid, which can represent another 
arrangement of the cracks or voids. On these 
elements are values of conductivity 0 S/m. 

The example of a numerical experiment using 
the Tikhonov regularization is shown in Fig. 6. In 
Fig. 6a) the conductivity σ (in S/m) is the value on 
each of elements recovered by EIT after iterations 
process. The starting values of conductivity are 
0.5 S/m on all elements; the starting value of 
parameter α is 5.10-5. 

In Fig. 6b) are shown places of identified non-
homogeneity. The value of parameter α decreased 
during regularization process and this process 
becomes unstable for parameter α  which is less than 
2.10-13, value of the objective function Ψ is 6 10-15 
and total error Err is 17 %. The sufficient number of 
iterations for each parameter α is 5.  
 
a) 

 
b)  

 
 

Fig. 6. GTRM algorithm 
 

The similar results we obtain using the PD-IPM 
algorithm for regularization. As in the previous 
example the starting values of conductivity are 
0.5 S/m on all elements; the starting value of 
parameter α is 5.10-8. The value of parameter α 
decreased during regularization process and this 
process becomes unstable for parameter α  which is 
less than 3.10-11, value of the objective function Ψ is 

0.2 and total error Err is 15 %. The sufficient 
number of iterations for each parameter α is 10.  
 
5. CONCLUSION 

 
We succeeded in implementing the above-

mentioned regularization of GTRM and TV PD-IPM 
algorithm for EIT in the environment of EIDORS 
2D program system [6]. After several series of 
computational experiments it was established that 
satisfactory results could be often obtained when we 
use for a reconstruction at first the GTRM and then 
the recovered values of conductivity we set to 
starting values for application of the TV PD-IPM 
algorithm. 

It is shown that we can very successfully 
identify voids or cracks in conductive materials by 
using these algorithms. The proposed method is 
expected to be used for the non-destructive testing 
materials for 3D model, too. The algorithms for 3D 
model will be implemented into program written in 
ANSYS and we assume that the obtained 
reconstruction results will be in accordance with the 
results from Example 1 and Example 2. 
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