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Epithelial-to-mesenchymal transition (EMT) and its reverse mesenchymal-

to-epithelial transition (MET) have been suggested to play crucial roles in

metastatic dissemination of carcinomas. These phenotypic transitions

between states are not binary. Instead, carcinoma cells often exhibit a spec-

trum of epithelial/mesenchymal phenotype(s). While epithelial/mesenchy-

mal plasticity has been observed preclinically and clinically, whether any of

these phenotypic transitions are indispensable for metastatic outgrowth

remains an unanswered question. Here, we focus on epithelial/mesenchymal

plasticity in metastatic dissemination and propose alternative mechanisms

for successful dissemination and metastases beyond the traditional EMT/

MET view. We highlight multiple hypotheses that can help reconcile con-

flicting observations, and outline the next set of key questions that can

offer valuable insights into mechanisms of metastasis in multiple tumor

models.

1. Introduction

Epithelial-to-mesenchymal transition (EMT) is a cellu-

lar process loosely defined as a loss of the epithelial

traits of tight cell–cell adhesion and apico-basal polar-

ization and a gain of mesenchymal traits of motility

and invasion (Savagner, 2015). The concept of EMT

evolved from initial observations that embryonic and

adult epithelial cells converted to migratory and inva-

sive fibroblast-like cells when embedded in 3D collagen

gels (Greenburg and Hay, 1982). Defined then as a

‘transformation’, EMT has since been well studied in

gastrulation, neural crest migration, heart develop-

ment, branching morphogenesis, wound healing, fibro-

sis, and cancer metastasis. ‘Transformation’ has given

way to ‘transition’ and more recently ‘plasticity’ to

accurately represent its reversibility as well as its non-

binary nature (Jolly et al., 2015a; Nieto et al., 2016).

In the context of cancer, the hypothesis that EMT and

mesenchymal-to-epithelial transition (MET) drive the

invasion–metastasis cascade (Thiery, 2002) has been

pursued enthusiastically for over a decade (Hartwell

et al., 2006; Jung et al., 2008; Mani et al., 2007; Oca~na

et al., 2012; Onder et al., 2008; Spaderna et al., 2008;

Stankic et al., 2013; Tsai et al., 2012; Yang et al.,

2004), but recent studies have questioned the indis-

pensability of these transitions in establishing metasta-

sis (Fischer et al., 2015; Shamir et al., 2014; Somarelli

et al., 2016a; Zheng et al., 2015). These results have

stimulated provocative discussions on what steps are

necessary and sufficient to establish macrometastases

in vivo. Here, we attempt to reconcile some apparent

contradictions, and highlight key unanswered ques-

tions that need to be addressed for a better under-

standing of the contribution of EMT and MET in

metastasis in multiple tumor types.
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2. EMT and MET are not binary
processes

A tacit assumption in the proposed role of EMT and

MET during the metastasis–invasion cascade was that,

similar to the distinct developmental lineages – epithe-

lium and mesenchyme – carcinoma cells can attain

either a fully epithelial or a fully mesenchymal state

(Thiery, 2002). This assumption was supported by the

labeling of phenotypes co-expressing canonical epithe-

lial and mesenchymal markers as ‘metastable’, strongly

suggesting that these observations were a snapshot

en route to full EMT/MET and thus could not reflect

a stable state or an end point of a transition in itself

(Lee et al., 2006). Only recently has the concept of

a hybrid epithelial/mesenchymal (E/M) state been

revisited in cancer (Bronsert et al., 2014; Chao et al.,

2012; Grosse-Wilde et al., 2015; Huang et al., 2013;

Lecharpentier et al., 2011; McCart Reed et al., 2016;

Naber et al., 2013; Sampson et al., 2014; Schliekelman

et al., 2015; Strauss et al., 2011), and shown to be

stable over multiple passages in vitro (Jolly et al.,

2016). This revised understanding of cancer cell plas-

ticity has been at least in part driven by computational

modeling efforts of EMT/MET regulatory networks

(Jia et al., 2015; Li et al., 2016; Lu et al., 2013; Zadran

et al., 2014) that have triggered investigations of sin-

gle-cell phenotypes in terms of their EMT status

(Andriani et al., 2016; Grosse-Wilde et al., 2015).

In the context of wound healing and embryonic devel-

opment, the intermediate state(s) of EMT has (have)

been well studied (Arnoux et al., 2008; Futterman et al.,

2011; Johnen et al., 2012; Kuriyama et al., 2014; Leroy

and Mostov, 2007; Micalizzi et al., 2010; Revenu and

Gilmour, 2009; Shaw and Martin, 2016; Somarelli et al.,

2013). The idea that EMT need not be an ‘all-or-none’

process (Nieto, 2013) has motivated a detailed dissection

of different axes that cumulatively define EMT – base-

ment membrane remodeling, motility, cell–cell adhesion,
apical constriction, and loss of apico-basal polarity – in

sea urchin embryo. Each of these axes is regulated by a

distinct set of transcription factors, and the subcircuits

corresponding to each axes are interconnected and over-

lapping. Intriguingly, no single EMT-inducing tran-

scription factor (EMT-TF) is involved in all of these

subcircuits, highlighting the complexity of cellular plas-

ticity even in relatively simpler organisms such as sea

urchin (Saunders and McClay, 2014). These axes are

likely to influence one another, but for the sake of a bet-

ter comprehension, even if we imagine these axes to be

independent, EMT is at least a process happening in a

five-dimensional space (Fig. 1A). Induction of different

EMT-TFs may affect these five subcircuits or axes dif-

ferently, and thus, there may be varying degrees of over-

lap in the gene expression profiles obtained after

overexpression of EMT-TFs. For example, as shown in

Fig. 1B, EMT-TF1 and EMT-TF2 have both overlap-

ping and distinct influences in gene expression land-

scape, but EMT-TF3 has no overlap with gene

expression changes driven by EMT-TF1 and EMT-TF2.

Thus, EMT progression is not a unidimensional lin-

ear process, but a navigation through a rugged highly

A B

Fig. 1. Representing EMT as a multidimensional nonlinear process. (A) EMT phenotypic landscape may contain multiple axes (x1–x5). (B)

Induction of EMT by different EMT-TFs may drive epithelial cells into different regions on this multidimensional landscape (shown by

different colored dots). There may be some overlap in the effect of more than one EMT-TFs in regulation of one or more of these axes

contributing to EMT, as can be realized by projecting this multidimensional space into two principal component axes (PCA).
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nonlinear landscape (Fig. 1A,B). Also, although

assumed here as independent axes, these five aspects of

EMT may affect one another too, thus compounding

the nonlinearity of the process. Another aspect of

complexity underlying EMT may well result from

heterogeneity in cancer subtypes; for instance, the

landscape underlying this five-dimensional space may

be different for luminal vs. basal connections. Thus, it

may be extremely tricky to define EMT, but for practi-

cal purposes, we will consider here single-cell migra-

tion and/or invasion with the loss of cell–cell adhesion
as EMT, as was postulated initially (reviewed in

Cheung and Ewald, 2014). This loss of cell–cell adhe-
sion typically co-occurs with a decrease in other

epithelial traits such as loss of apico-basal polarity,

and a concomitant increase in genes often expressed

specifically in mesenchymal cells and tissues (Kalluri

and Weinberg, 2009).

Moreover, the epigenetic reprogramming accompa-

nying many of these key developmental events may

rewire EMT regulatory networks differently in differ-

ent tissue types, further amplifying the heterogeneity

and context dependence of EMT states. For instance,

in breast cancer, basal cells exhibit bivalent chromatin

states, with both activating and repressive marks for a

key EMT-TF, ZEB1, but luminal cells only have

repressive marks for ZEB1 (Chaffer et al., 2013). Thus,

basal cells are already poised to display stronger EMT

traits upon exposure to EMT-inducing cytokines such

as TGF-b, as compared to luminal cells. Similarly,

GRHL2 – a transcription factor that can inhibit EMT

(Varma et al., 2012; Walentin et al., 2015) – can be

methylated in sarcomas as compared to carcinoma

(Somarelli et al., 2016b), thus rewiring the circuit regu-

lating EMT in sarcomas.

Therefore, with such ubiquitous tissue- or even sub-

type-specific complexity and heterogeneity being

revealed, binning carcinoma phenotypes into either

fully epithelial or fully mesenchymal, and dismissing

all hybrid phenotypes as ‘metastable’, can only hamper

a better understanding of both the nuances of EMT

and MET, and how these processes may impinge on

metastasis.

3. Role of EMT-TFs in metastasis:
necessary or permissive?

In the context of cancer, Snail (SNAI1) was identified

as the first EMT-TF that directly repressed transcrip-

tion of the epithelial cell–cell adhesion molecule,

E-cadherin. Overexpression of SNAI1 in MDCK and

many carcinoma cell lines led to the loss of cell–cell
adhesion mediated by E-cadherin, transformed the

morphology of cells from epithelial to spindle-like mes-

enchymal, and enhanced their migratory and invasive

traits in vitro (Batlle et al., 2000; Cano et al., 2000).

Further work revealed a similar, but less potent role of

another EMT-TF Slug (SNAI2, a member of the Snail

family) both in vitro and in vivo (Bol�os et al., 2003;

Hajra et al., 2002). SNAI1 was also shown to induce

the expression of mesenchymal markers fibronectin

and Zeb1 (Guaita et al., 2002), the latter of which is

an EMT-TF that can promote tumor invasiveness

in vitro and is correlated with tumor cell differentiation

in vivo (Aigner et al., 2007; Spaderna et al., 2008).

Later, Twist was identified as yet another EMT-TF

that inhibited E-cadherin as well as regulated other

components of EMT in MDCK cells, mammary

epithelial cells (Yang et al., 2004), and breast cancer

cell lines (Vesuna et al., 2008). Silencing Twist in 4T1

cells suppressed the number of lung metastases signifi-

cantly, however, did not completely inhibit them

(Yang et al., 2004), still leaving open the possibility

that Twist, and potentially other EMT-TFs, may act

more as catalysts rather than drivers of metastasis

(Fig. 2A). In other words, just as a catalyst can lower

the activation energy barrier for a chemical reaction,

these EMT-TFs may make a cell more poised or prone

to undergo EMT. These abovementioned studies con-

firmed that the EMT-TFs that governed developmen-

tal EMT also contributed to one or more aspects of

EMT in carcinomas in vitro, a claim that was substan-

tiated by in vivo negative correlation between these

EMT-TFs and E-cadherin expression. Thus, these

studies led to a conceptual framework suggesting that

aberrant activation of one or more EMT-TFs (result-

ing from many potential microenvironmental factors

such as hypoxia, secreted EMT-inducing cytokines

from the stroma, for example, TGF-b, or altered

degradation rate of EMT-TFs) was a necessary and

sufficient condition for metastasis.

The conceptual framework that EMT promotes

metastasis and invasion was recently challenged by

two lineage-tracing studies in mouse models of pancre-

atic and breast cancer. Zheng et al. (2015) genetically

knocked out either Twist or Snail in a spontaneous

pancreatic ductal adenocarcinoma (PDAC) model –
KPC model, but the incidence of metastasis was not

altered significantly. Multiple alternative interpreta-

tions have been proposed for this observation – (a)

knockdown of one EMT-TF need not be sufficient to

ablate EMT completely, and compensatory EMT-

inducing pathways may be present (Li and Kang,

2016), (b) the marker used for lineage tracing of cells

undergoing EMT in this study – a-smooth muscle

actin – is rarely induced spontaneously upon activation
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of EMT in this particular mouse model (Pattabiraman

and Weinberg, 2017). The other study (Fischer et al.,

2015) focused on spontaneous breast-to-lung metasta-

sis mouse models and used fibroblast-specific protein 1

(Fsp1) as a lineage-tracing marker of cells undergoing

an EMT. The authors found many Fsp1-negative cells

metastasizing to lung, suggesting that not even a tran-

sient activation of EMT was essential for metastasis.

Although the specificity and sensitivity of Fsp1 to

mark cells undergoing EMT and/or fibroblasts may be

called into question (De Chiara and Crean, 2016;

Pattabiraman and Weinberg, 2017), this study also

demonstrated that overexpression of miR-200 sup-

pressed multiple levels of many EMT-TFs, including

ZEB1, yet did not affect lung metastasis (Zheng et al.,

2015), thus providing a stronger argument for alterna-

tive mechanisms of dissemination.

In contrast, knockdown of Zeb1 in HCT116 and

SW480 cells has been shown to inhibit lung metastases

after intrasplenic or intravenous injection in nude mice

(Spaderna et al., 2008). Similarly, deletion of TWIST1

drastically inhibited lung metastasis of 4T1 cells

implanted in the mammary gland of recipient mice

(Yang et al., 2004), emphasizing a causal role of

EMT-TFs in metastasis. Technically speaking, these

studies were conducted with different approaches com-

pared to spontaneous metastasis genetically engineered

mouse models discussed above (Fischer et al., 2015;

Zheng et al., 2015). Another recent study performed in

the same KPC mouse model illustrates that depletion

of ZEB1, in sharp contrast to that of Snail or Twist,

suppresses stemness, colonization, invasion, and metas-

tasis (Krebs et al., 2017). However, ZEB1 depletion

fails to suppress metastasis completely, thereby falling

somewhat short of confirming ZEB1 as necessary and

sufficient for establishing metastasis, and leaving open

the possibility that other modes of migration may also

be important for metastasis, at least in this mouse

model.

Together, these data suggest that metastasis for all

carcinoma cells need not require an overt upregulation

of various EMT markers to gain migratory and inva-

sive traits. For instance, in tumor organoids, breast

cancer cells can invade the extracellular matrix (ECM)

by three modes – collective invasion, mesenchymal

invasion, and amoeboid invasion. In this model sys-

tem, only cells undergoing mesenchymal invasion uti-

lize an EMT-like program (Nguyen-Ngoc et al., 2012).

Conversely, collectively invading cells do not typically

express vimentin or Twist1 and maintain E-cadherin-

mediated contacts with follower cells. Rather than

undergoing an EMT, the cells undergoing collective

invasion appear to undergo a transition toward a more

basal-like phenotype, expressing K14 and p63 (Cheung

et al., 2013). Put together, it still remains a possibility

that the traits needed for successful metastasis can be

gained by altering cellular adhesion and invasion

through pathways that do not necessitate supraphysio-

logical or aberrant overexpression of one or more

EMT-TFs identified so far (Fig. 2B). In other words,

morphological changes associated with EMT can occur

without an overt upregulation of any mesenchymal

markers (Cheung and Ewald, 2014). Further, an overt

or a complete EMT may not be as efficient for metas-

tasis as the scenario when some molecular and/or mor-

phological epithelial traits are retained (Biddle et al.,

2011; Jolly et al., 2015a; Shamir et al., 2014).

4. Has a full EMT ever been seen
in vivo?

Recent progress in considering EMT as more of a

spectrum of phenotypes instead of a binary process

has driven an emerging notion that unlike during

A B

Fig. 2. Role of EMT-TFs. (A) EMT-TFs can act as catalysts of cellular plasticity. A catalyst reduces the activation energy (by an amount of

ΔE) required for the progression of a reaction. (B) Phase diagram showing different types of motility that can be possible at varying levels of

EMT-TFs and/or mesenchymal markers, and cellular motility. Dotted lines represent phase separations.
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development, in which terminally differentiated epithe-

lial and mesenchymal states exist, carcinoma cells

might undergo more partial transitions to an incom-

plete mesenchymal phenotype (Lambert et al., 2017;

Nieto et al., 2016). This notion is supported by obser-

vations that induction of a fully mesenchymal state

through overexpression of an EMT-TF may lead to a

loss of tumor-initiating potential and thus the ability

to colonize (Celi�a-Terrassa et al., 2012; Oca~na et al.,

2012; Ruscetti et al., 2015; Tsai et al., 2012). Earlier

studies based on similar overexpression of EMT-TFs

proposed an increase in tumor-initiating potential

(Mani et al., 2008). Reconciling these contradictions,

recent studies that categorized cells into E (epithelial),

M (mesenchymal), and hybrid E/M, instead of just E

and M, have proposed that tumor-initiating potential

might be maximum when cells are in a hybrid E/M

state (Grosse-Wilde et al., 2015; Jolly et al., 2014;

Ombrato and Malanchi, 2014; Ruscetti et al., 2015).

Such hybrid E/M cells co-expressing various epithelial

and mesenchymal markers have been observed in

breast, ovarian, lung, and renal cell carcinoma cell

lines (Andriani et al., 2016; Grosse-Wilde et al., 2015;

Huang et al., 2013; Sampson et al., 2014; Schliekelman

et al., 2015), in mouse models of prostate cancer and

PDAC (Rhim et al., 2013; Ruscetti et al., 2015), pri-

mary breast and ovarian cancer tissue (Strauss et al.,

2011; Yu et al., 2013), in the bloodstream of breast,

lung, and prostate cancer patients (Armstrong et al.,

2011; Lecharpentier et al., 2011; Yu et al., 2013), and

in metastatic brain tumors (Jeevan et al., 2016). More

importantly, triple-negative breast cancer patients had

a significantly higher number of such hybrid E/M cells

as compared to other subtypes, suggesting a correla-

tion between a hybrid E/M phenotype and tumor

aggressiveness (Yu et al., 2013).

Although it is likely that many carcinomas undergo

only a partial transition, some cancers reflect a more

complete phenotypic transition based on typical

morphological and molecular readouts. For example,

Beerling et al. (2016) identified a rare population of

E-cadlo cells that underwent spontaneous full EMT

without any exogenous induction of EMT-TFs, and

converted to an epithelial state upon reaching the

metastatic site. Another model system that tends to

exhibit a more complete EMT is the Dunning model

of prostate cancer that was derived in 1961 from a

spontaneous prostate adenocarcinoma in a Copen-

hagen rat (Dunning, 1963; Issacs et al., 1978). The DT

cell line established from this model expresses numer-

ous epithelial biomarkers, including E-cadherin, clau-

din 4, and pan-cytokeratin (Oltean et al., 2008),

possesses a cobblestone-like appearance (Oltean et al.,

2006; Somarelli et al., 2013, 2016a), and, when

implanted back into syngeneic rats, produces an extre-

mely slow-growing, indolent tumor (Presnell et al.,

1998). Serial passage in castrated rats of this tumor led

to a diverse family tree of increasingly aggressive

tumors and derivative cell lines (Issacs et al., 1982;

Smolev et al., 1977; Tennant et al., 2000). One of these

cell lines, derived from an anaplastic, highly aggressive

variant, led to the development of the anaplastic

tumor 3 (AT3) cell line. Compared to pre-EMT DT

cells, AT3 cells exhibit a post-EMT phenotype (Oltean

et al., 2006, 2008; Somarelli et al., 2013), with spindle-

like morphology, low cell–cell attachment, enhanced

invasion (Schaeffer et al., 2014), and metastatic capac-

ity (Oltean et al., 2006). Consistent with these observa-

tions, microarray analysis of DT and AT3 cells

revealed distinct epithelial and mesenchymal biomar-

ker expression, with robust expression of multiple

epithelial markers in the DTs and mesenchymal mark-

ers in the AT3s (Oltean et al., 2008). These analyses

suggest that in vivo serial passage under androgen-

deprived conditions induces a phenotypic transition

consistent with EMT in the AT3 line. Thus, AT3 cells

tend to reflect ‘epigenetically fixed’ EMT, reminiscent

of the ‘epigenetically fixed’ mesenchymal state

observed for human non-small-cell lung cancer H1703

or Calu6 cells upon prolonged exposure to TGF-b
(Thomson et al., 2011). Yet, unlike the findings dis-

cussed above in which a complete EMT reduces the

metastatic capacity of the cells, AT3 cells are highly

metastatic and remain in a ‘fixed’ mesenchymal state

during metastatic colonization (Somarelli et al.,

2016a).

Clinically, EMT has been suggested to play a role in

promoting the admixed phenotypes observed in the

case of carcinosarcomas – rare cancers comprised both

carcinomatous and sarcomatous elements. Interest-

ingly, cells expressing markers and/or morphological

features of an intermediate or hybrid epithelial/mes-

enchymal state have been observed (Bittermann et al.,

1990; DeLong et al., 1993; Haraguchi et al., 1999;

Paniz Mondolfi et al., 2013), suggesting that the mes-

enchymal component is derived via EMT from the car-

cinomatous component. Furthermore, genetic analyses

support a clonal origin of both epithelial and stromal

elements within these tumors (Somarelli et al., 2015).

While it remains to be conclusively tested whether car-

cinosarcomas represent tumors in which a portion of

the cells underwent EMT, the majority of data suggest

that, in most cases, the mesenchymal element is likely

derived from a carcinoma (Somarelli et al., 2015).

Similar to carcinosarcomas, in which tumors exhibit

admixture of two phenotypes, prostate tumors with
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areas of adenocarcinoma and neuroendocrine prostate

cancer (NEPC) have also been observed. Both the ade-

nocarcinomatous and NEPC phenotypes share com-

mon mutations, suggesting a common cell of origin

(Beltran et al., 2011; Hansel et al., 2011; Tan et al.,

2014). Likewise, a longitudinal analysis of patients

with adenocarcinoma that progresses to NEPC indi-

cated that NEPC results from clonal evolution of an

original adenocarcinoma through phenotypic plasticity

(Beltran et al., 2016). Further lineage-tracing studies

support this finding, with combined genetic loss of

Pten/Rb1/Trp53 inducing an NEPC-like transition by

upregulating stemness factor Sox2 and epigenetic

remodeling protein Ezh2 (Ku et al., 2017; Mu et al.,

2017). While not a classic example of EMT, NEPC-

like tumors represent similar phenotypic plasticity, and

some players implicated in EMT such as Snail have

also been reported in the context of NEPC-like tumors

and neuroendocrine differentiation (McKeithen et al.,

2011).

Taken together, although induction of at least a par-

tial EMT at the invasive edges in primary xenografts

has been observed in vivo (Bonnomet et al., 2012;

Klymkowsky and Savagner, 2009), a careful investiga-

tion of partial vs. full EMT needs to be conducted

in vivo to dissect the contributions of these phenotypic

transitions to invasion, dissemination, and metastasis.

It is also likely that each tumor’s requirements for

EMT/MET are slightly different depending on the

original cell of origin (e.g., basal vs. luminal), its

unique mutation profile (e.g., p53 loss), and its epige-

netics (e.g., bivalent vs. monovalent chromatin). A

more sophisticated understanding of the hybrid E/M

phenotype and its molecular underpinnings will surely

help to further elucidate the context-dependent

requirements for plasticity during various stages of the

metastatic cascade.

5. Cohesive cell migration and EMT:
mutually exclusive migration modes?

Many recent reports have suggested alternative mecha-

nisms for the escape of carcinoma cells, besides the

single-cell dissemination enabled by EMT. Specifically,

collectively invading cells have been shown to migrate

through the ECM with intact cell–cell junctions (Clark
and Vignjevic, 2015; Friedl et al., 2012). Collective

invasion need not always exhibit significant changes in

canonical epithelial and mesenchymal markers (Che-

ung et al., 2013; Shamir et al., 2014), but cells at the

leading edge of these cohorts may express certain

EMT traits (Westcott et al., 2015). A three-dimen-

sional reconstruction of serial section samples of many

tumors has suggested that cell clusters are the predom-

inant agents of invasion and that single-cell dissemina-

tion is extremely rare (Bronsert et al., 2014). Some of

these collectively invading cohorts – referred as ‘tumor

buds’ – displayed loss of cell polarity, reduced total

levels and membrane localization of E-cadherin, and

increased nuclear ZEB1. However, because these cells

were not spindle-shaped and maintained E-cadherin

levels at least partially, they were labeled as a hybrid

E/M phenotype, instead of a full EMT (Bronsert

et al., 2014; Grigore et al., 2016). It is expected that

collectively invading strands and tumor buds are pre-

cursors of clusters of circulating tumor cells (CTCs)

also called as tumor emboli, as observed in patients

with invasive melanoma, lung cancer, inflammatory

breast cancer, and clear cell renal cancer (Hou et al.,

2012; Jolly et al., 2015a; Kats-Ugurlu et al., 2009; Ye

et al., 2010), thereby suggesting that the clusters of

tumor cells retaining some of their epithelial traits can

complete the metastasis–invasion cascade and give rise

to polyclonal metastatic colonies (Cheung et al., 2016).

However, whether the clusters need upregulation of

any mesenchymal markers still remains to be investi-

gated extensively.

These clusters of CTCs, although much less preva-

lent than individually migrating CTCs, can act as pri-

mary ‘villains’ of metastasis by forming 50 times more

tumors as compared to individual CTCs (Aceto et al.,

2014). In addition, clusters may be more efficient in

resisting cell death during circulation and associate

with significantly worse outcome in patients (Cheung

and Ewald, 2016). Inhibiting players that mediate cell–
cell adhesion directly or indirectly in these clusters

such as plakoglobin or keratin 14 (K14) compromised

their metastatic potential (Aceto et al., 2014; Cheung

et al., 2016). These results are reminiscent of the essen-

tial role of E-cadherin in forming tumor emboli and

distant metastasis in inflammatory breast cancer

(Tomlinson et al., 2001) – a highly aggressive cancer

that predominantly metastasizes via clusters (Kleer

et al., 2001). Thus, retention of cell–cell adhesion as

an epithelial trait may actually be crucial to successful

metastasis in many aggressive cancers.

Activation of an EMT program – either fully or

partially – at the invasive edge can alter the ability of

primary tumor cells to intravasate and disseminate as

individual CTCs (Bonnomet et al., 2012; Roth et al.,

2016), and CTCs can display a dynamic spectrum of

EMT phenotypes (Yu et al., 2013). But, any causal

role of EMT-TFs, and by extension, of a partial or full

EMT in mediating CTC cluster formation still remains

to be thoroughly investigated. This issue is convoluted

by observations that CTC clusters may contain
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platelets that are known to secrete TGF-b (Aceto

et al., 2014), a potent mediator of EMT. Recently

developed technologies to isolate CTC clusters, such as

Cluster-Chip, may be critical in this endeavor

(Sarioglu et al., 2015).

6. Is MET required for metastasis?

While many studies have focused on the importance of

EMT during metastasis (Tsai and Yang, 2013), it has

also been hypothesized that cells transition back to an

epithelial state through MET to form macrometastases

(Thiery, 2002). This hypothesis is based upon the

observation that many metastases express epithelial

markers (Christiansen and Rajasekaran, 2006).

For example, Chao et al. (2010) examined E-cad-

herin expression in primary breast tumors and

matched metastases and found that 62% of cases had

increased E-cadherin at the metastatic site compared

to the primary tumor. Although metastatic tumors

commonly display an epithelial phenotype, it has also

long been known that undifferentiated/mesenchymal

metastases also occur in patients with cancer. Even in

a single patient, there is heterogeneity in the pheno-

typic status of multiple metastases (Spremulli and

Dexter, 1983). These observations lead us to inquire

about the requirement of MET for metastasis. Do

some disseminated tumor cells not require MET to

colonize secondary sites? Or do colonized tumor cells

retain a high level of phenotypic plasticity, thereby

priming them for multiple rounds of MET and EMT

subsequent to metastatic seeding?

Thomas Brabletz postulated two types of metastatic

progression – one based on phenotypic plasticity and

the other plasticity independent. Metastatic progres-

sion that is based on phenotypic plasticity would

require MET in order to colonize secondary sites. On

the other hand, tumor cells can acquire genetic alter-

ations that confer upon the cell all the necessary traits

for dissemination and metastatic seeding in one go and

do not require MET (Brabletz, 2012). In vivo experi-

mental evidence for these two models of metastatic

progression was demonstrated using lethal reporters

of MET that kill all the cells undergoing MET.

These reporters revealed the existence of both MET-

dependent and MET-independent paths to metastatic

progression – an MET-dependent path in carcinosar-

comas, whereas an MET-independent path in prostate

cancer (Somarelli et al., 2016a). It is likely that EMT-

TFs and microRNA families that maintain an epithe-

lial phenotype (Bracken et al., 2008; Burk et al., 2008;

Lu et al., 2013) regulate MET-dependent metastatic

mechanisms. Indeed, it was recently shown in a

spontaneous squamous cell carcinoma model that

Twist1 activation promoted EMT and CTCs. How-

ever, turning off Twist1 at distant sites allowed MET

and was essential for disseminated tumor cells to pro-

liferate and form macrometastases (Tsai et al., 2012),

reminiscent of observations that EMT typically arrests

the cell cycle (Vega et al., 2004).

Mechanisms underlying MET-independent metasta-

sis still remain elusive. One hypothesis is based on

recent observations that cells that fail to undergo cell

cycle arrest upon induction of EMT accumulate geno-

mic instability (Comaills et al., 2016). Therefore, the

cells metastasizing independent of MET may be

genomically unstable. This instability may serve to

enrich for the rare subset of cells that are likely to lead

to dedifferentiated and highly metastatic tumors that

are cross-resistant to next-line therapies (Creighton

et al., 2009; Sun et al., 2012). Therefore, therapies used

to treat cancer cells may also select for genetic alter-

ations that allow for both the maintenance of an EMT

and sustained uncontrolled proliferation, thus poten-

tially obviating the need for MET.

An alternative explanation of the results presented

above is that cells might undergo a partial MET,

which reporters could miss capturing, just as many

reporter systems may be less sensitive in capturing a

partial EMT (Li and Kang, 2016; Pattabiraman and

Weinberg, 2017). In partial MET, cells are likely to

retain their mesenchymal traits and gain their prolifer-

ative ability without the acquisition of any genetic

alterations. In a study comparing primary and meta-

static tissue from breast and prostate cancer, E-cad-

herin was found at the cellular membranes more often

in metastases than in primary tumors. However,

metastases also retained mesenchymal markers vimen-

tin and Fsp1 (Chao et al., 2012). This study suggests

that some metastases may maintain a high amount of

phenotypic plasticity and are primed to switch between

states as selection occurs during growth or by treat-

ment. Thus, it is not necessarily the phenotype that

favors metastasis, but the acquisition of the suite of

traits needed to metastasize.

A central question that remains unanswered is

whether partial EMT is the same as partial MET in its

phenotypic consequence. Most phenotypic studies have

been performed in carcinomas, which are derived from

epithelial cells. As discussed above, these cells likely

retain intrinsic epithelial phenotype and acquire migra-

tory and invasive traits, leading to a partial EMT that

can promote tumor dissemination (Jolly et al., 2015a).

Yet, as these cells are still epithelial in origin, they are

probably often less likely to undergo a complete epige-

netic reprogramming to acquire a phenotype similar to
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that of normal mesenchymal tissues. Thus, it is not

surprising that many carcinoma cells revert to an

epithelial-like state when arriving to an epithelial envi-

ronment to form metastases. It is crucial that these

cells are able to reactivate the cell cycle to proliferate

and colonize; if the cells become fixed in a mesenchy-

mal-like phenotype and break the connection between

the epithelial phenotype and cell cycle activation,

either by mutation or by epigenetic reprogramming,

their metastatic potential might be severely compro-

mised (Fig. 3).

Interestingly, sarcomas provide a unique perspective

on the need for MET during metastasis. Sarcomas are

cancers of a mesenchymal lineage. These cancers are

highly aggressive and metastatic, and upregulation of

mesenchymal biomarkers is observed in metastases

compared to primary tumors (Shen et al., 2011; Wiles

et al., 2013), suggesting that these tumors metastasize

via an MET-independent route. It is possible that sar-

coma cells are primed for enhanced metastatic capacity

because of their mesenchymal lineage and that the

acquisition of growth advantages during cancer initia-

tion enables these cancers to metastasize readily via an

MET-independent route. Clinically, sarcomas occur in

younger patients and have a shorter overall survival

compared to carcinomas (Siegel et al., 2017), suggest-

ing that the rate-limiting step for metastasis of these

cancers may indeed be tumor initiation. Conversely, in

carcinomas, sustained cell growth is commonly cou-

pled to MET during the formation of macrometas-

tases. In this scenario, induction of a MET might be

the rate-limiting step in metastasis.

7. Role of the microenvironment

Phenotypic plasticity can be influenced by the tumor

microenvironment; for instance, upregulation of

hypoxia (Sun et al., 2009) and soluble factors released

by macrophages and other infiltrating immune cells

(Huang and Du, 2008; Toh et al., 2011) leads to

upregulation of EMT-TFs and EMT induction. The

importance of the microenvironment in driving a

metastatic phenotype is underscored by the presence of

‘tumor microenvironment of metastasis’ (TMEM), in

which the surrounding microenvironmental niche pro-

motes metastatic dissemination and colonization. For

example, factors such as hypoxia (Ju et al., 2017),

tumor-infiltrating neutrophils (Gordon-Weeks et al.,

2017), and radiation treatment (Bouchard et al., 2017;

Ruegg et al., 2011) have been demonstrated to gener-

ate a metastasis-promoting microenvironment. Not

only do these microenvironmental factors play impor-

tant roles in creating a prometastasis environment, but

also the spatial relationships among these factors are

critical. Along these lines, spatial proximity of an

endothelial cell, a perivascular macrophage, and an

invasive cancer cell overexpressing Mena (a key actin

polymerization regulatory protein) – as identified by

intravital imaging – was highly correlated with metas-

tasis (Robinson et al., 2009). Based on these insights,

it has been suggested that normalizing the tumor

microenvironment could be a potential therapeutic

strategy to improve patient outcomes (Jain, 2013).

Dynamics of the microenvironment can enable a

passive shedding of cancer cells into circulation. This

Fig. 3. Plasticity-dependent and plasticity-independent pathways to metastasis. (A) In MET-dependent metastasis, post-EMT-like cancer

cells upregulate invasive programs that facilitate dissemination and seeding (red curve). The invasive program comes at a cost; EMT

induction leads to downregulation of proliferative potential (blue curve). Re-establishment of an epithelial-like phenotype via MET at the

metastatic site awakens the proliferative potential necessary for the formation of macrometastases. (B) In MET-independent metastasis,

therapy, epigenetic reprogramming, acquisition of novel mutations, or other mechanisms induce a post-EMT state that becomes fixed in a

proliferationhigh/invasionhigh phenotype. Cells metastasizing via an MET-independent pathway may be more aggressive, stem-like,

chemorefractory, and more likely to seed and re-seed further metastases.
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mode would be instead of a postulated active crawling

or migration of cancer cells into the circulation or

toward any nutrient or chemokine gradient and cleav-

age of ECM by secreting proteases (Bockhorn et al.,

2007) For instance, blood vessels have been proposed

to engulf clusters of cancer cells, thus obviating the

need for EMT (Fang et al., 2015). These clusters may

avoid cell death in circulation by cell–cell contact-

mediated survival signals (Shen and Kramer, 2004)

and may already be enriched for players such as Jag1

(Cheung et al., 2016) that can help them evade multi-

ple therapies (Boareto et al., 2016; Li et al., 2014; Shen

et al., 2015; Sim~oes et al., 2015) and colonize success-

fully (Sethi et al., 2011). Not surprisingly, Jag1 is

enriched in aggressive cancers such as basal-like breast

cancer (BLBC) (Reedijk et al., 2008) and can con-

tribute to the abnormal vasculature typically observed

in cancers (Benedito et al., 2009; Boareto et al.,

2015a). Moreover, Fringe, a glycosyltransferase that

inhibits the binding of Notch to Jag1 (Boareto et al.,

2015b; Jolly et al., 2015b), is lost in BLBC (Zhang

et al., 2014).

Therefore, active crawling or migration of cells dri-

ven by a partial or full EMT, often activated by over-

expression of EMT-TFs, is not certainly the only route

to metastasis. It is not inconceivable that tumor cell

dissemination – particularly cluster-based dissemina-

tion – is a passive process where cells that can navigate

the fitness bottlenecks from an evolutionary standpoint

eventually form metastases (Amend et al., 2016). Both

genetic and nongenetic heterogeneity may be crucial or

even synergistic in conferring a rare subpopulation of

cells with high adaptability or plasticity that lets them

transit the entire invasion–metastasis cascade. Such

plasticity may coincide with co-expression of many

epithelial and mesenchymal markers, owing to pheno-

typic alterations that accumulate over multiple steps of

the entire metastatic cascade.

8. Conclusion

Single-cell dissemination as enabled by EMT followed

by a MET has been considered to be a hallmark of

metastasis. However, alternative modes of dissemina-

tion, such as collective or cluster-based migration and

invasion, can exist where cells need not shed cell–cell
adhesion completely, and may not even exhibit an

overt upregulation of mesenchymal markers, while

having gained the traits of migration and invasion.

Furthermore, disseminated cancer cells may undergo

metastatic colonization via an MET-independent path-

way. Together, the wealth of data acquired thus far

support a more nuanced view of the role of EMT/

MET in cancer metastasis. While in some cases, EMT/

MET are critically important, in other scenarios EMT

and MET may not be playing a necessary role, but

more of permissive and potentially catalytic roles by

regulating phenotypes that speed the processes neces-

sary to escape and colonize.
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