
Bai and Sabharwal EURASIP Journal onWireless Communications and
Networking  (2017) 2017:136 
DOI 10.1186/s13638-017-0919-y

RESEARCH Open Access

Vector bin-and-cancel for MIMO
distributed full-duplex
Jingwen Bai* and Ashutosh Sabharwal

Abstract

In a multi-input multi-output (MIMO) full-duplex network, where an in-band full-duplex infrastructure node
communicates with two half-duplex mobiles supporting simultaneous up- and downlink flows, the inter-mobile
interference between the up- and downlink mobiles limits the system performance. We study the impact of leveraging
an out-of-band side channel between mobiles in such network under different channel models. For time-invariant
channels, we aim to characterize the generalized degrees-of-freedom (GDoF) of the side-channel-assisted MIMO
full-duplex network. For slow-fading channels, we focus on the diversity-multiplexing tradeoff (DMT) of the system
with various assumptions as to the availability of channel state information at the transmitter (CSIT). The key to the
optimal performance is a vector bin-and-cancel strategy leveraging Han-Kobayashi message splitting, which is shown
to achieve the system capacity region to within a constant bit. We quantify how the side channel improve the GDoF
and DMT compared to a system without the extra orthogonal spectrum. The insights gained from our analysis reveal
(i) the tradeoff between spatial resources from multiple antennas at different nodes and spectral resources of the side
channel and (ii) the interplay between the channel uncertainty at the transmitter and use of the side channel.

1 Introduction
Increasingly, mobile devices havemultiple radios to simul-
taneously access different parts of the spectrum, e.g.,
cellular and ISM bands. The ability of simultaneous access
to multiple parts of the spectrum provides an opportunity
to use multiple bands in new and unique ways. A common
method is to use the two bands to access both cellu-
lar and ISM band networks (notably WiFi) at the same
time, which is now an integral part of cellular provider
data strategy to offload cellular traffic to WiFi networks
[1]. In this paper, we will consider the use of device-to-
device (D2D) wireless channels between mobile devices,
to serve as side channels to aidmain-channel communica-
tion with the infrastructure nodes. For example, the main
network could be on a cellular band while the wireless side
channel could be on an unlicensed ISM band. The con-
ventional use of D2D involves establishing peer-to-peer
communication [2], forming virtual MIMO by coopera-
tive communication [3] or offloading cellular traffic [4].
In contrast, we propose to use the D2D side channel for
interference management to improve the cellular capacity,
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a scenario which we labeled as ISM-in-cellular communi-
cation [5–7].
In this paper, we will study how the side channel will

impact the system performance in a two-user MIMO full-
duplex network. In-band full-duplex operation promises
to double the spectral efficiency as compared to the half-
duplex counterpart which uses either time division or
frequency division for transmission and reception. It is
in fact feasible to design near-perfect full-duplex base
stations owing to the available freedom (bigger size, non-
battery-powered operation) in their designs (e.g., see
[8–10] and the references therein). And in-band full-
duplex has already become part of the ongoing standard
both in 3GPP [11] and 802.11-ax [12]. Thus, we envi-
sion that the first use of full-duplex capabilities might
be in a small cell infrastructure [13], supporting legacy
half-duplex mobile nodes.
In Fig. 1, a full-duplex-capable base station (BS) com-

municates with two half-duplex mobiles simultaneously
to support one uplink (UL) and one downlink (DL) flow.
A major bottleneck in this network is the inter-mobile
interference from uplink mobile (node M1) to downlink
mobile node (node M2), because of which the degrees-of-
freedom of the network collapse to one when all nodes
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Fig. 1MIMO full-duplex network: inter-mobile interference becomes
an important factor when the full-duplex infrastructure node
communicates with uplink and downlink mobile nodes
simultaneously

are equipped with single antenna (SISO) [6]. As a result,
we proposed a distributed full-duplex architecture [6]
to leverage the wireless side channels to mitigate inter-
mobile interference. In the case of MIMO scenario which
has been widely studied for half-duplex system [14], one
driving question for distributed full-duplex system is if
and how the spatial degree-of-freedom, i.e., number of
antennas at the base station and mobiles, will be corre-
lated to the spectral degrees-of-freedom offered by the
side channel.
In our setup, we assume that uplink node M1 has Mul

transmit antennas, the downlink node M2 has Ndl receive
antennas, the full-duplex BS has Mdl and Nul transmit
and receive antennas, respectively. The bandwidth of the
side channel between the mobiles is W -fold compared to
the main-channel. We summarize the main results in this
work as follows.

1. In the time-invariant channels, we obtain the
capacity region to within a constant bit achieved by a
vector bin-and-cancel scheme. We also analyze the
role of channel uncertainty at the transmitter and
characterize the GDoF as a function of antenna
numbers and side-channel bandwidth under
different assumptions of CSIT. The insights gained
from GDoF reveal the tradeoff between spatial
resources from multiple antennas and spectral
resources of the side channels as well as the interplay
between the channel uncertainty at the transmitter
and the use of side channel. In the case when BS has
more antennas than mobiles, if there are more
downlink receive antennas than uplink transmit

antennas, i.e., Ndl≥Mul, there is no benefit to obtain
CSIT since with and without CSIT achieve the same
degrees-of-freedom. On the other hand, ifMul > Ndl,
having CSIT require less side-channel bandwidth to
achieve no-interference performance. Thus, we
conclude that having more spatial degree-of-freedom
at the interfered downlink receiver or larger
side-channel bandwidth can simplify transceiver
design by ruling out the necessity to obtain CSIT.

2. In slow-fading channels, we derive the general DMT
regarding different assumptions of CSIT. Specifically,
we quantify the bandwidth of the side channel
required to compensate for lack of CSIT such that
the DMT without CSIT achieves the optimal DMT
with CSIT. Interestingly, in the case when
Mdl = Nul = M≥Mul,Ndl, the required bandwidth is
inversely proportional to the number of antennas at
the BS, i.e.,W ∝ 1

M . The caveat is that the
side-channel channel SNR, in the meantime, has to
grow with the number of antennas at BS. The result
provides guidance towards system design; larger
number of BS antennas, e.g., recent discussions on
massive MIMO [15], can help reduce the required
side-channel bandwidth to combat inter-mobile
interference.
We also observe the dependency of CSIT and the
antenna number ratio between the mobiles. For the
symmetric DMT, whenMul > Ndl, without side
channel, the lack of CSIT will result in performance
loss. However, larger side-channel bandwidth will
help bridge the performance gap. On the other hand,
when Ndl≥Mul, there is no benefit to obtain CSIT to
achieve no-interference DMT since, with and
without CSIT, one requires the same amount of
side-channel bandwidth to completely eliminate the
effect of interference. Hence, in the protocol design,
the scheduler could possibly group downlink user
with more receive antennas to eliminate the
overhead of acquiring CSIT.

3. We evaluate the required side-channel bandwidth to
achieve the no-interference GDoF and DMT under
different channel models such that the effect of inter-
mobile interference can be completely eliminated via
side channel. The key difference in the findings
between the two channel scenarios, for instance,
whenMdl = Nul = M≥Mul,Ndl, is that in GDoF
analysis under time-invariant channels, the required
W does not depend on the antenna number ratio
between the mobiles; while in DMT analysis under
slow-fading channels, the required W is a function of
the antenna number ratio A = max(Mul,Ndl)

min(Mul,Ndl)
and

W ∝ 1
A . The impact on the system design is that we

should schedule up- and downlink user pair with
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higher antenna ratio to cancel out interference with
reduced side-channel bandwidth.

The rest of paper is organized as follows. The Section 2
presents the system model. In the Section 3, we show
that a vector bin-and-cancel scheme achieves within a
constant gap of the capacity region in time-invariant chan-
nels. We give a characterization of GDoF which reveals
tradeoff between spatial resources from multiple anten-
nas and spectral resources of the side channels under
both CSIT and no-CSIT assumptions. In the Section 4, we
derive the general DMT with and without CSIT in slow-
fading channels. We also study the spatial and spectral
tradeoff between multiple antennas and side channel on
the symmetric DMT. The Section 5 concludes the paper.

Notations We use A† to denote Hermitian of A, and |A|
to denote the determinant of A. We use (x)+ to denote
max(x, 0). We use CN(0,Q) to denote a circularly sym-
metric complex Gaussian distribution with zero mean
and covariance matrix Q. We use IN to denote identity
matrix of rank N. We use f (ρ)

.= g(ρ) to denote that
limρ→∞ logf (ρ)

logg(ρ)
= 1. We use A � B to denote that matrix

B − A is a positive-semidefinite positive (p.s.d) matrix.

2 Systemmodel
In this section, we describe the system model to be used
for the rest of the paper. We assume the full-duplex BS
is equipped with Mdl transmit antennas for the downlink
andNul receive antennas for the uplink. The uplinkmobile
M1 is equipped withMul transmit antennas, and downlink
mobile M2 is equipped withNdl receive antennas. Besides
the main-channel which includes uplink, downlink, and
interference link, there also exists an out-of-band wire-
less side channel between the uplink mobile and downlink
mobile. We refer to the channel model shown in Fig. 2
as (Mdl,Ndl,Mul,Nul) side-channel-assisted MIMO full-
duplex network. LetWm andWs denote the bandwidth of
the main channel and side channel, respectively. Parame-
ter W = Ws

Wm
represents the bandwidth ratio of the side

channel to that of the main-channel.
Since one of the transmitter and receiver is co-located

in the same node, the base-station BS, the uplink mes-
sage received by the BS is causally known to the BS
transmitter for downlink transmission. As a result, the
side-channel-assisted full-duplex network can be viewed
as a Z-interference channel with implicit feedback and an
out-of-band side channel.
We assume that the channel parameters in our system

model consist of two components: a small-scale fading
factor due to multipath and a large-scale fading factor due
to path loss. We denote the small-scale fading channels
matrix as H = {Hdl,Hul,HI,HS}, where each entry in H

represents the small-scale fading channel matrix for the

Fig. 2 Channel model: (Mdl,Ndl,Mul,Nul) side-channel-assisted MIMO
full-duplex network

downlink, uplink, inter-mobile interference channel, and
the side channel, as shown in Fig. 2. We assume that all
entries in Hk , where k ∈ {dl, ul, I, S}, are mutually inde-
pendent and identically distributed (i.i.d.) according to
CN(0, 1) and all channel matrices are full rank with proba-
bility one. We will consider two different scenarios for the
small-scale fading.

• Time-invariant channels:H is fixed during the entire
communication period.

• Slow-fading channels:H remains unchanged during
each fade duration or coherence time and varies i.i.d.
between distinct fade periods.

As for the large-scale fading factor, it captures the chan-
nel attenuation due to distance. Thus, the channel atten-
uation between the transmitter and receiver is the same
for every transmit-receive antenna pair. Hence, the chan-
nel attenuation for each channel is denoted by a scalar γk ,
where k ∈ {dl, ul, I, S}. The transmitter at BS and uplink
node M1 have a maximum power budget Pdl and Pul,
respectively. To simplify the notation, let ρdl = γdlPdl,
ρul = γulPul, ρS = γSPul, and ρI = γIPul, which denotes
the average signal-to-noise ratio and interference-to-noise
ratio at each receive antenna with additive Gaussian noise
of unit variance.
Next, we describe the channel input-output relation-

ships as follows.

2.1 Uplink
The node M1 will split the transmit power between main-
channel and side channel, i.e., λ̄Pul and λPul for main-
channel and side-channel data transmission, respectively.
We define λ̄ = 1 − λ, λ ∈ [0, 1]. Thus, the received uplink
signal Yul ∈ C

Nul×1 at BS is given by

Yul(t) =
√

λ̄ρulHulXul(t) + Zul(t), (1)
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where Xul(t) ∈ C
Mul×1 is the uplink vector signal; Hul ∈

C
Nul×Mul represents uplink channel and Zul(t) ∈ C

Nul×1 is
the receiver additive Gaussian noise which contains i.i.d.
CN(0, 1) entries.

2.2 Downlink
The received downlink signal Ydl ∈ C

Ndl×1 at the nodeM2
is a combination of the downlink signal and the interfering
uplink signal and is given by

Ydl(t) = √
ρdlHdlXdl(t) +

√
λ̄ρIHIXul(t) + Zdl(t),

(2)

where Xdl(t) ∈ C
Mdl×1 is the downlink vector signal,

Hdl ∈ C
Ndl×Mdl is the downlink channel matrix and HI ∈

C
Ndl×Mul is the inter-mobile interference channel matrix,

and Zdl(t) ∈ C
Ndl×1 is the receiver additive Gaussian noise

which contains i.i.d. CN(0, 1) entries.

2.3 Side channel
We assume that the number of side-channel antennas are
the same as those of the main-channel.
Thus, the received signal YS ∈ C

Ndl×1 at the node M2 is
given by

YS(t) = √
λρSHSXS(t) + ZS(t), (3)

where XS(t) ∈ C
Mul×1 is the side-channel vector signal,

HS ∈ C
Ndl×Mul is the channel matrix of the side channel,

and Zdl(t) ∈ C
Ndl×1 is the Gaussian noise added to the

side channel which contains i.i.d. CN(0,W ) entries. Note
that the noise variance of each entry in the side channel is
W times larger than that in the main-channel.
The power constraint of the input signals is given as:

1
L

L(k+1)∑
t=1+Lk

Trace
(
E

[
Xi(t)Xi(t)†

])
≤ 1, k ∈ N, i ∈ {dl,ul,S},

(4)

where in time-invariant channels, k = 0, and L denotes
the entire communication duration; in slow-fading chan-
nels, L denotes the coherence time.1
We define the strength level of different links with

respect to nominal SNR, ρ, in decibels2

αi = logρi
logρ

, i ∈ {dl, ul, I, S}. (5)

Note that the above normalization allows different links
to have disparate strength.

3 Vector bin-and-cancel scheme
A full-duplex node can be viewed as “two nodes,” with a
co-located transmitter and receiver, which are connected
by an infinite capacity link. Inspired by this interpretation,
in [6], we proposed a distributed full-duplex architecture

which is enabled by a wireless side channel of finite band-
width when the transmitter and interfered receiver are
not co-located. When channel knowledge is known glob-
ally, we showed that a bin-and-cancel scheme achieves the
capacity region to within 1 bit/s/Hz of the capacity region
for all channel parameters in SISO case [6].
In this section, we will study the capacity region in

MIMO case under different assumptions of channel
uncertainty at the transmitter. CSIT plays a critical role in
MIMO interference channels. With CSIT, the transmitter
can design the precoding matrix to steer the direction of
the transmit signal to achieve higher rate. However, the
cost of obtaining CSIT is also prohibitive since the receiver
has to feed back the channel knowledge within the coher-
ence time which incurs operational overhead. Thus, it
is crucial to explore the role of channel uncertainty at
the transmitter in system performance. We assume that
the receiver-side-channel information is always available
as the receiver can track the instantaneous channel from
the training pilots. In what follows, we will study the
capacity region in time-invariant channels. Next, we will
present how CSIT and the use of side channel is corre-
lated, we also characterize the spatial and spectral tradeoff
between multiple antennas at different nodes and spectral
resources provided by side channel.

3.1 Capacity region to within a constant gap with CSIT
3.1.1 Outer bound
Lemma 1 Given the channel realization H, the capac-

ity region C(H) of the side-channel-assisted MIMO full-
duplex network is outer bounded by

Rdl ≤ Wm
(
log

∣∣∣INdl + ρdlHdlH†
dl

∣∣∣
)
� Cdl,

Rul ≤ Wm
(
log

∣∣∣INul + λ̄ρulHulH†
ul

∣∣∣
)
� Cul,

Rdl + Rul ≤ Wm
(
log

∣∣∣INdl + ρdlHdlH†
dl + λ̄ρIHIH†

I

∣∣∣

+ W log
∣∣∣∣INdl +

λρS
W

HSH†
S

∣∣∣∣
+ log

∣∣∣INul + λ̄ρulHul(IMul + λ̄ρIH†
I HI)

−1H†
ul

∣∣∣
+Ndl

)
� Csum,

(6)

Proof See Appendix 1. Note that if the interference
channel (ρI) or side-channel quality (WρS) exceeds cer-
tain threshold such that Csum≥Cdl + Cul, the capacity is
just trivially outer bounded by the first two individual
constraints in (6).

3.1.2 Achievable rate region
A vector bin-and-cancel scheme based on a simple Han-
Kobayashi coding strategy achieves the following rate
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region when CSIT is available. The scheme will be eluci-
dated later in the Section 3.2.

Lemma 2 The achievable rate region RBC(H) of the
side-channel-assisted MIMO three-node full-duplex net-
work for time-invariant channels is

Rdl ≤ Cdl − Wmc1,
Rul ≤ Cul − Wmc2,

Rdl + Rul ≤ Csum − Wm (c1 + c2) ,

(7)

where

c1 = min{Mdl + Mul,Ndl}log (max {Mdl,Mul}) + m̂I,
c2 = (mul + WmI) logMul + mX log (Mul + 1) ,

m̂I = mIlog
(
1 + 1

Mul

)
,

mdl = min {Mdl,Ndl} ,mul = min {Mul,Nul} ,
mX = max {Mul,Ndl} ,mI = min {Mul,Ndl} .

(8)

Proof See the Section 3.2 for the description of the
achievability and Appendix 2 for the rate calculation.

Based on the lemmas above, we will state the result of
constant-bit gap to capacity region under time-invariant
channels in the following theorem.

Theorem 1 For the side-channel-assisted two-user
MIMO full-duplex network under time-invariant chan-
nels, the achievable rate region RBC(H) is within
max{c1, c2} bit/s/Hz of the capacity region C(H), where
ci, i = 1, 2 is given in (8).

Proof The proof is straightforward. From Lemmas 1 and
2, we can calculate the rate difference and divide it by the
total bandwidthWm + Ws of the system.
In other word, for any given rate pair (Rdl,Rul) ∈

C(H) (bit/s), the rate pair
(
(Rdl − (Wm + Ws)c1)+, (Rul −

(Wm + Ws)c2)+
)
is achievable in RBC(H).

In the SISO case, we can easily verify that the vector bin-
and-cancel achieves the capacity region to within one bit.

3.2 Achievability
In this section, we will describe the vector bin-and-cancel
scheme used to show the achievability in Lemma 2. In
vector bin-and-cancel, we use Han-Kobayashi [16] style
common-private message splitting with a simple power
splitting. The common message can be decoded at both

receivers while the private message can only be decoded
at the intended receiver. The downlink message ωdl only
consists of private message for the downlink receiver,
which is of size 2nRdl , and is encoded into codeword Xdl.
The uplink message is divided into the common part ωul,c
of size 2nRul,c and the private part ωul,p of size 2nRul,p . The
uplink codeword is then obtained by superposition of the
codewords of both ωul,c and ωul,p,

Xul = Sul + Uul,

where Sul and Uul are the codewords of uplink common
message ωul,c and private message ωul,p, respectively.
Next, we partition the uplink commonmessageωul,c: the

common message set is divided into 2nRS equal size bins
such thatB(l) = [

(l − 1)2n(Rul,c−RS) + 1 : l2n(Rul,c−RS)
]
, l ∈

[ 1 : 2nRS ]. The total number of bin indices 2nRS is deter-
mined by the strength of the side channel, αS, and the
bandwidth ratio W. The bin index l is then encoded into
codeword XS and sent from the uplink transmit antenna
arrays over the side channel, which is shown in Fig. 3.
All the codewords are mutually independent complex

Gaussian random vectors with covariance matrices given
as follows to satisfy the power constraint given in (4):

E

(
XdlX†

dl

)
= 1

Mdl
IMdl , E

(
UulU†

ul

)

= 1
Mul

(
IMul + λ̄ρIH†

I HI
)−1

E

(
SulS†ul

)
= 1

Mul
IMul − E

(
UulU†

ul

)
, E

(
Xs
ulX

s†
ul

)

= 1
Mul

IMul ,

(9)

where λ ∈ (0, 1), λ̄ + λ = 1. The parameter λ denotes
the fraction of power allocated to the side channel. For the
power splitting between the uplink private and common
message, we set the power of the private message such

Fig. 3 Binning of the common message at uplink transmitter
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that its received signal strength is below the noise floor
at each unintended receiver’s antenna. And we allocate
the power of the codewords equally among the transmit
antenna array.
Now, we describe the decoding process. The decod-

ing at the BS is straightforward. Upon receiving Yul, the
BS decodes (ωul,c,ωul,p). The achievable rate region of
(Rul,c,Rul,p) is the capacity region of multiple-access chan-
nel denoted as C1, where

Rul,c ≤ I(Sul;Ydl|Xdl)

Rul,p ≤ I(Uul;Yul|Sul)
Rul,c + Rul,p ≤ I (Sul,Uul;Yul)

(10)

The decoding at the downlink receiver has two stages as
shown in Fig. 4. In stage one, upon receiving YS, the down-
link receiver first decodes the bin index l from the side
channel. In stage two, upon receiving Ydl, the downlink
receiver decodes (ωdl,ωul,c) with the help of side-channel
information while treating uplink private message ωul,p as
noise.3 This is a multiple-access channel (MAC) with side
channel whose capacity region denoted as C2 is given in
[6] ; hence, we have

Rdl ≤ I (Xdl;Ydl|Sul)
Rul,c ≤ I (Sul;Ydl|Xdl) + I (XS;YS)

Rdl + Rul,c ≤ I (Xdl, Sul;Ydl) + I (XS;YS) .
(11)

The achievable rate region of side-channel-assisted full-
duplex network is the set of all (Rdl,Rul) such that
Rdl,Rul = Rul,c + Rul,p satisfying that (Rul,c,Rul,p) ∈ C1
and (Rdl,Rul,c) ∈ C2. Using Fourier-Motzkin elimination,
the achievable rate pairs (Rdl,Rul) are constrained by the
following rate region

Rdl ≤ I (Xdl;Ydl|Sul)
Rul ≤ min {I (Sul,Uul;Yul) , I (Uul;Yul|Sul)

+I (Sul;Ydl|Xdl) + I (XS;YS)}
Rdl + Rul ≤ I (Uul;Yul|Sul) + I (Xdl, Sul;Ydl)

+ I (XS;YS) .

(12)

Fig. 4 Decoding at downlink receiver

The achievable rate region given above is calculated in
Appendix 2; thus, we can obtain the explicit achievable
rate expression in Lemma 2.

3.3 High SNR approximation
From Theorem 1, vector bin-and-cancel scheme achieves
the capacity region to within a constant bit for all val-
ues of channel parameters under time-invariant channels.
In the high SNR limit, a constant number of bits (which
do not vary with respect to SNR) are insignificant and
can be ignored on the scale of interest. Therefore, we can
establish the high SNR capacity region approximation to
within O(1) in the following corollary.

Corollary 1 For a given the channel realization H,
vector bin-and-cancel is asymptotically capacity achiev-
ing and the asymptotic capacity approximation C(H) is
given by

C(H)
.=
{
(Rdl,Rul) : Rdl ≤ Wmlog

∣∣∣INdl + ρdlHdlH†
dl

∣∣∣ � Cdl,

Rul ≤ Wmlog
∣∣∣INul + λ̄ρulHulH†

ul

∣∣∣ � Cul,

Rdl + Rul ≤ Wm
(
log

∣∣∣INdl + ρdlHdlH†
dl + λ̄ρIHIH†

I

∣∣∣

+ W log
∣∣∣∣INdl + λρS

W
HSH†

S

∣∣∣∣

+log
∣∣∣∣INul + λ̄ρulHul

(
IMul + λ̄ρIH†

I HI
)−1

H†
ul

∣∣∣∣
)

� Csum
}
.

(13)

The high SNR capacity approximation can be used to
derive the generalized degrees-of-freedom (GDoF). The
GDoF captures the asymptotic behavior of the capacity
and the corresponding optimal schemes, allowing differ-
ent links to grow at disparate rates.
The GDoF region is defined as follows 4

{
(DoFdl,DoFul) : DoFi = lim

ρ→∞
Ri(ρi)

Wmlogρ
, i ∈ {dl, ul}

and (Rdl,Rul) ∈ C(H)

}
,

(14)

whereWmlogρ is the point-to-point main-channel capac-
ity with nominal SNR in bit/s. DoFdl and DoFul denote
the degrees-of-freedom (DoF) of downlink and uplink,
respectively. Using high SNR capacity approximation, we
state the GDoF region as follows.
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Corollary 2 Assuming αdl = αul = 1, the GDoF
region of (Mdl,Ndl,Mul,Nul) side-channel-assisted MIMO
full-duplex network satisfies the following constraints

DoFdl ≤ mdl, DoFul ≤ mul,
DoFdl + DoFul ≤ f

(
Nul,

(
(1 − αI)

+ ,mI
)
,
(
1, (Mul − Ndl)

+))

+ f (Ndl, (αI,Mul) , (1,Mdl)) + Wf (Ndl, (αS,Mul)) ,
(15)

where mdl = min{Mdl,Ndl},mul = min{Mul,Nul},mI =
min{Mul,Ndl} as defined in (8); function f

(
x, (y1, x1),

(y2, x2)
) = min{x, x1}y+

1 +min{(x−x1)+, x2}y+
2 for y1≥y2.

Proof The proof is akin to [17] (see Appendix 3), so we
will only provide an interpretation of theGDoF result here.
First, the DoF of downlink and uplink is limited by

the number of transmit and receive antennas, much like
the point-to-point MIMO channel. Next, we will explain
the sum GDoF. Let DoFul,c and DoFul,p denote the DoF
of the uplink common message and private message,
respectively.
Adopting the singular value decomposition (SVD), we

can decompose the interference channel as HI = U�V †,
where U and V are Ndl × Ndl and Mul × Mul unitary
matrices, respectively,� isNdl×Mul diagonal matrix con-
taining singular values ofHI. Thus,HI is decomposed into
mI parallel channels, leaving (Mul −mI)+ = (Mul −Ndl)

+
effective inputs at uplink transmitter that do not cause any
interference to the downlink receiver. The uplink trans-
mitter divides the private streams into two parts. The first
part is sent along the (Mul−Ndl)

+-dimensional null space
of interference channel HI and reaches BS at an SNR of
ρ with Nul receive antennas. In the remaining mI dimen-
sions, the second part is transmitted at a power level of
ρ−αI such that it reaches the unintended receiver at the
noise floor and reaches BS at an SNR of ρ(1−αI)+ . The pro-
cess can be viewed as a combination of signal space and
signal scale interference alignment. Thus, the DoF of the
uplink private message is

DoFul,p = f
(
Nul,

(
(1 − αI)

+ ,mI
)
,
(
1, (Mul − Ndl)

+)) .
(16)

Since the common message can be decoded at both
receivers, the downlink receiver with Ndl receive anten-
nas is a side-channel-assisted multiple-access channel
receiver. The downlink message ωdl reaches the down-
link receiver at an SNR of ρ with Mdl transmit antennas.
The uplink common message ωul,c reaches the downlink
receiver through both main-channel at an SNR of ραI and-
side channel as an orthogonal spectral space at an SNR of
ρWαS withMul transmit antennas. Thus, we have

DoFdl + DoFul,c = f (Ndl, (αI,Mul) , (1,Mdl))

+ Wf (Ndl, (αS,Mul)) .
(17)

Combining (16) and (17) leads to the sum GDoF.

Remark 1 WhenW = 0, i.e., there is no side channel, the
GDoF is the same as that of MIMO Z-interference channel
in [17]; hence, we conclude that the implicit feedback at the
full-duplex capable BS does not help improve GDoF regime
in the two-user MIMO full-duplex network.
This is due to the fact that there is only one-sided interfer-

ence. When W > 0, the implicit feedback is still not useful
in terms of GDoF, because our scheme does not rely on any
feedback.

3.4 Special cases
In this section, we give several special cases to illustrate
the GDoF results above.

Theorem 2 (Case A) When Mdl = Mul = M,Ndl =
Nul = N, and αul = αdl = 1, the sum GDoF per
antenna denoted as GDoFsum

min(M,N)
for the symmetric side-

channel-assisted MIMO full-duplex network is given by

GDoFsum
min(M,N)

=

⎧
⎪⎪⎨
⎪⎪⎩

min
{
2, 2 −

(
2 − max(M,N)

min(M,N)

)+
αI + WαS

}
αI < 1,

min
{
2,αI + max(M,N)

min(M,N)
− 1 + WαS)

}
αI≥1.

In this case, one can observe that the sum GDoF per
antenna increases linearly with the antenna ratio max(M,N)

min(M,N)

and side-channel qualityWαS.
Another case of interest is when the BS has more

antennas than mobile clients, i.e.,Mdl,Nul≥Mul,Ndl. This
scenario is almost always true in practical systems and
the ongoing trend is that the BS can accommodate many
antennas such as in massive MIMO systems [15], while
the small-form factor mobiles will have a relatively fewer
antennas due to its physical size constraint.

Theorem 3 (Case B) When BS has more antennas than
mobiles, i.e., Mdl,Nul≥Mul,Ndl with αul = αdl = 1, the
sum GDoF per antenna denoted as GDoFsum

min(Mul,Ndl)
is given as

GDoFsum
min(Mul,Ndl)

=

⎧
⎪⎨
⎪⎩
min

{
mX
mI

+ 1, mX
mI

+ 1 − αI + WαS
}

αI < 1

min
{
mX
mI

+ 1, mX
mI

− 1 + αI + WαS
}

αI≥1.

where mX = max(Mul,Ndl),mI = min(Mul,Ndl).



Bai and Sabharwal EURASIP Journal onWireless Communications and Networking  (2017) 2017:136 Page 8 of 28

Figure 5 illustrates how the sum GDoF per antenna
varies as the side-channel quality changes whenMul = Ndl
given an excess of antennas at BS. When WαS = 0, i.e.,
there is no side channel, the curve maintains “V” shape as
in the Z-interference channel. When WαS increases, the
curve gradually becomes a lifted “V” and finally reach the
maximum sum GDoF per antenna of 2 for all regimes that
one can achieve without interference.
We also give an example to clarify the DoF of vec-

tor bin-and-cancel in Case B assuming αI = αS = 1.
Using the standard MIMO SVD of channel matrices, the
interference channel and side channel can be converted
to mI = min{Ndl,Mul} parallel paths from uplink node
TxU to downlink node RxD. In Fig. 6, the diagonalized
interference and side-channel paths are depicted in bold.
In Fig. 6, the base station TxB sends Ndl independent

streams to downlink node RxD, which is indicated by the
black circles. Uplink node TxU sets (1 − W )mI effective
inputs5 to zero, which is indicated by the white circles;
TxU then sends (Mul−Ndl)

+-independent private streams
in the null space of the signal from TxB and WmI com-
mon message which can be heard at RxD. Using vector
bin-and-cancel, each transmitter sends WmI streams of
its common message to the interfering receiver through
the side channel, which is indicated by the blue circles.
At the downlink receiver RxD, WmI streams of the inter-
fering message can be canceled out; thus, downlink can
achieve Ndl DoFs and uplink can achieve min

{
(Mul −

Ndl)
+ + WmI,Mul

}
DoFs. Thus, in total, we can obtain

min
{
max{Ndl,Mul} + WmI,Ndl + Mul

}
DoFs.

3.5 GDoF without CSIT
Acquiring the CSIT incurs a large overhead, especially in
a MIMO system with many antennas. Hence, it is of prac-
tical interest to study the GDoF performance of the system
without CSIT.

Fig. 5 The sum GDoF per antenna forMul = Ndl when BS has an
excess of antennas

Fig. 6 The DoF-optimal scheme of two-user side-channel-assisted
MIMO full-duplex network whenMul≥Ndl

We first describe the encoding and decoding strategy
under the no-CSIT assumption. Both transmitters encode
their messages using independent Gaussian codebooks for
the main-channel. The uplink transmitter sends common
message only and applies vector bin-and-cancel scheme.
The side-channel bins all the uplink message and encodes
the bin indices using an independent Gaussian code-
book. From the downlink user’s perspective, the channel
is a MAC with side channel. At the decoding process,
the downlink user uses joint maximum likelihood (ML)
decoder to decode both downlink message and uplink
messages with the help of side channel. Hence, we can
obtain the achievable rate region RNo-CSIT as

RNo-CSIT =
{
(Rdl,Rul) : Rdl ≤ Wmlog

∣∣∣∣INdl + ρdl
Mdl

HdlH†
dl

∣∣∣∣ ,

Rul ≤ Wm min
{
log

∣∣∣∣INul + λ̄ρul
Mul

HulH†
ul

∣∣∣∣ , log
∣∣∣∣INdl + λ̄ρI

Mul
HIH†

I

∣∣∣∣

+W log
∣∣∣∣INdl + λρS

WMul
HSH†

S

∣∣∣∣
}
,

Rdl + Rul ≤ Wm

(
log

∣∣∣∣INdl + ρdl
Mdl

HdlH†
dl +

λ̄ρI
Mul

HIH†
I

∣∣∣∣

+W log
∣∣∣∣INdl + λρS

WMul
HSH†

S

∣∣∣∣
)}

,

(18)

where λ ∈ (0, 1), for instance, we can fix λ = λ̄ = 0.5. The
achievable rate region given above can be calculated easily
from Eq. (12) with uplink private message set to null and
equal power allocation among transmit antennas which
does not require any CSIT.
Now, we can obtain the lower bound of the GDoF under

the no-CSIT assumption.

Corollary 3 Assuming αdl = αul = 1 and no-
CSIT, the achievable GDoF region of (Mdl,Ndl,Mul,Nul)
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side-channel-assisted MIMO full-duplex network satisfies
the following constraints

DoFdl ≤ mdl, DoFul ≤ min {mul,αImI + WαSmI} ,
DoFdl + DoFul ≤ f

(
Ndl, (αI,Mul), (1,Mdl)

)

+ Wf
(
Ndl, (αS,Mul)

)
.

(19)

Proof The achievable GDoF region without CSIT can be
derived following the same argument as in the case with
CSIT.

Remark 2 Comparing Corollaries 2 and 3, we conclude
that when αI≥1 and Ndl≥Mul, acquiring CSIT is of no use
as the GDoF without CSIT achieves the optimal GDoF with
CSIT. In the strong interference regime where INR > SNR,
larger number of receiver antennas is sufficient to null out
the interference to achieve the optimal GDoF regime.

3.6 Spatial and spectral tradeoff in GDoF
In this section, we will compare three systems: (i) the side-
channel-assisted full-duplex network with CSIT, (ii) the
side-channel-assisted full-duplex network without CSIT,
and (iii) an idealized full-duplex network without inter-
ference, i.e., a parallel uplink and a downlink channel;
the last network provides us the benchmark for the best
possible performance. By comparing these three systems,
we aim to quantify the relationship between the spatial
resources of multiple antennas and spectral resources of
the side channel.We start by presenting several corollaries
to Theorems 2 and 3.

Corollary 4 (Case A with CSIT) The effect of interfer-
ence can be completely eliminated if the bandwidth ratio of
the side channel to the main channel satisfies the following
condition,

WCSIT =
⎧
⎨
⎩

αI
αS

(
2 − max(M,N)

min(M,N)

)+
, for αI < 1,

1
αS

(
3 − max(M,N)

min(M,N)
− αI

)+
, for αI≥1.

(20)

From Corollary 4, we can see that the required band-
width ratio is a linearly decreasing function of the antenna
number ratio max(M,N)

min(M,N)
to achieve the interference-free

performance. Therefore, the spatial resources of the num-
ber of antennas at transmitters and receivers is inter-
changeable with the spectral resources of the side-channel
bandwidth to eliminate interference. The intuition behind
it is that the additional spatial signaling dimension to
perform transmit/receive beamforming is equivalent to
leveraging the extra spectral signaling dimension of the
side channel for interference cancelation.

From Corollary 3, we can also find out the required
bandwidth ratio under the no-CSIT assumption in order
to achieve the no-interference upper bound. The required
bandwidth ratio without CSIT in Case A for αI = 1 is
given by

WNo-CSIT =
⎧
⎨
⎩

1
αS

(
2 − N

M
)+ , for N≥M,

1
αS
, forM > N .

(21)

Corollary 5 (Case B with CSIT) The effect of interfer-
ence can be completely eliminated if the bandwidth ratio of
the side channel to the main channel satisfies the following
condition:

WCSIT =
⎧
⎨
⎩

αI
αS
, for αI < 1,

(2−αI)+
αS

, for αI≥1.

We observe that in Case B, the required side-channel
bandwidth to achieve the no-interference sum GDoF is
not affected by the number of antennas in the system
but received interference signal strength and side-channel
signal strength levels. For αI < 1, lower interference
level requires less side-channel bandwidth while for αI≥1,
higher interference level leads to smaller side-channel
bandwidth requirement.
In Case B, we can also derive the required bandwidth

ratio under the no-CSIT assumption from Corollary 3,
to achieve the no-interference performance. The required
bandwidth ratio without CSIT in Case B for αI = 1 is given by

WNo-CSIT =
⎧
⎨
⎩

1
αS
, for Ndl≥Mul,

Mul
NdlαS

, forMul > Ndl.
(22)

In Figs. 7 and 8, we show the spatial and spectral trade-
off in both Case A and Case B when αI = 1. We observe

Fig. 7 Spatial spectral tradeoff in Case A when αI = 1
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Fig. 8 Spatial spectral tradeoff in Case B when αI = 1

that when there are more downlink receive antennas than
uplink transmit antennas, obtaining CSIT is unavailing
since with and without CSIT requires the same amount
of side-channel bandwidth to completely eliminate inter-
ference. However, when we have more uplink transmit
antennas, if we do not have CSIT, the extra spatial degrees-
of-freedom are wasted and we need more side-channel
bandwidth to achieve the no-interference performance.
In Fig. 9, we give an illustration of the comparisons of

the three systems in DoF as a function of the side-channel
bandwidth when there is an excess of BS antennas.

4 Diversity andmultiplexing tradeoff of
MIMO-distributed full-duplex

In this section, we consider a slow-fading scenario. When
the channel experiences slow fading, an important metric
to characterize the MIMO system performance is the
diversity and multiplexing tradeoff (DMT), which delin-
eates the asymptotic tradeoff between data rate and
reliability in the high SNR limit. The optimal DMT, first
introduced in MIMO point-to-point channels [18], rep-
resents the optimal diversity gain d∗(r) for each mul-
tiplexing gain r among all possible schemes. Similar to

our definition of GDoF, we define the multiplexing gain
of both downlink and uplink channels in our system as
follows:

ri = lim
ρ→∞

Ri(ρi)

Wmlogρ
, i ∈ {dl, ul}, (23)

where Rdl and Rul are the achievable rates (bit/s) of down-
link and uplink, respectively.
Assuming the overall average error probability is

Pe(rdl, rul), the DMT is

d (rdl, rul) = lim
ρ→∞

−logPe (rdl, rul)
logρ

. (24)

We define dopt(rdl, rul) as the supremum of d(rdl, rul)
computed over all possible schemes. Thus, dopt(rdl, rul) is
the optimal DMT of the system.
In this section, we will study the DMT performance

under different assumptions regarding the availability of
CSIT. We assume that the channel knowledge is known
at the receivers. In the following, we will first obtain the
optimal DMT with CSIT which can be achieved by vec-
tor bin-and-cancel as described in the Section 3. Next, we
study the case without CSIT and derive the correspond-
ing achievable DMT. Finally, based on the DMT result, we
will investigate the spatial and spectral tradeoff as well as
the interplay between CSIT and side channel.

4.1 With CSIT case
In a slow-fading scenario, the channel matrices remain
fixed over a fade period with a short-term power con-
straint given in (4); thus, the capacity region in time-
invariant channels can serve as instantaneous capacity
region in each fade period. We define the outage event
as the target rate pair not contained in the instantaneous
capacity region: B � {(Rdl,Rul) /∈ C(H)}, where C(H)

is given in Corollary 1. From [18], it can be easily shown
that P∗

e (rdl, rul)
.= Pr(B), where P∗

e (rdl, rul) is the infimum
of the overall average error probability among all possible
schemes. In the high SNR limit, we can obtain that

Pr(B)
.= max

i∈{dl,ul,sum}
Pr (Ci < Ri) , =⇒ ρ−d∗(rdl,rul)

.= max
i∈{dl,ul,sum}

Pr (Ci < Ri) ,

a b
Fig. 9 Comparison of the three systems in DoF as a function of the side-channel bandwidth when αI = 1. a Ndl≥Mul, bMul > Ndl
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where Ci is given in (13) and Rsum = Rdl + Rul. Thus the
optimal diversity order is

d∗(rdl, rul) = min
i∈{dl,ul,sum}

dBi(ri), where dBi(ri)

= lim
ρ→∞ − logPr(Ci < Wmrilogρ)

logρ
,

(25)

In the Section 3, we showed that vector bin-and-cancel
achieves the asymptotic capacity region. Hence, in the
asymptotic DMT characterization, the optimal DMTwith
CSIT can be achieved by vector bin-and-cancel which
only requires CSIT of the interference channel between
the up- and downlink nodes since the uplink message
splitting depends on the interference channel. The deriva-
tion of the optimal DMT curve of side-channel-assisted
MIMO full-duplex network follows from two steps. In
[18], we know that the optimal DMT for MIMO point-
to-point channel is dM,N (r) = (M − r)(N − r), which
is a piecewise linear curve joining the integer point r ∈
[0,min(M,N)]. For a general channel level αi, i ∈ {dl, ul}
of a point-to-point channel, we will invoke Lemma 6 (in
Appendix 3) for our calculation. Hence, we first obtain the
optimal diversity order of each individual downlink and
uplink given as

dBi(ri) = αidMi,Ni

(
ri
αi

)
, ∀ri ∈ [0,min{Mi,Ni}αi] ,

i ∈ {dl, ul}.
(26)

Next, we evaluate dBsum(rsum) in the following lemma.

Lemma 3 The diversity order with CSIT given the sum
multiplexing gain of both uplink and downlink is the min-
imum of the following objective function:

dBsum (rsum) = min
μ̄,σ̄ ,θ̄ ,ν̄

mdl∑
i=1

(Mdl + Ndl + 1 − 2i) μi

+
mul∑
j=1

(
Mul + Nul + 1 − 2j

)
σj − (Mdl + Nul)mIαI

+
mI∑
k=1

(Mdl + Nul + Mul + Ndl + 1 − 2k) θk

+
mI∑
l=1

(Mul + Ndl + 1 − 2l)νl

+
mdl∑
i=1

min{Ndl−i,Mul}∑
k=1

(αI − μi − θk)
+

+
mul∑
j=1

min{Mul−j,Ndl}∑
k=1

(
αI − σj − θk

)+ ;

Subject to
mdl∑
i=1

(α1 − μi)
+ +

mul∑
j=1

(
α2 − σj

)+ +
mI∑
k=1

(αI − θk)
+

+ W
mI∑
l=1

(αS − νl)
+ < rsum;

0 ≤ μ1 ≤ · · · μmdl ; 0 ≤ σ1 ≤ · · · σmul ; 0 ≤ θ1

≤ · · · θmI ; 0 ≤ ν1 ≤ · · · νmI ;

μi + θk≥αI, ∀(i + k)≥Ndl + 1;

σj + θk≥αI, ∀(j + k)≥Mul + 1,

(27)

where μ̄ = {μ1, · · · ,μmdl}, σ̄ = {σ1, · · · , σmul}, θ̄ =
{θ1, · · · , θmI}, ν̄ = {ν1, · · · , νmI} and mdl, mul and mI are
defined in (8).

Proof We provide the proof in Appendix 4.

With dBi for i ∈ {dl, ul, sum} derived above, we have
the following theorem which gives the optimal DMT in
its most general form, allowing different channel parame-
ters and multiplexing gains for uplink and downlink with
arbitrary number of antennas at each node.

Theorem 4 The optimal DMT of (Mdl,Ndl,Mul,Nul)
side-channel-assisted MIMO full-duplex network with
CSIT denoted as dCSIT,opt is given by

dCSIT,opt(Mdl,Ndl,Mul,Nul)
(rdl, rul) = min

i∈{dl,ul,sum}
dBi(ri),

where dBi(ri) is given in (26) and Lemma 3.

The optimization problem in Lemma 3 is a convex opti-
mization problem [19] with linear constraints, which can
be solved using linear programming. The general form of
the optimal DMT with CSIT in Theorem 4, though can be
calculated using numerical methods, does not result in a
closed-form solution. In the following corollary, a closed-
form DMT result is derived in the case of single-antenna
mobiles communicating withmultiple-antenna BS withM
transmit and receive antennas, i.e.,Mdl = Nul = M.

Corollary 6 In the case of (M, 1, 1,M) with symmetric
DMT rul = rdl = r when αdl = αul = αI = 1. The closed-
form optimal DMT with CSIT is given which completely
characterizes the optimal DMT under all side-channel
conditions:

• whenW ≤ 1
2M+1 andWαS < 1,

dCSIT,opt(M,1,1,M)(r)

=
{
M(1 − r), 0 ≤ r ≤ M+1+(2M+1)WαS

3M+2
(2M + 1)(1 + WαS) − (4M + 2)r, M+1+(2M+1)WαS

3M+2 ≤ r ≤ 1+WαS
2

(28)
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• when 1
2M+1 ≤ W < 2

M ,αS≥M
2 , andWαS < 1,

dCSIT,opt(M,1,1,M)(r) =
{
M(1 − r), 0 ≤ r ≤ β∗
αS + 1

W (1 − 2r), β∗ ≤ r ≤ 1+WαS
2
(29)

• whenW≥ 1
2M+1 ,αS < M

2 , andWαS < 1,

dCSIT,opt(M,1,1,M)(r)

=

⎧
⎪⎨
⎪⎩

M(1 − r), 0 ≤ r ≤ M+1+αS
3M+2

2M + 1 + αS − (4M + 2)r, M+1+αS
3M+2 ≤ r ≤ 1

2
αS + 1

W (1 − 2r), 1
2 ≤ r ≤ 1+WαS

2
(30)

• whenW≥ 1
2M+1 ,αS < M

2 , andWαS≥1,

dCSIT,opt(M,1,1,M)(r)

=

⎧
⎪⎪⎨
⎪⎪⎩

M(1 − r), 0 ≤ r ≤ M+1+αS
3M+2

2M + 1 + αS − (4M + 2)r, M+1+αS
3M+2 ≤ r ≤ 1

2
αS + 1

W (1 − 2r), 1
2 ≤ r ≤ β∗

M(1 − r), β∗ ≤ r ≤ 1
(31)

• when αS≥M
2 andWαS≥1,

dCSIT,opt(M,1,1,M)(r) = M(1 − r), 0 ≤ r ≤ 1 (32)

where β∗ = αS+ 1
W −M

2
W −M .

Proof The DMT of the point-to-point channel isM(1 −
r), ∀r ∈ [0, 1]. Thus, we only need to solve for the opti-
mization problem given sum multiplexing gain. One way
to find the minimum of the optimization problem in
Lemma 3 is to apply the Karush-Kuhn-Tucker condition.
Here, we will provide another approach which is the key
to the proof of a general case. The method we adopt is
gradient descent which finds the local optimum. Since
the optimization problem we have is convex with linear
constraints, the local optimum is actually the global opti-
mum in convex optimization [19]. Hence we can obtain
the global optimum via gradient descent algorithm.
We first simplify the objective function of the diversity

order in Lemma 3 given sum multiplexing gain. By sub-
stituting ν′

l = Wνl in (27), we can express the objective
function as

dCSITsum =minMμ1 + Mσ1 + (2M + 1)θ1 + ν′
1

W
− 2M,

Subject to (1 − μ1)
+ + (1 − σ1)

+ + (1 − θ1)
+

+ (WαS − ν′
1)

+ < rsum;
μ1, σ1, θ1, ν′

1≥0;
μ1 + θ1≥1; σ1 + θ1≥1.

(33)

Next, we differentiate the objective function in (33) with
respect to different variables

∂dCSITsum
∂ν′

1
= 1

W
; (34)

∂dCSITsum
∂θ1

= 2M + 1; (35)

∂dCSITsum
∂μ1

= ∂dCSITsum
∂σ1

= M <
∂dCSITsum

∂θ1
. (36)

Comparing the gradient of each variable, when W ≤
1

2M+1 , the steepest descent of the objective function is
along the decreasing value of ν′

1 with θ1 = μ1 = σ1 = 1,
for rsum ≤ Wαs. Thus, we have dCSITsum (r) = 2M + 1 +
αS − rsum

W , ∀rsum ∈ [0,WαS] . This also implies that for
rsum≥Wαs, ν′

1 = 0 in the optimal solution. Now, the
steepest descent of the objective function in (33) is along
the decreasing value of θ1 with μ1 = σ1 = 1, and the
corresponding minimum is dCSITsum (rsum) = (2M + 1)(1 +
WαS) − (2M + 1)rsum, ∀rsum ∈ [WαS, 1 + WαS] .
When W≥ 1

2M+1 , the steepest descent of the objective
function is along the decreasing value of θ1 with μ1 =
σ1 = 1, ν′

1 = WαS, for rsum ≤ 1. Thus, we have
dCSITsum (rsum) = 2M+1+αS−(2M+1)rsum, ∀rsum ∈ [0, 1] .
Again, for rsum≥1, the optimal solution has θ1 = 0. We
will rewrite the objective function as

dCSITsum =minMμ1 + Mσ1 + ν′
1

W
− 2M,

Subject to (1 − μ1)
+ + (1 − σ1)

+ + (WαS − ν′
1)

+

≤ rsum − 1;
μ1, σ1, ν′

1≥0;
μ1≥1; σ1≥1.

(37)

To minimize the objective function above, we should
let μ1 = σ1 = 1. Hence, the minimum of the objective
function is dCSITsum (rsum) = αS + 1

W (1 − rsum), ∀rsum ∈
[1, 1 + WαS] . Now, combining all the results above, we
have

dCSIT,opt(M,1,1,M)(r) = min{M(1 − r), dCSITsum(M,1,1,M)(r)}
for 0 ≤ r ≤ 1.

(38)

where dCSITsum(M,1,1,M)(r) is given as

• whenW ≤ 1
2M+1

dCSITsum(M,1,1,M)(r)

=
{
2M + 1 + αS − 2r

W , 0 ≤ r ≤ WαS
2

(2M + 1)(1 + WαS) − (4M + 2)r, WαS
2 ≤ r ≤ 1+WαS

2

(39)
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• whenW≥ 1
2M+1

dCSITsum(M,1,1,M)(r)

=
{
2M + 1 + αS − (4M + 2)r, 0 ≤ r ≤ 1

2
αS + 1

W (1 − 2r), 1
2 ≤ r ≤ 1+WαS

2

(40)

Further simplification of (38) will lead to the analytical
expression in Corollary 6.

Remark 3 The optimal DMT with CSIT in the no side-
channel case is a special case of Corollary 6 when W = 0 ,
and is given as

dNo-SC,CSIT,opt(M,1,1,M) (r) =
{
M(1 − r), 0 ≤ r ≤ M+1

3M+2

(2M + 1)(1 − 2r), M+1
3M+2 ≤ r ≤ 1

2
(41)

From Corollary 6, we can completely quantify the
improvement of DMT with side channel under all side-
channel conditions. Figure 10 depicts the comparison
of DMT with/without (w/wo) side channel when W =

1
2M+1 ,αS = M

2 . We define the light loading threshold as
the multiplexing gain threshold within which the system
error event is dominated by single-user performance. In
the case with CSIT, the light loading threshold of the sys-
tem without side channel is B shown in Fig. 10. When r >

B, the dominant error event is that all users are in error.
With the help of side channel, the light loading threshold

Fig. 10 DMT comparison w/wo side-channel w/wo CSIT when
W = 1

2M+1 ,αS = M
2

is increased by 1, where 1 = (2M+1)WαS
3M+2 . Moreover,

we can see that the side channel also improves system
maximum multiplexing gain (when the diversity order is
zero) by3, where3 = WαS

2 . Both improvement amount
1 and 3 will scale with side-channel quality WαS ( for
W ≤ 1

2M+1 ) till either point C orD reaches the symmetric
maximum multiplexing gain of one which corresponds to
the no-interference point.
When W = 1

2M+1 ,αS = M
2 , we have 1 = M

6M+4
and 3 = M

8M+4 . We conclude that in this case, both
improvement amount 1 and 3 will scale with the
number of antennas at the BS. In the limit of M (as
in massive MIMO, BS has unlimited number of anten-
nas), we will have improvement of limM→∞ 1 = 1

6 and
limM→∞ 3 = 1

8 .

4.2 Without CSIT case
We define the outage event O in the case without CSIT
as the target rate pair does not lie in the achievable rate
region RNo-CSIT: O � {(Rdl,Rul) /∈ R}, where R is given
(with λ = λ̄ = 0.5)

R =
{
(Rdl,Rul) : Rdl ≤ Wmlog

∣∣∣∣INdl +
ρdl
Mdl

HdlH†
dl

∣∣∣∣ ;

Rul ≤ Wmlog
∣∣∣∣INul +

λ̄ρul
Mul

HulH†
ul

∣∣∣∣ ;

Rdl + Rul ≤ Wm

(
log

∣∣∣∣INdl +
ρdl
Mdl

HdlH†
dl +

λ̄ρI
Mul

HIH†
I

∣∣∣∣

+W log
∣∣∣∣INdl +

λρS
WMul

HSH†
S

∣∣∣∣
)}

,

(42)

The difference between (42) and the achievable rate
region in (18) is that (42) does not have a constraint on Rul
for the transmission from up- to downlink mobile. This
is because the downlink mobile is not interested in the
uplink’s message, thereby the failure of decoding uplink’s
message alone will not be declared as an error event at the
downlink receiver.
Under the no-CSIT assumption, the diversity order of

each MIMO downlink/uplink channel is still the same
as given in (26). As for the diversity order for a given
summultiplexing gain, it is characterized by the following
lemma.

Lemma 4 The diversity order at a given sum multiplex-
ing gain in the case without CSIT is the minimum of the
following objective function:
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dosum(rsum) =min
μ̄,θ̄ ,ν̄

mdl∑
i=1

(Mdl + Ndl + 1 − 2i) μi

+
mI∑
k=1

(Mul + Ndl + Mdl + 1 − 2k) θk

+
mI∑
l=1

(Mul + Ndl + 1 − 2l) νl − MdlmIαI

+
mdl∑
i=1

min{Ndl−i,Mul}∑
k=1

(αI − μi − θk)
+

Subject to
mdl∑
i=1

(αdl − μi)
+ +

mI∑
k=1

(αI − θk)
+

+ W
mI∑
l=1

(αS − νl)
+ < rsum;

0 ≤ μ1 ≤ · · · ≤ μmdl ; 0 ≤ θ1 ≤ · · ·
≤ θmI ; 0 ≤ ν1 ≤ · · · ≤ νmI ;
μi + θk≥αI, ∀(i + k)≥Ndl + 1;

(43)

Proof We provide the proof in Appendix 5.

Theorem 5 A lower bound of the DMT of (Mdl,Ndl,
Mul,Nul) side-channel-assisted MIMO full-duplex net-
work without CSIT is given as

dNo-CSIT(Mdl,Ndl,Mul,Nul)
(rdl, rul) = min

i∈{dl,ul,sum}
doi(ri).

where doi(ri) is given in (26) and Lemma 4.

While the general form of the lower bound of DMT
without CSIT is given in Theorem 5, we provide
the closed-form no-CSIT DMT in the following corol-
lary when single-antenna mobiles communicate with
multiple-antenna BS in line with the analysis in the
Section 4.1.

Corollary 7 In the case of (M, 1, 1,M) with symmetric
DMT rul = rdl = r when αdl = αul = αI = 1. The
closed-form lower bound of the DMTwithout CSIT is given
that completely characterizes the achievable DMT under
all side-channel conditions:

• whenW ≤ 1
M+1 andWαS < 1,

dNo-CSIT
(M,1,1,M)(r)

=
⎧
⎨
⎩

M(1 − r), 0 ≤ r ≤ 1+(M+1)WαS
M+2

(M + 1)(1 + WαS) − (2M + 2)r, 1+(M+1)WαS
M+2 ≤ r ≤ 1+WαS

2

(44)

• when 1
M+1 ≤ W < 2

M ,αS≥M
2 , andWαS < 1,

dNo-CSIT
sum(M,1,1,M)(r) =

{
M(1 − r), 0 ≤ r ≤ β∗

αS + 1
W (1 − 2r), β∗ ≤ r ≤ 1+WαS

2
(45)

• whenW≥ 1
M+1 ,αS < M

2 , andWαS < 1,

dNo-CSIT
sum(M,1,1,M)(r) =

⎧
⎪⎪⎨
⎪⎪⎩

M(1 − r), 0 ≤ r ≤ 1+αS
M+2

M + 1 + αS − (2M + 2)r, 1+αS
M+2 ≤ r ≤ 1

2

αS + 1
W (1 − 2r), 1

2 ≤ r ≤ 1+WαS
2

(46)

• whenW≥ 1
M+1 ,αS < M

2 , andWαS≥1,

dNo-CSIT
sum(M,1,1,M)(r) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

M(1 − r), 0 ≤ r ≤ 1+αS
M+2

M + 1 + αS − (2M + 2)r, 1+αS
M+2 ≤ r ≤ 1

2

αS + 1
W (1 − 2r), 1

2 ≤ r ≤ β∗
M(1 − r), β∗ ≤ r ≤ 1

(47)

• when αS≥M
2 andWαS≥1,

dNo-CSIT
sum(M,1,1,M)(r) = M(1 − r), 0 ≤ r ≤ 1 (48)

where β∗ = αS+ 1
W −M

2
W −M .

Proof The proof is similar to that in Corollary 6 which
uses gradient descent method.

Remark 4 The lower bound of the DMT without CSIT
in the no side-channel case is a special case of Corollary 7
when W = 0, and is given by

dNo-SC,No-CSIT
(M,1,1,M) (r) =

{
M(1 − r), 0 ≤ r ≤ 1

M+2

(M + 1)(1 − 2r), 1
M+2 ≤ r ≤ 1

2
(49)

Remarks 3 and 4 describe the DMT without side chan-
nel under CSIT and no-CSIT assumptions. One can easily
verify that the no-side-channel cases in [20, 21] w/wo
CSIT are special cases incorporated in our derivation of
DMT.
Now we compare the lower bound of the DMT w/wo

side channel under the no-CSIT assumption. When W ≤
1

M+1 , in the case without CSIT, with the help of side chan-
nel, the light loading threshold over the no-side-channel
system is increased by 2, where 2 = (M+1)WαS

M+2 . In
Fig. 10, the DMTwithout CSIT w/wo side channel is given
when W = 1

2M+1 and αS = M
2 . Compared with the light

loading improvement under the CSIT assumption, we can
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see that the side channel is more effective in increasing the
DMT performance in the lack of CSIT as 2≥1.

4.3 Spatial and spectral tradeoff in DMT
In this section, we will derive symmetric DMT in closed
form for a more general case where the mobiles have mul-
tiple antennas communicating with the BS with M trans-
mit and receive antennas. Using the closed-form DMT
expressions, again we will compare the three systems:
with and without CSIT and the no-interference-idealized
full-duplex network. We will characterize the relationship
between the spatial degrees-of-freedom of the antenna
resources and the extra spectral degrees-of-freedom due
to the side channels under slow-fading channels.
We still assume that BS has more antennas, i.e.,

M≥Mul, Ndl. The closed-form symmetric DMT of the
general (M,Ndl,Mul,M) system with αdl = αul = αI = 1
and rdl = rul = r are given under CSIT and no-
CSIT assumptions in Lemmas 9 and 10 (in Appendix 6),
respectively.
First, we ask the question that how much side-channel

bandwidth is required to compensate for the lack of CSIT
such that the DMT of the system without CSIT achieves
that of the system with CSIT. The sufficient condition is
given in the following theorem.

Theorem 6 In case of (M,Ndl,Mul,M), sufficient con-
ditions such that no-CSIT DMT is the same as full CSIT
DMT are given by

1. W = min
{

Ndl+Mul−1
M+Ndl−Mul+1 ,

1
αS

(
2 − Ndl

Mul

)+}

where αS≥
dM,Mul

(Mul
2

)
−M(Ndl−Mul)

MulNdl
, when Ndl≥Mul,

Mul = 1, 2;

2. W = 0, when Ndl≥
dMul,M

(Mul
2

)

M + Mul, Mul = 1, 2.

Proof With the conditions given above, we can verify
that the symmetric DMT with CSIT in Lemma 9 is the
same as the DMT without CSIT in Lemma 10.

Corollary 8 When Mul > Ndl, if W < 1
αS
, the DMT

without CSIT is strictly smaller than that with CSIT.

Corollary 8 can be readily obtained by comparing
Lemmas 9 and 10. IfMul > Ndl andW < 1

αS
, the availabil-

ity of CSIT is crucial in performing transmit beamforming
to yield higher DMT.
The next question we will ask is howmuch side-channel

bandwidth is required to eliminate the effect of inter-
ference such that the DMT of the system w/wo CSIT
achieves that of a systemwithout interference. The follow-
ing theorem characterizes the effect of the side-channel

bandwidth on the performance of the symmetric DMT to
reach no-interference DMT.

Theorem 7 In case of (M,Ndl,Mul,M), the suffi-
cient conditions are given under CSIT and no-CIST
assumptions, respectively, where the effect of interference
can be completely eliminated to achieve the optimal no-
interference DMT:

1. WCSIT = 1
αS

(
2 − mX

mI

)+
, αS≥(2mI−mX )(M−mI+1)

mI(2|Ndl−Mul|+2) ;
2. WNo-CSIT ={

1
αS
, αS≥ M−Ndl+1

2(Mul−Ndl+1) , when Mul≥Ndl
1
αS

(
2 − mX

mI

)+
, αS≥(2mI−mX )(M−mI+1)

mI(2|Ndl−Mul|+2) , when Ndl≥Mul

where mX = max(Mul,Ndl),mI = min(Mul,Ndl).

Proof We need to show that with the conditions above,
the DMT of our system w/wo CSIT is not domi-
nated by the diversity order given sum multiplexing gain
dw/wo CSIT
sum(M,Ndl,Mul,M)(rsum), ∀r ∈ [0,mI] . It is sufficient if we

show that the conditions above indicate that the decay
slope of dw/wo CSIT

sum(M,Ndl,Mul,M)(rsum) is larger than that of the
PTP channel dM,mI(r)∀r, and the maximum symmet-
ric multiplexing gain of dw/wo CSIT

sum(M,Ndl,Mul,M)(rsum) is larger
thanmI.
The decay slope of the piecewise linear function dkM,N (r)

is (M + N − 2k + 1) in each interval r ∈ [k − 1, k],
where k ∈ [1,min(M,N)] is an integer. Thus, the decay
slope of dkM,N (r) decreases as the interval k increases.
Also, the decay slope difference between dk−1

M,N (r) and
dkM,N (r) is a constant of 2. We know that the DMT per-
formance will be improved as side-channel bandwidth
ratio W increases. Therefore, with W large enough,
dw/wo CSIT
sum(M,Ndl,Mul,M)(rsum) will lastly be dominated by side-

channel condition in the last admissible interval. With the
special structure of the decay slope, in order to find the
conditions where DMT w/wo achieves PTP performance,
it suffices to show the following: (A) the decay slope of
side channel given sum multiplexing gain is larger than
dM,mI(r) in their last admissible intervals, respectively, and
(B) max(rsum)≥2mI.
Under the CSIT assumption, from Corollary 3, we know

the maximum sum multiplexing gain is mX + mIWαS.
We set mX + mIWαS = 2mI to meet condition (B);
thus, W = 1

αS

(
2 − mX

mI

)+
. Next to meet condition (A),

the decay slope of the side channel in the last interval
αSdMul,Ndl

(
rsum−mX
WαS

)
, ∀rsum ∈ [mX ,mX + mIWαS], i.e.,

2
W (|Mul −Ndl| + 1), should be larger than the decay slope
of dM,mI(r), ∀r ∈ [0,mI] in its last interval, i.e.,M−mI+1.
Hence, 2

W (|Mul −Ndl|+1)≥(M−mI +1). By substituting

W = 1
αS

(
2 − mX

mI

)+
into the inequality above, we have
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αS≥ (2mI−mX)(M−mI+1)
mI(2|Ndl−Mul|+2) . With the side-channel condition

derived above, the DMT with CSIT achieves the PTP
DMT.
Under the no-CSIT assumption, when Ndl≥Mul, the

results can be derived similarly. When Mul > Ndl, the
maximummultiplexing gain isNdl(1+WαS) according to
Corollary 3. To satisfy condition B, we setNdl(1+WαS) =
2Ndl; hence, we have W = 1

αS
. To meet condition (A),

the decay slope of the side-channel in the last interval
αSdMul,Ndl

(
rsum−Ndl
WαS

)
, ∀rsum ∈ [Ndl,Ndl(1 + WαS)], i.e.,

2
W (Mul −Ndl + 1), should be greater than the decay slope
of dM,Ndl(r) in its last interval, i.e., (M − Ndl + 1). By
substitutingW = 1

αS
, we obtain that αS≥ M−Ndl+1

2(Mul−Ndl+1) .

4.4 Discussion of the results
Figure 11 illustrates the comparison of the three systems
in DMT as a function of the side-channel bandwidth.
When Ndl≥Mul, there are three regimes in comparison
to DMT. In the first regime, the performance the system
without CSIT is worse than that with CSIT. In the sec-
ond regime, with side-channel bandwidth ratioW greater
than a threshold, CSIT is of no use. In the last regime, the
use of side-channel helps reduce the probability of outage
event where all users are in error such that the domi-
nant error event is a single-user error. On the other hand,
when Mul > Ndl, the availability of CSIT always provide
an additional gain in performing transmit beamforming.
However, larger side-channel bandwidth aids the no-CSIT
system to achieve the no-interference upper bound. Note
that the strength of the side-channel level αS is implic-
itly incorporated in Theorems 6 and 7, thus is omitted in
Fig. 11.
In the following section, we will elaborate the findings

in single-antenna mobiles and multiple-antenna mobiles
cases, respectively.

a

b
Fig. 11 Comparison of the three systems in DMT as a function of the
side-channel bandwidth. a Ndl≥Mul bMul > Ndl

4.4.1 Single-antennamobiles
We first show the symmetric DMTw/wo side-channel and
w/wo CSIT when αdl = αul = αI = 1. From Fig. 12,
we can see that in the two-user uplink and downlink
system, the full-duplex capable BS is always superior to its
half-duplex (HD) counterpart where the BS adopts either
time-division multiplexing (TDM) or frequency-division
multiplexing (FDM) for uplink and downlink. In the spe-
cial case of W = 0, i.e., no side-channel, having CSIT
always yields a better DMT performance.
However, with the help of side-channel, as shown in

Fig. 12, whenW = 1
M+1 and αS≥M

2 , there is no benefit to
obtain CSIT as the DMT without CSIT already achieves
the optimal DMT with CSIT. Such result indicates that as
BS accommodates more antennas (tens or hundreds of BS
antennas as in massive MIMO), the required side-channel
bandwidth can be reduced superinearly to combat inter-
ference.
Figure 13 illustrates the side-channel bandwidth ratio

required to compensate for CSIT as stated in Theorem 6
with single-antenna mobiles. The required W is inversely
proportional to the antenna resources at the BS. The
caveat is that the side-channel level αS, in the meantime,
has to grow with the increasing number of antennas at
the BS.
To understand the result above, let us look at the dif-

ferent decay slopes in DMT in the network. From the
downlink’s viewpoint, the channel is MACwith side chan-
nel. The decay slope of MAC without CSIT is M + 1,
while the the decay slope of the side channel is 1

W . When
the symmetric multiplexing gain r ≤ 1

2 , if W≥ 1
M+1 , the

users in MAC will first be in error followed by the users’
error event in the side channel. Moreover, if αS≥M

2 , the

Fig. 12 DMT of (M, 1, 1,M) w/wo side-channel w/wo CSIT when

αS≥M
2 , where β∗ = αS+ 1

W −M
2
W −M
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Fig. 13 The required side-channel bandwidth ratio to compensate
for CSIT as a function of the number of antennas at the BS with equal
number of antennas at mobiles when αS = M

2

error event w/wo CSIT is dominated by single-user per-
formance when r ≤ 1

2 . And when r≥ 1
2 , the dominant error

event is determined by the side channel, which is the same
for both CSIT and no-CSIT cases6.
In order to eliminate the effect of interference such

that the DMT w/wo CSIT achieve no-interference upper
bound, it is sufficient if the side-channel condition sat-
isfies that WαS≥1 according to Theorem 7. Hence, the
required side-channel bandwidth is inversely proportional
to the strength of the side channel as to eliminate the
effect of interference. The implication of such result is
that in a highly clustered urban scenario, when the mobile
devices are close to each other indicating higher side-
channel strength, less side-channel bandwidth is required
to achieve the single-user DMT performance.

4.4.2 Multiple-antennamobiles
Figure 14 shows the DMT in the absence of the side chan-
nel when both the mobiles have multiple antennas. First,

Fig. 14 The symmetric DMT of MIMO full-duplex network without
side channel for αdl = αul = αI = 1

we can find out that the gains due to the full-duplex
capable BS over half-duplex BS is particularly larger for
MIMO channels. Second, a larger number of downlink
receive antennas alone can completely eliminate the effect
of CSIT such that the DMT w/wo CSIT have the same
performance as stated in Theorem 6. For example, the
DMT of (3, 3, 2, 3) without CSIT is the same as that with
CSIT. While in the case of (3, 2, 3, 3), the lack of CSIT will
result in significant loss.
Comparing Figs. 14 and 15, we can quantify the gains

due to the extra side-channel bandwidth, which is signif-
icant especially in MIMO. In the case of (3, 2, 3, 3) when
the system is lightly loaded, for instance, r ≤ 2/3, there is
no additional gain due to CSIT or r ≤ 5/4, there is no gain
due to the side channel since the error event is dominated
by single-user error. Beyond those points, the dominant
error event is that all users are in error; thus, leveraging
the CSIT for transmit beamforming or side channel to
perform vector bin-and-cancel will reduce the probability
that such outage event happens.
The required side-channel bandwidth ratio for compen-

sation of CSIT in the case of two-antenna mobiles is also
depicted in Fig. 13, which again demonstrates that the
required W ∝ 1

M similar as in the single-antenna-mobile
case.
From Theorem 7, we conclude that with CSIT, as the

antenna number ratio max{Mul,Ndl}
min{Mul,Ndl} increases, the side-

channel bandwidth required to completely eliminate the
effect of interference reduces. Hence, the spatial resources
of the multiple antennas at mobiles is interchangeable
with the spectral resources of the side-channel bandwidth
to reduce the outage probability at a given multiplexing
gain such that single-user DMT can be achieved.
We also infer from Theorem 7 that when Mul > Ndl,

the system with CSIT always outperforms that with-
out CSIT by requiring less side-channel bandwidth to
reach single-user performance7. However,Please check

Fig. 15 The symmetric DMT with side channel for αdl = αul = αI =
αS = 1
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if the edit to the sentence “However, when Ndl≥Mul,
there is no advantage...” retained its intended mean-
ing. Otherwise, please modify. when Ndl≥Mul, there
is no advantage due to CSIT achieving the single-
user DMT since, with and without CSIT require the
same amount of side-channel bandwidth to achieve
interference-free performance. Thus, we conclude that
having more spatial degree-of-freedom at the interfered
downlink receiver or larger side-channel bandwidth can
simplify transceiver design by ruling out the necessity
of obtaining CSIT to null out the effect of inter-mobile
interference.

5 Conclusion
In this paper, we propose the use of wireless side chan-
nel to manage inter-mobile interference in MIMO full-
duplex network where the BS supports both an up- and
downlink flow in the same band simultaneously for the
half-duplex mobile nodes. We study if and how the anten-
nas resources at nodes will impact the spectral resource
from the side channel under different channel models. For
time-invariant channels, we derive a constant-gap capac-
ity region by a vector bin-and-cancel scheme and the
corresponding GDoF region. And for slow-fading chan-
nels, we obtain DMT w/wo CSIT of the system. Both the
GDoF and DMT results reveal various insights about the
effect of the side channels and the spatial and spectral
tradeoff between antenna resources and bandwidth of the
side channels. Our future work will be to develop practical
protocols guided by our analysis.

Endnotes
1 In the rest of the paper, we omit the time-index t in the

expressions.
2We can set ρ = ρdl or ρul such that either αdl = 1 or

αul = 1.
3With the assistance of the bin index, more uplink

common message can be decoded which otherwise is
restricted by the interference link.

4Notice that our definition deviates slightly from the
conventional definition of GDoF in that we account for the
asymmetric bandwidths of different links and the rate is
calculated as bit/s instead of bit/s/Hz.

5The effective input is a product of the unitary matrices
by SVD and the initial input vector.

6 The DMT ofMAC channel with CSIT is different from
that without CSIT as shown in Fig. 12.

7 The system with CSIT also has a weaker requirement
of the side-channel strength level as compared to that
without CSIT.

8WhenW = 0, we defineW log
(
1 + x

W
)
� 0.

Appendix 1
Proof of Lemma 1
First, we complete the converse part. Transmitters uni-
formly and independently generate the downlink and
uplink messages ωdl and ωul, respectively. The messages
will be delivered over n time blocks. Since the full-duplex
BS has an implicit feedback of infinite capacity link, BS
encodes the ωdl by codeword Xdl,i which is a function of
(ωdl,Y i−1

ul ), for i ∈ [1, n]. The point-to-point outer bounds
on Rdl and Rul can be easily obtained following the same
argument in Lemma 1 of [22], which are given by

Rdl ≤ Wm

(
log

∣∣∣INdl + ρdlHdlH†
dl

∣∣∣
)
,

Rul ≤ Wm

(
log

∣∣∣INul + λ̄ρulHulH†
ul

∣∣∣
)
.

(50)

Next, we need to prove the sum-capacity upper bound.
We define a genie Vul =

√
λ̄ρIHIXul + Zdl. The sum-

capacity upper bound is derived by providing the genieVn
ul

to the BS. By Fano’s inequality, for any codebook of block
length n,

n(Rdl + Rul − εn)

≤ I
(
ωdl;Yn

dl,Y
n
S
) + I

(
ωul;Yn

ul|ωdl
)

(51)
= I

(
ωdl;Yn

dl
) + I

(
ωdl;Yn

S |Yn
dl
) + I

(
ωul;Yuln|ωdl

)
(52)

= I
(
ωdl;Yn

dl
) + h

(
Yn
S |Yn

dl
) − h

(
Yn
S |Yn

dl,ωdl
)

+ I
(
ωul;Yn

ul|ωdl
)

(53)
≤ I

(
ωdl;Yn

dl
) + h

(
Yn
S
) − h

(
Yn
S |Xn

S ,Y
n
dl,ωdl

)

+ I
(
ωul;Yn

ul|ωdl
)

(54)
= h

(
Yn
dl
) + h

(
Yn
S
) − h

(
Yn
S |Xn

S
)

+ h
(
Yn
ul|ωdl

) − h
(
Yn
dl|ωdl

) − h
(
Yn
ul|ωul,ωdl

)
︸ ︷︷ ︸

U

(55)

where (51) follows due to the independence of messages;
(54) follows because conditioning reduces entropy; (55)
follows because (Yn

dl,ωdl) → Xn
S → Yn

S forms a Markov
chain.
We can rewrite h(Yn

ul|ωul,ωdl) in (55) in U as

h
(
Yn
ul|ωul,ωdl

) =
n∑

i=1
h
(
Yul,i|Y i−1

ul ,ωul,ωdl
)

(56)

=
n∑

i=1
h
(
Yul,i|Xul,i,Y i−1

ul ,ωul,ωdl
)
(57)

=
n∑

i=1
h(Zul,i) (58)

where (57) follows because Xul,i is a function of ωul and
conditioned on Xul,i, Yul,i is independent of everything
else.
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We also rewrite h(Yn
ul|ωdl) − h(Yn

dl|ωdl) in (55) in U as

h
(
Yn
ul|ωdl

) − h
(
Yn
dl|ωdl

)
(59)

= h
(
Yn
ul,Y

n
dl|ωdl

) − h
(
Yn
dl|Yn

ul,ωdl
) − (

h
(
Yn
ul,Y

n
dl|ωdl

)

−h
(
Yn
ul|Yn

dl,ωdl
))

(60)
= h

(
Yn
ul|Yn

dl,ωdl
) − h

(
Yn
dl|Yn

ul,ωdl
)

(61)

=
n∑

i=1
h
(
Yul,i|Yn

dl,Y
i−1
ul ,ωdl

)

−
n∑

i=1
h
(
Ydl,i|Yn

ul,Y
i−1
dl ,ωdl

)
(62)

≤
n∑

i=1
h
(
Yul,i|Yn

dl,Y
i−1
ul ,ωdl

)

−
n∑

i=1
h
(
Ydl,i|Xul,i,Xdl,i,Yn

ul,Y
i−1
dl ,ωdl

)
(63)

=
n∑

i=1
h
(
Yul,i|Xdl,i,Vul,i,Yn

dl,Y
i−1
ul ,ωdl

)
−

n∑
i=1

h
(
Zdl,i

)

(64)

≤
n∑

i=1
h
(
Yul,i|Vul,i

) −
n∑

i=1
h
(
Zdl,i

)
, (65)

where (63) follows because conditioning reduces entropy;
(64) follows since Xdl,i is a function of (ωdl,Y i−1

ul ) and
the genie Vul,i can be determined by Xdl,i and Ydl,i as
Ydl = √

ρdlHdlXdl + Vul. Also conditioned on (Xul,i,Xdl,i),
Ydl,i is independent of everything else; (65) follows since
removing condition does not reduce entropy.
Thus U can be upper bounded as

U ≤
n∑

i=1
h
(
Yul,i|Vul,i

) −
n∑

i=1

(
h
(
Zdl,i

) + h
(
Zul,i

))
. (66)

Combining the results above and applying the chain
rule, we have

Rdl + Rul − εn ≤ 1
n

n∑
i=1

(
h
(
Ydl,i

) + h
(
YS,i

)

+h
(
Yul,i|Vul,i

) − [
h
(
Zdl,i

) + h
(
Zul,i

) + h
(
ZS,i

)])
.

Now by applying the standard time sharing argument,
we can obtain

Rdl + Rul ≤ h(Ydl) − h(Zdl)︸ ︷︷ ︸
Rus,1

+ h(Yul|Vul) − h(Zul)︸ ︷︷ ︸
Rus,2

+ h(YS) − h(ZS)︸ ︷︷ ︸
Rus,3

.

(67)

We denote the covariance matrix of Ydl as KYdl =
E

(
YdlY †

dl

)
that is maximized by Gaussian input in the

presence of Gaussian noise. It can be easily shown that

KYdl = INdl + ρdlHdlQdlH†
dl + λ̄ρIHIQulH†

I

+
√

λ̄ρdlρIHdlQd,uH†
I +

√
λ̄ρdlρIHIQu,dH†

dl,
(68)

where Qdl = E(XdlX†
dl),Qul = E(XulX†

ul),Qd,u =
E(XdlX†

ul),Qu,d = E(XulX†
dl).

Let J =
[
Vul
Yul

]
, the covariance matrix of J denoted by KJ

can be maximized with Gaussian inputs, it can be verified
that

KJ = E(JJ†) =
[
INdl + λ̄ρIHIQulH†

I λ̄
√

ρulρIHIQulH†
ul

λ̄
√

ρulρIHulQulH†
I INul + λ̄ρulHulQulH†

ul

]
.

(69)

Likewise, the covariance matrix of YS will be maximized
by Gaussian input and computed as

KYS = E

(
YSY †

S

)
= WINdl + λρSHSQSH†

S , (70)

where QS = E(XSX†
S).

Using the result in (68), we can upper bound the first
term Rus,1 (bit/s) in (67) as
Rus,1
Wm

≤ log
∣∣∣∣INdl + ρdlHdlQdlH†

dl

+ λ̄ρIHIQulH†
I +

√
λ̄ρdlρIHdlQd,uH†

I

+
√

λ̄ρdlρIHIQu,dH†
dl

∣∣∣∣ (71)

≤ log
∣∣INdl + Gdl + Gul

∣∣ (72)
= log

∣∣(INdl + Gdl)(INdl + (INdl + Gdl)
−1Gul)

∣∣ (73)
= log

∣∣INdl + Gdl
∣∣ + log

∣∣INdl + (INdl + Gdl)
−1Gul

∣∣
(74)

≤ log
∣∣INdl + Gdl

∣∣ + log
∣∣2INdl

∣∣ (75)
= log

∣∣INdl + Gdl
∣∣ + Ndl, (76)

where Gdl = ρdlHdlH†
dl + λ̄ρIHIH†

I ,Gul =
√

λ̄ρdlρIHdl

Qd,uH†
I +

√
λ̄ρdlρIHIQu,dH†

dl; (72) follows because
trace(Qi) ≤ 1, i ∈ {ul, dl}; thus, Qi � I, and log|.| is
an increasing function on the cone of positive-definite
matrices; (75) follows from the following lemma.

Lemma 5 For p.s.d. matrices Gdl and Gul, we have

log
∣∣∣INdl +

(
INdl + Gdl

)−1Gul

∣∣∣ ≤ log
∣∣2INdl

∣∣ . (77)

Proof First, we show that Gul � Gdl. Let A =√
ρdlHdlQd,u −

√
λ̄ρIHI, the product of matrices AA†
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is always p.s.d., because for any vector x, x†AA†x =
(A†x)†(A†x)≥0. Hence, we have the following

ρdlHdlQd,uQ†
d,uH

†
dl + λ̄ρIHIH†

I ≥
√

λ̄ρdlρIHdlQd,uH†
I

+
√

λ̄ρdlρIHIQ†
d,uH

†
dl.

(78)

Since Qd,uQ†
d,u � I, and Q†

d,u = Qu,d, now we can obtain
that

ρdlHdlH†
dl + λ̄ρIHIH†

I ≥
√

λ̄ρdlρIHdlQd,uH†
I

+
√

λ̄ρdlρIHIQu,dH†
dl.

(79)

Hence, we have verified that Gul � Gdl, which also leads
to the fact that Gul � INdl + Gdl. As a result, for any given
vector x, we have

x†
[
(I + Gdl)

1
2
(
I − (I + Gdl)

− 1
2Gul(I + Gdl)

− 1
2
)

(I + Gdl)
1
2
]
x

≥0, or
(
(I + Gdl)

1
2 x
)† [

I − (I + Gdl)
− 1

2Gul(I + Gdl)
− 1

2
] (

(I + Gdl)
1
2 x
)

≥0.
(80)

From the definition of partial order of p.s.d. matrices
[23], we have (I + Gdl)

− 1
2Gul(I + Gdl)

− 1
2 � I. Hence, we

have

log
∣∣INdl + (INdl + Gdl)

−1Gul
∣∣ (81)

= log
∣∣∣∣
(
INdl + Gdl

)− 1
2

(
INdl +

(
INdl + Gdl

)− 1
2

×Gul
(
INdl + Gdl

)− 1
2

) (
INdl + Gdl

) 1
2

∣∣∣∣

= log
∣∣∣∣INdl +

(
INdl + Gdl

)− 1
2 Gul

(
INdl + Gdl

)− 1
2

∣∣∣∣
≤ log

∣∣2INdl

∣∣ .

The second term in (67) can be written as

Rus,2 = h (Yul,Vul) − h(Vul) − h(Zul). (82)

Using the covariance matrix, we derived in (69), and
invoking Lemma 8 in [22], we can upper bound (82) as
follows:

Rus,2
Wm

≤ log
∣∣∣∣INul + λ̄ρulHul

(
IMul + λ̄ρIH†

I HI
)−1

H†
ul

∣∣∣∣ .
(83)

Finally, we can upper bound the third term in (67) with
the covariance matrix in (70),

Rus,3
Ws

≤ log
∣∣∣WINdl + λρSHSH†

S

∣∣∣ − log
∣∣WINdl

∣∣ (84)

= log
∣∣∣∣INdl +

λρS
W

HSH†
S

∣∣∣∣ . (85)

Combining all the results we derived above, we can
prove Lemma 1.

Appendix 2
Rate calculation in Lemma 2
For the Gaussian inputs with the covariance matrices
given in (9), the achievable rate in (12) can be calculated as

I (Xdl;Ydl|Sul)
= Wm

(
log

∣∣∣∣INdl +
ρdl
Mdl

HdlH†
dl + λ̄ρIHIKuH†

I

∣∣∣∣
−log

∣∣∣INdl + λ̄ρIHIKuH†
I

∣∣∣
)

(86)

≥Wm

(
log

∣∣∣∣INdl +
ρdl
Mdl

HdlH†
dl + λ̄ρIHIKuH†

I

∣∣∣∣ − m̂I

)

(87)

≥Wm
(
log

∣∣∣INdl + ρdlHdlH†
dl

∣∣∣ − mdllogMdl − m̂I
)
,

(88)

where Ku = 1
Mul

(IMul + λ̄ρIH†
I HI)−1, m̂I = mIlog(

1 + 1
Mul

)
; mI = min{Mul,Ndl},mdl = min{Mdl,Ndl},

which are the rank of HI and Hdl, respectively. Step (87)
is established because of the following argument, apply-
ing the singular value decomposition toHI such thatHI =
U�V †, whereU andV are unitarymatrices,� isNdl×Mul
diagonal matrix containing singular values of HI. Now, we
can rewrite λ̄ρIHIKuH†

I as

λ̄ρIHIKuH†
I = λ̄ρI

Mul
U�

(
IMul + λ̄ρI�

†�
)−1

�†U†. (89)

Since λ̄ρI�(IMul + λ̄ρI�†�)−1�† ≤ INdl , for p.s.d. matri-
ces, given a vector x, we can show that

x†
(
λ̄ρIHIKuH†

I

)
x

= 1
Mul

(
U†x

)†
λ̄ρI�

(
IMul + λ̄ρI�

†�
)−1

�†(U†x)

(90)

≤ 1
Mul

(
U†x

)†
INdl

(
U†x

)
. (91)
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Thus, λ̄ρIHIKuH†
I ≤ 1

Mul
INdl , which implies that

log
∣∣∣INdl + λ̄ρIHIKuH†

I

∣∣∣ ≤ min{Mul,Ndl}

log
(
1 + 1

Mul

)
� m̂I. (92)

Next, we compute I(Sul,Uul;Yul) as follows:

I (Sul,Uul;Yul) = Wmlog
∣∣∣∣INul +

λ̄ρul
Mul

HulH†
ul

∣∣∣∣ (93)

≥ Wm
(
log

∣∣∣INul + λ̄ρulHulH†
ul

∣∣∣
−mullogMul

)
, (94)

where mul = min {Mul,Nul}, which is the rank of Hul.
Similarly,

I(XS;YS) = Wslog
∣∣∣∣INdl +

λρS
MulW

HSH†
S

∣∣∣∣ (95)

≥ Wm

(
W log

∣∣∣∣INdl +
λρS
W

HSH†
S

∣∣∣∣

−mIW logMul

)
. (96)

And

I(Uul;Yul|Sul)
= Wmlog

∣∣∣INul + λ̄ρulHulKuH†
ul

∣∣∣ (97)

≥Wm

(
log

∣∣∣∣INul + λ̄ρulHul
(
IMul + λ̄ρIH†

I HI
)−1

H†
ul

∣∣∣∣

−mullogMul

)
, (98)

I (Sul;Ydl|Xdl)

= Wm

(
log

∣∣∣∣INdl +
λ̄ρI
Mul

HIH†
I

∣∣∣∣

−log
∣∣∣INdl + λ̄ρIHIKuH†

I

∣∣∣
)

(99)

≥Wm

(
log

∣∣∣∣INdl +
λ̄ρI
Mul

HIH†
I

∣∣∣∣ − m̂I

)
(100)

≥Wm
(
log

∣∣∣INdl + λ̄ρIHIH†
I

∣∣∣ − mIlogMul − m̂I
)

(101)

= Wm
(
log

∣∣∣INdl + λ̄ρIHIH†
I

∣∣∣ − mIlog(Mul + 1)
)

(102)

where (100) follows from step (92).

Now, we can calculate I(Uul;Yul|Sul) + I(Sul;Ydl|Xdl) as

I(Uul;Yul|Sul) + I(Sul;Ydl|Xdl) (103)

≥Wm

(
log

∣∣∣∣INul + λ̄ρulHul
(
IMul + λ̄ρIH†

I HI
)−1

H†
ul

∣∣∣∣
+ log

∣∣∣INdl + λ̄ρIHIH†
I

∣∣∣

−mullogMul − mIlog(Mul + 1)
)

(104)

= Wm

(
log

∣∣∣IMul + λ̄ρulH†
ulHul(IMul + λ̄ρIH†

I HI)
−1
∣∣∣

+ log
∣∣∣IMul + λ̄ρIH†

I HI

∣∣∣

− mullogMul − mIlog(Mul + 1)
)

(105)

= Wm

(
log

∣∣∣IMul + λ̄ρulH†
ulHul + λ̄ρIH†

I HI

∣∣∣

− mullogMul + mIlog(Mul + 1)
)

(106)

≥Wm

(
log

∣∣∣INul + λ̄ρulHulH†
ul

∣∣∣ − mullogMul

− mIlog(Mul + 1)
)
, (107)

where (105) and (107) follow from Sylvester’s determinant
theorem.
Finally, we compute I(Xdl, Sul;Ydl) as follows:

I(Xdl, Sul;Ydl)

= Wm

(
log

∣∣∣∣INdl +
ρdl
Mdl

HdlH†
dl +

λ̄ρI
Mul

HIH†
I

∣∣∣∣

− log
∣∣∣INdl + λ̄ρIHIKuH†

I

∣∣∣
)

(108)

≥Wm
(
log

∣∣∣INdl + ρdlHdlH†
dl + λ̄ρIHIH†

I

∣∣∣ − m̂I

− min {Mdl + Mul,Ndl} log(max{Mdl,Mul})
)
,

(109)

where (109) holds because the rank of the matrix
INdl + ρdl

Mdl
HdlH†

dl + λ̄ρI
Mul

HIH†
I is less than the rank of an

enhancedmultiple-access channel matrix by allowing full-
cooperation between transmitters which is min{Mdl +
Mul,Ndl}.
Combining all the expressions we derived above, we can

obtain the capacity region inner bound as8 RBC(H) ={
(Rdl,Rul) : Rdl ≤ Cdl − c1,Rul ≤ Cul − c2,Rsum ≤ Csum−

(c1 + c2)}, where c1 and c2 are given in (8).

Appendix 3
Useful Lemmas
Random matrix theory plays a critical role in the analysis
of MIMO wireless networks. Here, we will restate some
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important properties of random matrices in the following
lemmas which will be used for our derivation.

Lemma 6 (Lemma 3 in [21]) For a PTP channel, where
H ∈ C

M×N with i.i.d, CN(0, 1) entries and the channel
level is α, the optimal DMT is equivalent to the minimum
of the following optimization problem,

d(r) =min
min(M,N)∑

i=1
(M + N + 1 − 2i)xi

s.t
min(M,N)∑

i=1
(α − xi)+ ≤ r

0 ≤ x1 ≤ · · · ≤ xmin(M,N),

(110)

and the optimal solution is d(r) = αdM,N ( r
α
), for 0 ≤

r ≤ min(M,N)α, where dM,N (r) = (M − r)(N − r)
is a piecewise linear curve joining the integer point r ∈
[0,min(M,N)].

Lemma 7 (Theorem 4 in [18]) Let H ∈ C
M×N have

i.i.d, CN(0, 1) entries. Suppose the nonzero-ordered eigen-
values of R = HH† are denoted by β1≥ · · ·βq > 0, where
q = min(M,N). Let βi = ρ−μi , i ∈ [

1, q
]
, assuming

that all the eigenvalues vary exponentially with SNR. Let
μ̄ = {μ1, · · · ,μq}, thus the asymptotic distribution of μ̄ is

p(μ̄)
.=
{

ρ−∑q
i=1(M+N+1−2i)μi if 0 ≤ μ1 ≤ · · ·μq

0 Otherwise,
(111)

Lemma 8 (Theorem 1 and 2 in [24]) Let H1 ∈ C
N2×N1

and H2 ∈ C
N2×N3 be two mutually independent random

matrices with i.i.d, CN(0, 1) entries. Suppose the ordered
eigenvalues of V1 = H†

1

(
IN2 + ραH2H†

2

)−1
H1,V2 =

H2H†
2 are denoted by β1≥ · · ·βq > 0, η1≥ · · · ηp > 0 where

q = min(N1,N2), p = min(N2,N3). Let βi = ρ−μi , i ∈[
1, q

]
; ηk = ρ−θk , k ∈ [

0, p
]
, and μ̄ = {

μ1, · · · ,μq
}
, θ̄ =

{θ1, · · · , θp}. Hence, theconditionaldistributionof μ̄ given θ̄ is

p(μ̄|θ̄ )
.=
{

ρ−E1(μ̄,θ̄ ) if (μ̄, θ̄ ) ∈ D1
0 Otherwise,

(112)

where

E1(μ̄, θ̄ ) =
q∑

i=1
(N1 + N2 + 1 − 2i)μi +

q∑
i=1

min(N2−i,N3)∑
k=1

× (α − μi − θk)
+ − N1

p∑
k=1

(α − θk)
+

D1 = {
0 ≤ μ1 ≤ · · · ≤ μq; 0 ≤ θ1 ≤ · · · ≤ θp;
μi + θk≥α, ∀(i + k)≥N2 + 1

}
.

(113)

Appendix 4
Proof of Lemma 3
From Corollary 1, we can express the high SNR asymp-
totic sum-capacity as

Csum(H)
.= max
0≤λ≤1

F(H, λ, λ̄) (114)

where

F(H, λ, λ̄) = Wm

(
log

∣∣∣INdl + ρdlHdlH†
dl + λ̄ρIHIH†

I

∣∣∣

+ W log
∣∣∣∣INdl +

λρS
W

HSH†
S

∣∣∣∣

+ log
∣∣∣INul + λ̄ρulHul(IMul + λ̄ρIH†

I HI)
−1H†

ul

∣∣∣
)
,

= Wm

(
log

∣∣∣IMdl + ρdlH†
dl(INdl + λ̄ρIHIH†

I )
−1Hdl

∣∣∣

+ log
∣∣∣INdl + λ̄ρIHIH†

I

∣∣∣
+ log

∣∣∣INul + λ̄ρulHul(IMul + λ̄ρIH†
I HI)

−1H†
ul

∣∣∣

+ W log
∣∣∣∣INdl +

λρS
W

HSH†
S

∣∣∣∣
)
.

The ordered eigenvalues of G1 = H†
dl

(
INdl +

λ̄ρIHIH†
I

)−1
Hdl,G2 = Hul

(
IMul + λ̄ρIH†

I HI
)−1

H†
ul, G3 =

HIH†
I and G4 = HSH†

S are denoted by β1≥ · · ·βmdl >

0, γ1≥ · · · γmul > 0, η1≥ · · · ηmI > 0 and ξ1≥ · · · ξmI > 0.
Let βi = ρ−μi , i ∈ [1,mdl] ; γj = ρ−σj , j ∈ [1,mul] ; ηk =
ρ−θk , k ∈ [0,mI] ; ξl = ρ−νl , l ∈ [0,mI] . When ρ → ∞,
we have

ρ−dBsum (rsum) .= Pr
(
Csum < Wmrsumlogρ

)

.= Pr
(

max
0≤λ≤1

mdl∏
i=1

(
1 + ραdlβi

) mul∏
j=1

(1 + λ̄ραulγj)

×
mI∏
k=1

(1 + λ̄ραIηk)

( mI∏
l=1

(
1 + λ

W
ραSξl

))W

< ρrsum
)

.= Pr
(

max
0≤λ≤1

(λ̄)mul+mI

(
λ

W

)WmI mdl∏
i=1

ρ(αdl−μi)+

×
mul∏
j=1

ρ(αul−σj)+
mI∏
k=1

ρ(αI−θk)
+

mI∏
l=1

ρW (αS−νl)
+

< ρrsum
)

(115)

wheremdl, mul andmI are defined in (8).
For any channel realization H in a particular fade

period, we have F(H, λ = λ̄ = 0.5) ≤ Csum(H) <

F(H, λ = λ̄ = 1); hence, the sum-capacity outage event
Bsum � {Rsum /∈ Csum(H)} can be bounded as {Rsum /∈
F(H, λ = λ̄ = 1)} ⊂ Bsum ⊆ {Rsum /∈ F(H, λ = λ̄ =
0.5)}. Consequently, we have

Pr
(
Rsum /∈ F(H, λ = λ̄ = 1)

)
< ρ−dBsum (rsum)

≤ Pr
(
Rsum /∈ F(H, λ = λ̄ = 0.5)

)
.

(116)
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From (116), we can see that when ρ → ∞, ρ−dBsum (rsum)

converges to the following result as λ
W , λ̄ do not grow at

the same rate as ρ thus can be ignored on the scale of
interest

ρ−dBsum (rsum) .= Pr

⎛
⎝

mdl∑
i=1

(αdl − μi)
+ +

mul∑
j=1

(αul − σj)
+

+
mI∑
k=1

(αI − θk)
++ W

mI∑
l=1

(αS − νl)
+ < rsum

)
.

(117)

Let μ̄ = {μ1, · · · ,μmdl}, σ̄ = {σ1, · · · , σmul}, θ̄ =
{θ1, · · · , θmI}, and ν̄ = {ν1, · · · , νmI}. The joint distribution
of μ̄, σ̄ , θ̄ and ν̄ can be calculated as

p(μ̄, σ̄ , θ̄ , ν̄) = p(μ̄, σ̄ , θ̄ )p(ν̄) (118)
= p(μ̄σ̄ |θ̄ )p(θ̄)p(ν̄) (119)
= p(μ̄|θ̄ )p(σ̄ |θ̄ )p(θ̄)p(ν̄) (120)

where (118) follows from the fact that matrix G4 is inde-
pendent of other matrices; (120) follows from the random
matrix theory that the dependence of G1 and G2 is only
through the eigenvalues of G3. Thus, given the eigenval-
ues of G3, the eigenvalues of G1 and G2 are conditionally
independent.
By invoking Lemmas 7 and 8, we have

p(μ̄, σ̄ , θ̄ , ν̄)
.=
{

ρ−E(μ̄,σ̄ ,θ̄ ,ν̄) if (μ̄, σ̄ , θ̄ , ν̄) ∈ D

0 Otherwise,

where

E
(
μ̄, σ̄ , θ̄ , ν̄

) =
{mdl∑

i=1
(Mdl + Ndl + 1 − 2i) μi

+
mul∑
j=1

(
Mul + Nul + 1 − 2j

)
σj − (Mdl + Nul)mIαI

+
mI∑
k=1

(Mdl + Nul + Mul + Ndl + 1 − 2k)θk

+
mI∑
l=1

(Mul + Ndl + 1 − 2l)νl
mdl∑
i=1

min{Ndl−i,Mul}∑
k=1

× (αI − μi − θk)
+ +

mul∑
j=1

min{Mul−j,Ndl}∑
k=1

×(αI − σj − θk)
+
⎫
⎬
⎭ ,

(121)

D =
{ mdl∑

i=1
(αdl − μi)

+ +
mul∑
j=1

(αul − σj)
+ +

mI∑
k=1

(αI − θk)
+

+ W
mI∑
l=1

(αS − νl)
+ < rsum;

0 ≤ μ1 ≤ · · · ≤ μmdl ; 0 ≤ σ1 ≤ · · · ≤ σmul ;
0 ≤ θ1 ≤ · · · ≤ θmI ; 0 ≤ ν1 ≤ · · · ≤ νmI ;
μi + θk≥αI, ∀(i + k)≥Ndl + 1; σj + θk≥αI,

∀(j + k)≥Mul + 1
}
.

(122)

With the joint distribution of p(μ̄, σ̄ , θ̄ , ν̄), we have
obtained above, the outage probability is as follows:

Pr(Bsum)
.=
∫

D

p(μ̄, σ̄ , θ̄ , ν̄)
.=
∫

D

ρ−E(μ̄,σ̄ ,θ̄ ,ν̄).

(123)

Using Laplace’s principle, step (117) can be calculated by
minimizing the SNR exponent E(μ̄, σ̄ , θ̄ , ν̄) which has the
dominant probability. Thus, we have

dBsum = min
(μ̄,σ̄ ,θ̄ ,ν̄)∈D

E(μ̄, σ̄ , θ̄ , ν̄), (124)

which proves Lemma 3.

Appendix 5
Proof of Lemma 4
We first express the asymptotic achievable sum-rate (with
λ = λ̄ = 0.5) as follows

Isum
.=Wm

(
log

∣∣∣IMdl + ρdlH†
dl(INdl + λ̄ρIHIH†

I )
−1Hdl

∣∣∣

+ log
∣∣∣INdl + λ̄ρIHIH†

I

∣∣∣ + W log
∣∣∣∣INdl +

λρS
W

HSH†
S

∣∣∣∣
)
.

(125)

We still use the same notations defined in Appendix 4
to represent the ordered eigenvalue of G1 = H†

dl

(
INdl +

λ̄ρIHIH†
I

)−1
Hdl,G3 = HIH†

I and G4 = HSH†
S . Thus, we

obtain that

ρ−dOsum (rsum) .= Pr
(mdl∑

i=1
(αdl − μi)

+ +
mI∑
k=1

(αI − θk)
+

+W
mI∑
l=1

(αS − νl)
+ < rsum

)
.

The joint distribution of (μ̄, θ̄ , ν̄) can be derived by fol-
lowing the same steps in Appendix 4. Likewise, Lemma 4
can be proved and we omit the steps to avoid redundancy.
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Appendix 6
DMT calculation of (M,Ndl,Mul,M)with and without CSIT
Lemma 9 For the (M,Ndl,Mul,M) side-channel-assisted full-duplex network with αdl = αul = αI = 1 and with CSIT,

the optimal DMT at multiplexing gain pair (rdl, rul) is

dCSIT,opt(M,Ndl,Mul,M)(rdl, rul) = min
{
dM,Ndl(rdl), dMul,M(rul), dCSITsum(M,Ndl,Mul,M)(rsum)

}
. (126)

where dCSITsum(M,Ndl,Mul,M)(rsum) is given as follows:

• whenW ≤ |Mul−Ndl|+1
2M+Mul+Ndl−1 ,

dCSITsum(M,Ndl,Mul,M)(rsum) =

⎧
⎪⎨
⎪⎩

αSdMul,Ndl

(
rsum
WαS

)
+ MulNdl+M(Mul + Ndl), rsum ≤ mIWαS

dmI,2M+mX (rsum − mIWαS) + M|Mul − Ndl|, mIWαS ≤ rsum ≤ mI(1 + WαS)
d|Mul−Ndl|,M (rsum − mI(1 + WαS)) , mI(1 + WαS) ≤ rsum ≤ mX +mIWαS

• whenW ∈
[

Mul+Ndl−1
2M+|Mul−Ndl|+1 ,

|Mul−Ndl|+1
M+|Mul−Ndl|−1

]
,

dCSITsum(M,Ndl,Mul,M)(rsum) =

⎧
⎪⎨
⎪⎩

dmI,2M+mX (rsum) + MulNdlαS + M|Mul − Ndl|, rsum ≤ mI

αSdMul,Ndl

(
rsum−mI
WαS

)
+ M|Mul − Ndl|, mI ≤ rsum ≤ mI(1 + WαS)

d|Mul−Ndl|,M (rsum − mI(1 + WαS)) , mI(1 + WαS) ≤ rsum ≤ mX + mIWαS

• whenW≥ Mul+Ndl−1
M−|Mul−Ndl|+1 ,

dCSITsum(M,1,1,M)(rsum) =

⎧
⎪⎨
⎪⎩

dmI,2M+mX (rsum) + MulNdlαS + M|Mul − Ndl|, rsum ≤ mI
d|Mul−Ndl|,M (rsum − mI) + MulNdlαS, mI ≤ rsum ≤ mX

αSdMul,Ndl

(
rsum−mX
WαS

)
, mX ≤ rsum ≤ mX + mIWαS

where mI = min{Mul,Ndl},mX = max{Mul,Ndl}.

Proof The details of the proof can be found in Appendix 7.

The achievable DMT of (M,Ndl,Mul,M) without CSIT is given in the following lemma.

Lemma 10 Consider the case in Lemma 9 under no-CSIT assumption, the achievable DMT at multiplexing gain pair
(rdl, rul) is

dNo-CSIT(M,Ndl,Mul,M) (rdl, rul) = min
{
dM,Ndl(rdl), dMul,M(rul), dNo-CSITsum(M,Ndl,Mul,M)(rsum)

}
.

where dNo-CSITsum(M,Ndl,Mul,M)(rsum) is given as follows: if Mul≥2(Ndl − 1),

• whenW ≤ Mul−Ndl+1
M+Mul+Ndl−1 ,

dCSITsum(M,Ndl,Mul,M)(rsum) =
{

αSdMul,Ndl

(
rsum
WαS

)
+ Ndl(Mul + M), rsum ≤ NdlWαS

dNdl,M+Mul (rsum − NdlWαS) , NdlWαS ≤ rsum ≤ Ndl(1 + WαS)

• whenW≥ Mul+Ndl−1
M+Mul−Ndl+1 ,

dNo-CSIT
sum(M,Ndl,Mul,M)(rsum) =

{
dNdl,M+Mul (rsum) + MulNdlαS, rsum ≤ Ndl

αSdMul,Ndl

(
rsum−Ndl
WαS

)
, Ndl ≤ rsum ≤ Ndl(1 + WαS)

And if Ndl≥Mul, and Mul ≤ 2:

• whenW ≤ Ndl−Mul+1
M+Mul+Ndl−1 ,

dNo-CSIT
sum(M,Ndl,Mul,M)(rsum) =

⎧
⎪⎨
⎪⎩

αSdMul,Ndl

(
rsum
WαS

)
+ Ndl(Mul + M), rsum ≤ MulWαS

dMul,M+Ndl (rsum − MulWαS) + M(Ndl − Mul),MulWαS ≤ rsum ≤ Mul(1 + WαS)
dNdl−Mul,M (rsum − Mul(1 + WαS)) , Mul(1 + WαS) ≤ rsum ≤ Ndl + MulWαS
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• whenW ∈
[

Mul+Ndl−1
M+Ndl−Mul+1 ,

Ndl−Mul+1
M+Ndl−Mul−1

]
,

dNo-CSIT
sum(M,Ndl,Mul,M)(rsum) =

⎧
⎪⎨
⎪⎩

dMul,M+Ndl (rsum) + MulNdlαS + M(Ndl − Mul), rsum ≤ Mul

αSdMul,Ndl

(
rsum−Mul

WαS

)
+ M(Ndl − Mul), Mul ≤ rsum ≤ Mul(1 + WαS)

dNdl−Mul,M (rsum − Mul(1 + WαS)) , Mul(1 + WαS) ≤ rsum ≤ Ndl + MulWαS

• whenW≥ Mul+Ndl−1
M−Ndl+Mul+1 ,

dCSITsum(M,Ndl,Mul,M)(rsum) =

⎧
⎪⎨
⎪⎩

dMul,M+Ndl (rsum) + MulNdlαS + M(Ndl − Mul), rsum ≤ Mul
dNdl−Mul,M (rsum − Mul)) + MulNdlαS, Mul ≤ rsum ≤ Ndl

αSdMul,Ndl

(
rsum−Ndl
WαS

)
, Ndl ≤ rsum ≤ Ndl + MulWαS

Proof The results can be derived by following the similar steps in the proof of Lemma 9.

Appendix 7
Proof of Lemma 9
As demonstrated in the proof of Corollary 6, we use gradient descent method to find the local optimum value for
each value of the multiplexing gain which is equivalent to global optimum in the convex optimization problem. This
method is also used in [21] to derive the DMT for MIMO Z-interference channel for some special cases. In our setting
of (M,Ndl,Mul,M) with αdl = αul = αI = 1 and rdl = rul = r, we can simplify the objective function in Lemma 3 given
sum multiplexing gain. We will first give the analysis when Mul≥Ndl. By substituting ν′

l = Wνl in (27), we can express
the objective function as

dCSITsum =min
Ndl∑
k=1

(2M + Mul + Ndl + 1 − 2k)θk + 1
W

Ndl∑
l=1

(Mul + Ndl + 1 − 2l) ν′
l

+
Ndl∑
i=1

(M + Ndl + 1 − 2i)μi +
Mul∑
j=1

(M + Mul + 1 − 2j)σj − 2MNdl

+
Ndl∑
i=1

Ndl−i∑
k=1

(1 − μi − θk)
+ +

Mul∑
j=1

min{Mul−j,Ndl}∑
k=1

(1 − σj − θk)
+,

Subject to
Ndl∑
i=1

(1 − μi)
+ +

Mul∑
j=1

(1 − σj)
+ +

Ndl∑
k=1

(1 − θk)
+ +

Ndl∑
l=1

(WαS − ν′
l)

+ < rsum;

0 ≤ μ1 ≤ · · · ≤ μNdl ; 0 ≤ σ1 ≤ · · · ≤ σMul ; 0 ≤ θ1 ≤ · · · ≤ θN1 ; 0 ≤ ν′
1 ≤ · · · ≤ ν′

Ndl ;
μi + θk≥1, ∀(i + k)≥Ndl + 1;
σj + θk≥1, ∀(j + k)≥Mul + 1.

(127)

Next, we differentiate the objective function in (127) with respect to different variables,

∂dCSITsum
∂ν′

l
= 1

W
(Mul + Ndl + 1 − 2l), l ≤ Ndl; (128)

∂dCSITsum
∂θk

∣∣∣∣
μi=σj=1,∀i,j

= 2M + Mul + Ndl + 1 − 2k, k ≤ Ndl; (129)

∂dCSITsum
∂μ1

∣∣∣∣
θk=1,∀k

= M + Ndl − 1 <
∂dCSITsum

∂θk
, ∀k; (130)

∂dCSITsum
∂σ1

∣∣∣∣
θk=1,∀k

= M + Mul − 1 <
∂dCSITsum

∂θk
, ∀k. (131)

Since the slope of the objective function decreases with the increasing index of μi, σj, it suffices to only consider the
decay of the function with μ1, σ1. We can also easily verify that the decay slopes of μ1 and σ1 are smaller than that of
θk , ∀k.
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Case 1
In this case, ν′

l has the steepest descent, i.e.,
∂dCSITsum
∂ν′

Ndl
≥ ∂dCSITsum

∂θ1
.

Thus, whenW ≤ Mul−Ndl+1
2M+Mul+Ndl−1 , for (l−1)WαS ≤ rsum ≤

lWαS , ∀l, the steepest descent of the objective function
is along the decreasing value of ν′

l with μi = σj = θk =
1,∀i, j, k. Now, the optimization problem becomes

dCSITsum =min
1
W

Ndl∑
l=1

(Mul + Ndl + 1 − 2l)ν′
l

+ MulNdl + M(Mul + Ndl),

Subject to
Ndl∑
l=1

(WαS − ν′
l)

+ ≤ rsum;

0 ≤ ν′
1 · · · ≤ ν′

Ndl .

Invoking Lemma 6, the solution to the optimization
problem above is

dCSITBsum
= αSdMul,Ndl

(
rsum
WαS

)
+ MulNdl + M(Mul + Ndl),

∀rsum ≤ NdlWαS.

If rsum≥NdlWαS, it can be implied from the solution
above that ν′

l = 0, ∀l are in the optimal solution. We
can see that now the steepest descent of the objective
function in (127) is along the decreasing value of θk with
μi = σj = 1,∀i, j, and the corresponding optimization
function becomes

dCSITsum =min
Ndl∑
k=1

(2M + Mul + Ndl + 1 − 2k)θk

+ MMul − MNdl

Subject to
Ndl∑
k=1

(1 − θk)
+ ≤ rsum − NdlWαS;

0 ≤ θ1 ≤ · · · ≤ θNdl .
(132)

Again, invoking Lemma 6, we have

dCSITBsum
= dNdl,2M+Mul(rsum − NdlWαS) + M(Mul − Ndl),
NdlWαS ≤ rsum ≤ NdlWαS + Ndl.

Likewise, when rs≥NdlWαS + Ndl, θk = 0 ∀k, the
optimization problem is given as

dCSITsum =min
Ndl∑
i=1

(M + Ndl + 1 − 2i)μi

+
Mul∑
j=1

(M + Mul + 1 − 2j)σj

− 2MNdl +
Ndl∑
i=1

Ndl−i∑
k=1

(1 − μi)
+ +

Mul∑
j=1

min{Mul−j,Ndl}∑
k=1

(1 − σj)
+;

Subject to
Ndl∑
i=1

(1 − μi)
+ +

Mul∑
j=1

(1 − σj)
+ ≤ rsum

− NdlWαS − Ndl;
0 ≤ μ1 ≤ · · · ≤ μNdl ; 0 ≤ σ1 ≤ · · · ≤ σMul ;
μi≥1, ∀i + k≥Ndl + 1,∀k
σj≥1,∀j + k≥Mul + 1,∀k.

(133)

Apparently, to minimize the objective function above, we
should let μi = 1,∀i and σj = 1,∀j≥Mul −Ndl + 1. Hence,
the last term in (133) can be rewritten as

Mul∑
j=1

min{Mul−j,Ndl}∑
k=1

(1 − σj)
+

=
Mul−Ndl∑

j=1
min{Mul − j,Ndl}(1 − σj)

+

=
Mul−Ndl∑

j=1
Ndl(1 − σj)

+.

Combining the results above, the objective function in
(133) reduces to

dCSITsum = min
Mul−Ndl∑

j=1
(M + Mul + 1 − 2j)σj

+ Ndl(Ndl − Mul) +
Mul−Ndl∑

j=1
Ndl(1 − σj)

+

=
Mul−Ndl∑

j=1
(M + Mul − Ndl + 1 − 2j)σj

Subject to
Mul−Ndl∑

j=1
(1 − σj)

+ ≤ rsum − NdlWαS − Ndl,

0 ≤ σ1 ≤ · · · ≤ σMul−Ndl

(134)
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Thus, the optimization problem above has the following
solution

dCSITBsum
= dMul−Ndl,M (rsum − Ndl(WαS + 1)) ,
Ndl(WαS + 1) ≤ rsum ≤ NdlWαS + Mul.

Case 2
In this case, θk has the steepest descent, i.e.,

∂dCSITsum
∂θNdl

≥ ∂dCSITsum
∂ν′

1
.

Thus when W≥ Mul+Ndl−1
2M+Mul−Ndl+1 , for k − 1 ≤ rsum ≤ k, the

objective function in (127) decays fastest first along the
decreasing values of θk withμi = σj = 1, ν′

l = WαS, ∀i, j, l.
The optimization problem becomes

dCSITsum =min
Ndl∑
k=1

(2M + Mul + Ndl + 1 − 2k)θk

+ MulNdlαS + M(Mul − Ndl),

Subject to
Ndl∑
k=1

(1 − θk)
+ ≤ rsum,

0 ≤ θ1 ≤ · · · ≤ θNdl .
(135)

Invoking Lemma 6, the solution to the optimization prob-
lem above is

dCSITBsum
= dNdl,2M+Mul(rsum) + MulNdlαS

+ M(Mul − Ndl), ∀rsum ≤ Ndl.

If rsum≥Ndl, the optimal solution has θk = 0 ∀k. We
rewrite the objective function as

dCSITsum =min
Ndl∑
i=1

(M + Ndl + 1 − 2i)μi

+
Mul∑
j=1

(M + Mul + 1 − 2j)σj − 2MNdl

+ 1
W

Ndl∑
l=1

(Mul + Ndl + 1 − 2l)ν′
l

+
Ndl∑
i=1

Ndl−i∑
k=1

(1 − μi)
+ +

Mul∑
j=1

min{Mul−j,Ndl}∑
k=1

(1 − σj)
+,

Subject to
Ndl∑
i=1

(1 − μi)
+ +

Mul∑
j=1

(1 − σj)
+

+
Ndl∑
l=1

(WαS − ν′
l)

+ ≤ rsum − Ndl,

0 ≤ μ1 ≤ · · · ≤ μNdl ; 0 ≤ σ1 ≤ · · · ≤ σMul ;
0 ≤ ν′

1 ≤ · · · ≤ ν′
Ndl ,

μi≥1, ∀(i + k)≥Ndl + 1,∀k,
σj≥1, ∀(j + k)≥Mul + 1, ∀k.

(136)

Again, in order to minimize the objective function above,
it is clear that μi = 1,∀i and σj = 1,∀j≥Mul − Ndl + 1.
Hence, the objective function in (136) reduces to

dCSITsum = min
Mul−Ndl∑

j=1
(M + Mul − Ndl + 1 − 2j)σj

+ 1
W

Ndl∑
l=1

(Mul + Ndl + 1 − 2l)ν′
l

Subject to
Mul−Ndl∑

j=1
(1 − σj)

+ +
Ndl∑
l=1

(WαS − ν′
l)

+ ≤ rsum − Ndl,

0 ≤ σ1 ≤ · · · ≤ σMul−Ndl , 0 ≤ ν′
1 ≤ · · · ≤ ν′

Ndl .
(137)

Now, we have two subcases for the optimization prob-
lem in (137) when rsum≥Ndl.
Subcase A: Let ν′

l have steeper descent than σ1, i.e.,
∂dCSITsum
∂ν′

Ndl
≥ ∂dCSITsum

∂σ1
. Thus, when W ≤ Mul−Ndl+1

M+Mul−Ndl−1 , the steep-
est descent of the objective function in (137) is along the
decreasing value of ν′

l with σj = 1,∀j. Thus the soluti on
problem above is

dCSITBsum
= αSdMul,Ndl

(
rsum − Ndl

WαS

)
+ M(Mul − Ndl),

Ndl ≤ rsum ≤ Ndl(1 + WαS).

It is obvious that when r≥Ndl(1 + WαS), ν′
l = 0,∀l. We

can further simplify the optimization problem in (137) as

dCSITsum = min
Mul−Ndl∑

j=1
(M + Mul − Ndl + 1 − 2j)σj

Subject to
Mul−Ndl∑

j=1
(1 − σj)

+ ≤ rsum − Ndl(1 + WαS),

0 ≤ σ1 ≤ · · · ≤ σMul−Ndl

(138)

Hence, the solution to the optimization problem above
is

dCSITBsum
= dMul−Ndl,M (rsum − Ndl(WαS + 1)) ,
Ndl(WαS + 1) ≤ rsum ≤ NdlWαS + Mul.

Subcase B: Let σj have steeper descent than ν′
1,

i.e., ∂dCSITsum
∂σMul−Ndl

≥ ∂dCSITsum
∂ν′

1
. Thus, when W≥ Mul+Ndl−1

M−Mul+Ndl+1 , the
steepest descent of the objective function in (137) is along
the decreasing value of σj with ν′

l = WαS, ∀l. Now, the
solution is given as

dCSITBsum
= dMul−Ndl,M (rsum − Ndl) + MulNdlαS,
Ndl ≤ rsum ≤ Mul.
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The result above implies that when r≥Mul, σj = 0,∀j;
hence, the optimization problem in (137) further reduces
to

dCSITsum =min
1
W

Ndl∑
l=1

(Mul + Ndl + 1 − 2l)ν′
l

Subject to
Ndl∑
l=1

(WαS − ν′
l)

+ ≤ rsum − Mul,

0 ≤ ν′
1 · · · ≤ ν′

Ndl .

Consequently, we have

dCSITBsum
= αSdMul,Ndl

(
rsum − Mul

WαS

)
, Mul ≤ rsum

≤ Mul + NdlWαS.

The proof will be complete with the analysis for Ndl >

Mul, which can be derived following the same argument
and thus is skipped to avoid redundancy. By combining all
the cases above, we will obtain the results in Lemma 9.
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