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Abstract

In this article, we discuss the theoretical background for diffusion weighted imaging and diffusion 

tensor imaging. Molecular diffusion is a random process involving thermal Brownian motion. In 

biological tissues, the underlying microstructures restrict the diffusion of water molecules, making 

diffusion directionally dependent. Water diffusion in tissue is mathematically characterized by the 

diffusion tensor, the elements of which contain information about the magnitude and direction of 

diffusion and is a function of the coordinate system. Thus, it is possible to generate contrast in 

tissue based primarily on diffusion effects. Expressing diffusion in terms of the measured diffusion 

coefficient (eigenvalue) in any one direction can lead to errors. Nowhere is this more evident than 

in white matter, due to the preferential orientation of myelin fibers. The directional dependency is 

removed by diagonalization of the diffusion tensor, which then yields a set of three eigenvalues 

and eigenvectors, representing the magnitude and direction of the three orthogonal axes of the 

diffusion ellipsoid, respectively. For example, the eigenvalue corresponding to the eigenvector 

along the long axis of the fiber corresponds qualitatively to diffusion with least restriction. 

Determination of the principal values of the diffusion tensor and various anisotropic indices 

provides structural information. We review the use of diffusion measurements using the modified 

Stejskal–Tanner diffusion equation. The anisotropy is analyzed by decomposing the diffusion 

tensor based on symmetrical properties describing the geometry of diffusion tensor. We further 

describe diffusion tensor properties in visualizing fiber tract organization of the human brain.
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 INTRODUCTION

Diffusion of individual molecules in a homogeneous environment such as water is 

characterized by Brownian motion, based on random motion initiated by thermal energy (1). 

Nuclear magnetic resonance has successfully been used to observe translational Brownian 

motion among molecules, in terms of a variation in the echo amplitude in an observed 

signal. Although diffusion can be an undesired result in conventional T1-and T2-weighted 

magnetic resonance imaging (MRI), one can obtain images in which the diffusion of water 

molecules can be the dominant source of contrast. In conventional spin–echo imaging 

methods, the effect of diffusion on the signal amplitude is negligible due to its dependence 

on echo time (TE) as TE
3 (2–4). However, signal sensitivity to diffusion alone can be 

accentuated with modifications to spin–echo techniques, as described in a classic paper by 

Stejskal and Tanner (5). This method is known as diffusion weighted imaging (DWI), and 

has since been used extensively in clinical settings and serves as a gold standard in the early 

detection of acute stroke (6–8). Further, it has also been used to detect and characterize 

clinically relevant lesions in multiple sclerosis patients (9–11). Diffusion of water molecules 

is greatly influenced by the structural environment of the tissue (12, 13). For example, the 

tubular shape of axonal pathway greatly facilitates motion of water molecules parallel to the 

long axes of tubes but hinders motion along the direction perpendicular to the tube. Thus, 

the tracts based on diffusion of water molecules follow a path parallel to axonal pathways. 

The resulting anisotropy in the measured diffusion of water molecules reflects fiber tract 

orientation with respect to a quantifiable coordinate system. In this coordinate system, the 

diffusion coefficient corresponding to the largest eigenvalue is projected along the direction 

of least restriction. Therefore, the diffusion-sensitive imaging technique provides an indirect 

means of noninvasively evaluating axonal pathways (14–16).

As Brownian motion leads to movement of water molecules in multiple directions 

simultaneously, it forms a complex projection on Cartesian axes. The relationship between 

the properties of the driving force that generates diffusion of water molecules and the 

complex pattern of their movement in the tissue can be described by a tensor, also called 

diffusion tensor. The diffusion tensor is used to represent diffusion in a graphical form. Its 

elements contain information about the magnitude and direction of diffusion and are a 

function of the coordinate system in which it is described. The experimental measurement 

yields elements of a diffusion tensor with respect to a measurement frame, which is called a 

“laboratory axis frame” (LAF). Measured quantities, in this case, rely on a specific 

orientation of molecules with the laboratory axes system. To describe molecular motion that 

is independent of the frame of reference, the results must be transformed to a frame fixed 

with respect to the fiber, called the principal axis frame (PAF). The transformation from 

LAF to PAF is achieved using a set of Euler angle rotations as described in Appendix A. In 

PAF system, the off-diagonal terms do not exist and the tensor is reduced only to its diagonal 

elements, which are independent of any coordinate system of measurement. The 

diagonalization procedure transforms the LAF into PAF, and the transformation matrix 

provides projections of original elements of diffusion tensor onto an orthogonal PAF. The 

result of diagonalization provides two sets of information: 1) eigenvectors that contain all of 

the spatial information of diffusion and 2) a transformation matrix with eigenvalues, which 
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contains complete information about the magnitude of diffusion, anisotropy, and skewness, 

independent of the reference frame in which measurements were made (17). The 

diagonalization scheme is developed using two different approaches. In the first, all six 

elements of diffusion tensor are used. In the second, cylindrical symmetry is assumed, 

reducing the number of required elements to four (18–21).

 MRI SIGNAL IN THE PRESENCE OF DIFFUSION

In MRI, signal attenuation in an image pixel is due to combined effects of diffusion and 

other macroscopic processes such as flow and relaxation. The effect of each of these 

processes can be calculated by solving the Bloch equation (2). Spin dephasing due to 

relaxation effects are inherent to the tissue and arise solely from spin–spin interactions. 

Flow-related effects arise from the bulk transport of magnetization and result in spin 

dephasing when flow takes place during the active magnetic field gradients. On a 

microscopic scale, spatial variation in the concentration of spins occurs because of Brownian 

motion. In a system of freely diffusing molecules, in a homogeneous medium, where 

diffusion is isotropic, the continuity equation for molecular transport is given by (22):

(1)

In eq. 1, ∇2 is the three-dimensional (3D) Laplacian operator and D is the diffusion 

coefficient. Here, the density or concentration of particles, ρ is the probability of finding a 

particle in a certain spatial location. The above equation is commonly referred to as the 

“diffusion equation,” as the differential form of equation gives the probability of finding a 

particle or a molecule at a time t at a position  from its initial location . With the initial 

condition that the concentration of particles follows Dirac's delta function, 

, the solution of eq. 1 is a Gaussian distribution of the form

(2)

The above equation is the fundamental solution of the diffusion equation describing free or 

unrestricted diffusion for isotropic diffusion defined by coefficient D. It allows the 

calculation of the mean square value of molecular displacement during the observation time, 

t.

(3a)

The symbol < > in Eq.(3a) describes an average value. The above relation is referred to as 

Einstein's equation of diffusion, where diffusion, D, relates the random spatial variation 

(displacement: ξ) of spins to the density (density: ρ) on a MRI time scale as (22):
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(3b)

Here, t is the measurement time and N is the dimensionality of space in which diffusion is 

measured. Diffusion theory provides an estimate of the root mean square (RMS) 

displacement of a freely diffusing molecule over time τ in one direction to be . The 

diffusing mass flows in the direction of decreasing concentration, which is indicated by 

minus sign in eq. 1. In a typical imaging setup where N = 1, with a measurement time of 20–

60 ms, the mean displacement of water molecules (D ~ 2.95 × 10−3 mm2/s) is on the order 

of 11–19 μm, which is further reduced by a factor of two in tissue. For example, in cerebral 

gray matter (D ~ 0.74 × 10−3 mm2/s), the mean displacement of water molecules is 5–10 μm 

(23). With a mean cellular dimension of the order of 20–30 μm, such a displacement among 

spins within each pixel does not significantly alter phase to reduce overall tissue proton 

signal in conventional imaging techniques. Therefore, use of strong magnetic field gradients 

is essential to increase the effects of diffusion on the signal.

 DIFFUSION TENSOR

In an anisotropic medium, diffusion in eq. 1 takes the following tensorial form:

(4)

where D is expressed as a tensor, whose elements provide orientational information in 

biological tissue. Due to the symmetric nature of diffusion in 3D space, the diffusion 

coefficient is limited to elements of a symmetric tensor. It has a total of six degrees of 

freedom and should be completely constructed with a 3 × 3 symmetric matrix. The signal 

attenuation due to flow, diffusion, and relaxation is obtained by solving the Bloch equation 

by including these effects. The time dependence of transverse magnetization, m, during the 

application of a gradient, g, is defined as (2, 3):

(5)

where ω0 is the Larmor angular frequency, γ is the gyromagnetic ratio, g is the amplitude of 

the gradient, T2 is the transverse spin–spin relaxation time, and ∇ is the Laplacian operator. 

The spin motion is represented in the displacement r, which can be expanded using static 

(r0) and first-order velocity (ν) terms as r ≈ r0 + νt.

In a rotating frame where the effects of Larmor frequency can be ignored, the above 

equation takes the form
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(6)

The transverse magnetization, mxy including flow with velocity ν, relaxation and diffusion is 

a solution to above eq. 6 and is given by (24–26):

(7)

where TE is the time between the center of excitation radio frequency (RF) pulse and the 

center of k-space where signal is maximum. As can be seen from eq. 7, the flow and 

diffusion terms depend on TE as TE2 and TE3, respectively (2–4). Carr and Purcell extended 

the idea by using multiple refocusing pulses in which diffusion effects were made 

independent of refocusing RF pulse spacing (26). Consequently, diffusion effects can be 

made negligible under a constant gradient and by increasing the number of echoes.

The aforementioned method of imaging was not very useful for studying isolated diffusion 

effects, because T2 effects contaminate the signal during the TE period. Hence, decoupling 

of diffusion from relaxation effects improves data quality. Stejskal and Tanner used pulsed 

gradients to analyze the signal dependence of diffusion effects and proposed decoupling of 

diffusion effects from T2 effects. With a pulsed gradient, the solution for transverse 

magnetization mxy is given by (3, 5):

(8)

where Δ is the separation between gradient leading edges, δ is the duration of the gradient, 

and g is the amplitude as described in Fig. 1(a).

To conveniently express parameters related to diffusion in terms of measurable quantities 

using a simple bipolar gradient waveform, the b-factor is defined as:

(9)

The quantity b with units of s/m2 serves as a measure of diffusion sensitivity that 

summarizes the influence of gradients on diffusion-weighted images (27, 28). In a tissue, 

movement of water molecules are restricted by cellular boundaries and the magnitude of 

diffusion is less when molecules are not restricted. The measured diffusion is called apparent 

diffusion coefficient (ADC). In the absence of noise, due to round-off errors, the choice of b-

factor does not matter when calculating ADC. It is important to note that the signal loss due 

to intravoxel dephasing is caused by both diffusion and perfusion of water molecules. 

Dephasing from perfusion is generally completed at relatively low values of the b-factor. 

SHETTY et al. Page 5

Concepts Magn Reson Part A Bridg Educ Res. Author manuscript; available in PMC 2016 July 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



This is largely due to bulk coherent flow (29–31). Thus, signal loss from diffusion can be 

separated from perfusion or flow by working at sufficiently large values of b. However, if the 

b-factor is too large, this signal may drop below the system noise level due to high signal 

attenuation. If it is too low, then diffusion induced signal attenuation is comparable to 

variance of the DW data resulting in underestimation of ADC. For example, diffusion 

induced signal is attenuated by a factor of e−bDadc. Therefore, if the product bDadc = 0.85, 

then the signal drops by a factor e−1.0 (= 37%); with bDadc = 0.85, it drops by a factor of 

43% of the T2-weighted signal. Due to the wide range of Dadc in white matter, it is difficult 

to precisely define optimum b-values. Past experience in brain diffusion imaging has shown 

that an optimum b-factor is chosen so that the product (bD) is nearly 0.85, which 

corresponds to a drop of 43% of T2-weighted signal. For example, this corresponds to a b-

factor of 1,200–1,000 s/mm2 for a Dav = 0.7–0.85 × 10−3mm2/s. Most clinical studies have 

used a fixed value of 1,000 s/mm2.

In treating effects of gradient pulses on diffusion, bulk flow and relaxation effects can be 

combined to rewrite the transverse magnetization as a function of gradients. Using eq. 8 and 

the definition of b, the signal amplitude within each pixel in an image is proportional to the 

transverse magnetization integrated within the excited volume and can be written as;

(10)

For the case of random spin motion in an isotropic and homogeneous medium, combining 

eqs. (8–10), on a logarithmic scale the diffusion coefficient can be expressed as;

(11)

where S(TE)|b=0 represents the signal at the location r, in the presence of only the imaging 

gradients and RF pulses, and S (g, TE)|b represents the signal during the presence of pulsed 

diffusion magnetic field gradients and imaging gradients. Typically, gradient amplitudes are 

altered such that a fixed b-factor is obtained along at least three orthogonal directions to 

obtain average diffusion.

A fundamental description of diffusion assumes that the probability distribution function of 

water in any brain voxel is Gaussian for each of three orthogonal planes. Signal decay is 

represented by a monoexponential function. As the motion of water molecule becomes 

complex within cells and membranes, the diffusion probability distribution deviates from a 

Gaussian form. This deviation can be quantified and defined as excess kurtosis. Under this 

condition, the deviation from Gaussianity is expressed through a modified relationship that 

includes both mono- and nonmonoexponential decay functions (32–34), expressed as;
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(12)

In eq. 12, the higher order terms in b are neglected. The term K, a dimensionless parameter, 

is called the kurtosis coefficient. It tells us if the diffusion is more sharply or less sharply 

peaked than a Gaussian diffusion. Gaussian diffusion corresponds to K = 0. It is possible to 

directly estimate the diffusion kurtosis by acquiring three DWI measurements for different 

b-values (including b = 0 unweighted image). The method is known as diffusion kurtosis 

imaging (32–34). Due to the positive contribution of the second term, there is a limited range 

of b-factors. Jensen et al. (33) have found that to obtain the diffusional kurtosis with a 

reasonable degree of precision, b values somewhat larger than those usually used in DWI are 

necessary, so that the departure from linearity is clearly apparent. In the brain, maximum b-

values of about 2,000 s/mm2 are sufficient. For low b-values, as are used in most diffusion 

tensor imaging (DTI) studies, it suffices to treat diffusion assuming Gaussianity.

 DIFFUSION OF WATER IN NONISOTROPIC MEDIUM

In tissues, diffusion is largely anisotropic. This directional anisotropy may be exploited by 

sensitizing gradients along a preferential direction to obtain information about diffusion 

along that direction. During the measurement process, components transverse to the 

preferred direction will be undetected and this result may affect the measured quantity. In 

such cases, the anisotropic diffusion assumes the tensorial form given by (28);

(13)

The diagonal elements of diffusion tensor (i.e., Dxx, Dyy, and Dzz) correspond to the 

diffusion coefficients estimated with gradients applied along the x, y, and z directions of the 

axes frame fixed with the scanner, also called the LAF. The off-diagonal elements (i.e., Dxy, 

Dyx, Dyz, Dzy, Dxz, Dzx) represent the correlation between diffusion along the respective 

paired axes of the LAF. The correlation between x and y is the same as the correlation 

between y and x. Therefore, the matrix is symmetric, that is, Dxy = Dyx, Dxz = Dzx, and Dyz 

= Dzy. Also, the quantity bij represents the elements of the b-matrix of row i and column j, 
and is related to ijth direction (i = x, y, and z; j = x, y, and z) (35–38). The exact expression 

depends on gradient shapes used in the measurement. Using rectangular bipolar pulse 

gradients of the form described by Stejskal and Tanner, the gradient-time integral is 

expressed as (5):

(14)
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In practice, however, gradient waveforms are never rectangular but with a finite rise and fall 

time to reach the maximum amplitude. In symmetric trapezoidal gradient waveform as 

described in Fig. 1(b), with a rise and fall time of ε, bij takes the following form (21, 23):

(15)

One can use different forms of gradients to produce a similar effect to accentuate diffusion 

related signal change (39–41). Table 1 describes various gradient schemes and 

corresponding effective b-values used in this measurement.

Equation 13 suggests that, for anisotropic diffusion, diffusion is directionally dependent and 

the calculation of the b-matrix is considerably more complex. The directional dependency in 

eq. 13 can be resolved by measuring the diffusion coefficient by sensitizing diffusion 

gradient in each direction. For example, using orthogonal x, y, and z gradients, one can 

estimate diffusion coefficients along the x, y, and z directions. Measured values represent the 

diagonal elements of the diffusion tensor.

The measured diffusion tensor matrix elements are diagonal if the direction of diffusion is 

collinear with the coordinate system. However, in reality, this is never the case. For example, 

if the diffusion direction is rotated with the coordinate system in which measurements are 

made, the resulting diffusion matrix will have elements that are diagonal and off-diagonal. 

The off-diagonal elements of Dlab provide the correlation of random motions between x, y, 

and z directions. The result reflects the dependency on the coordinate system in which 

measurements are performed. It is best to always define the tensor elements in a frame of 

reference fixed, for example, with the fiber tracts. A simplified method involves 

measurement of diffusion along each direction in a frame fixed with respect to the laboratory 

(or scanner) (x,y,z). This is possible by sensitizing diffusion gradients along each of these 

axes separately and measuring the diffusion coefficient along that direction. The 

measurement reflects the diffusion coefficients representing elements of the diffusion (Dlab) 

tensor in the laboratory frame where gradient values and directions are known. To estimate 

the diffusion along the local fiber tract, a frame is fixed with respect to fiber called PAF and 

is represented by (x′,y′,z′). The elements of diffusion tensor in the PAF are called DPAF. 

These elements of DPAF are related to the experimentally measured elements of Dlab through 

a series of rotations that transform the elements from one frame of reference to the other. In 

the fiber PAF frame, elements of the diffusion tensor are diagonal.

 GEOMETRIC REPRESENTATION OF THE DIFFUSION TENSOR

An interesting and useful geometric representation can be formed based on the anisotropic 

nature of the diffusion tensor. The surface of the tensor ellipsoid describes the basic 

structural arrangement of the surroundings in which water is diffusing. For example, the 

shape of diffusion tensor ellipsoid can be described in terms of eigenvalues and eigenvectors. 

The Gaussian probability distribution function in eq. 2 can be generalized to the case of 

anisotropic diffusion by introducing the second-order diffusion tensor D in the eq. 1 to yield
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(16)

Here,  is the probability that a particle initially at r = 0 is found at a location r (x,y,z) 

at a later time τ, “T” is the transpose of r-vector. When the exponent is chosen to be 

constant, the surfaces of  are concentric spheres. When one chooses rT (2Dτ)−1 r = 

1, we get

(17)

The radius of the diffusion sphere, , is also the standard deviation of probability 

function , σ, which is the mean displacement eq. 2 obtained by Einstein's formula.

There is one-to-one correspondence between the symmetric tensor Dij and quadric surfaces 

of the form (42)

(18)

The principal axes of this surface are clearly the same as the principal axes of the tensor 

Di′ j′. In the PAF system corresponding to the coordinates (x′,y′,z′), eq. 18 takes the form 

(12)

(19)

The principal eigenvalues (λ1,λ2,λ3) are defined such that λ3 ≥ λ2 ≥ λ3. If λ1,λ2,λ3 are all 

positive, then the surface (eq. 16) is an ellipsoid, called a tensor ellipsoid, with semiaxes of 

length , , and . The magnitude of diffusion in different directions, 

represented by corresponding eigenvalues, are scaled such that the quantity  represents 

the RMS displacement  along the principal axes (x′,y′,z′) during a measurement time τ, 

and eq. 19 is dimensionless.

The eigenvalues and eigenvectors describe the shape of the tensor ellipsoid. To illustrate 

geometric measures, using the definition of diffusion tensor as described in Appendix B, the 

inverse transformation from an eigensystem onto a tensor is given by:

(20)
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where, [êi] are considered normalized eigenvectors corresponding to [λi]. In our case, 

eigenvectors [ê1ê2ê3] represent PAF [x′,y′,z′]. In the case of a symmetric tensor, the above 

equation simplifies to

(21)

Here, eigenvectors (ê1ê2ê3) form an orthonormal basis. The combination of eigenvalues in 

the PAF provides not only the estimation of various anisotropies but also the shape of the 

diffusion ellipsoid. The diffusion ellipsoid is divided into three basic shapes:

1. Linear case (λ3 ≥ λ2 ≈ λ1), where diffusion is mainly in the direction of 

the eigenvector of the largest eigenvalue:

(22a)

2. Planar case (λ3 ≈ λ2 ≥ λ1), where diffusion is mainly in the plane spanned 

by the two eigenvectors corresponding to the two largest eigenvalues:

(22b)

3. Spherical case (λ3 ≈ λ2 ≈ λ1), where diffusion is isotropic in all 

directions:

(22c)

A general diffusion tensor can be written as a combination of these three cases.

Expanding the diffusion tensor D using these three cases gives:

(23)

where (λ3 – λ2), (λ2 – λ1) and λ1 are the coordinates of D in the tensor basis (Dl Dp Ds) The 

above definition can be applied to any measurement of diffusion to see how close the 

diffusion tensor is to the cases of line, plane or sphere. These parameters are represented by 

the components of the matrix representing the principal axes frame (39, 42).

(24a)
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where

The coefficients Clin, Cplan, and Csph represent linear, planar, and spherical shapes, 

respectively. For planar and spherical shapes, scaling factors of 2 and 3 have been used, 

respectively, so that each coefficient independently lies in the range (0–1) and Clin + Cplan + 

Csph = 1. In Fig. 2, a mathematical object shape based on the set of three eigenvectors 

corresponding to eigenvalues λ1, λ2, and λ3 is described. The normalization is performed 

using the trace. However, another useful measure in this context is to normalize the sum of 

the measurements to 1 using the magnitude of the largest eigenvalue of the diffusion tensor. 

The corresponding shapes are; ; ; and .

This model-based approach to measuring diffusion is called DTI. The parallel diffusivity 

measure (diffusion parallel to the long axis) is equal to the largest eigenvalue. The 

perpendicular diffusivity measure, also called radial diffusivity, is equal to the average of the 

two smaller eigenvalues. In DTI of the brain, these measures can be interpreted as diffusivity 

parallel and perpendicular to the fiber tract.

 DIFFUSION SAMPLING SCHEME

The original description considers diffusion to be scalar and isotropic with no preference for 

direction. However, in biological tissue, cell boundaries, membranes, and myelin fibers, 

which form the underlying micro-structure of biological tissue, restrict Brownian diffusion 

of water molecules. The average diffusion length over time is shorter in a restricted space 

compared to a restriction-free space. Therefore, the experimentally observed diffusion 

coefficient in tissue is defined with ADC. The complete determination of diffusion 

characteristics of tissues under these conditions requires the determination of the full 

diffusion tensor of the ADC.

To estimate components of the PAF diffusion tensor, a total of six independent elements of 

the tensor in the laboratory frame are needed, in which the diagonal elements are measured 

by applying gradients along three orthogonal axes in the laboratory frame. Introducing gk = 

g·rk as the gradient vector along the direction k and a product of magnitude of gradient and 

the unit vector along the direction k, eq. 13 can be written as (28, 40, 41):

(25)

where rk(T) is the transpose of vector rk. The left hand side represents the natural logarithm 

of the ratio of signal with a gradient sensitized along the kth direction and signal without any 

gradients. We will represent this quantity by Sk. Six directions are chosen, in which three 

represent orthogonal directions and the other three represent directions obtained from a 

SHETTY et al. Page 11

Concepts Magn Reson Part A Bridg Educ Res. Author manuscript; available in PMC 2016 July 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



combination of any two orthogonal directions. In all, six unit vectors representing six 

noncollinear directions, namely;

(26)

are used. Of these six measurements, three measurements are along the orthogonal 

directions (r1,r2,r3) and provide the ADC along those directions. However, off-diagonal 

terms are determined by solving a system of linear equations that contain diffusion 

coefficients obtained by applying gradients along the r4, r5, and r6 directions.

From eq. 25, it can be seen that each element bi,j of the b-matrix is a weighting factor of 

corresponding diffusion tensor component Di,j, and the product of these two terms is linearly 

changing with measured logarithmic MR signal ratio (23). Using bij for a symmetric 

trapezoidal gradient waveform as described in eq. 15 and simplifying for an isotropic 

medium with a constant diffusivity D0 (21),

(27)

Typically, in any DWI, both imaging and diffusion gradients are applied. Therefore, 

calculation of bij of the b-matrix requires knowledge of timing and amplitude of all gradients 

applied in a pulse sequence. With imaging gradients also present, the b-factor in eq. 21 

consists of three terms:

(28)

The first term, bdiff, is exactly as defined in eq. 15. The second term bimg, is generated by 

imaging gradients (G) and is related to pulse sequence parameters (field-of-view (FOV), 

matrix, slice thickness, orientation) with negligible effect on diffusion. The third term, bct, 

also called the “cross-term,” is related to the product of a diffusion gradient and one imaging 

gradient (g·G). One method to eliminate the cross-term is to use diffusion gradients with 

opposite signs, corresponding to measuring diffusion in both the forward and the backward 

direction. The geometric average of these two images results in the elimination of the cross-

term. This method was first described by Neeman et al. (43, 44). The basic idea can be 

described as:
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(29)

where τ is function of timing parameters for diffusion, imaging, and cross-term gradients 

involved. If the polarity of only the diffusion gradients is reversed, only the cross-term 

changes sign:

(30)

The expression for signal in these two cases is:

(31a)

(31b)

The geometric average of two images obtained with b+ and b− results in an image that does 

not contain the cross-term attenuation contribution.

(32)

Likewise, the square root of the ratio between the two images will contain only the cross-

term effects and is given by;

(33)

Although the positive–negative approach has advantages, it is not routinely practiced 

because it requires two scans in each direction doubling scan time. For most imaging 

applications, the influence of imaging gradients alone on diffusion is ignored. In general, the 

diagonal elements of the b-matrix include effects of both diffusion and imaging gradients, 

and effects of off-diagonal elements of the b-matrix are ignored (21). To understand and 

estimate the effect of imaging gradients in calculating elements of the b-matrix accurately, 

Mattiello et al. (45) have performed a series of experiments in a water phantom, to evaluate 

whether the isotropic property of water would indeed provide only diagonal elements of 

diffusion tensor, resulting in a constant scalar value, whereas the off-diagonal values are near 

zero. The authors found that contributions from readout- and phase-encode gradient pulse 

trains have negligible effect on the echo, but the contributions from other imaging gradients 

applied not necessarily in readout- or phase-encode directions cause significant change in 
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echo amplitude (45). The percentage error in the b-matrix element produces the same 

percentage error in the corresponding element of the estimated diffusion tensor but of 

opposite sign (46, 47). Other potential sources of errors in the calculated diffusion tensor 

elements are eddy currents induced from the magnitudes and directions of gradient pulses, 

causing nonuniformity of the errors in the diagonal elements of the diffusion tensor, fast 

switching of gradients, causing mechanical vibration due to higher vibrational frequencies in 

gradient coils.

A simplified approach uses a fixed gradient waveform, where b-factors of the three 

orthogonal acquisitions are equal (i.e., bxx = byy = bzz = b) and off-diagonal elements of the 

b-matrix are ignored (i.e., bij ≈ 0 for i ≠ j). On substitution in eq. 25 using gradient vectors 

defined in eq. 26, signal expression in each directions is calculated as (48);

(34a)

(34b)

(34c)

(34d)

(34e)

(34f)

Although the above approach is simple to use, there are some obvious drawbacks that need 

to be addressed. Due to the anisotropic nature of diffusion in tissues, sampling of diffusion 

will be directionally dependent. First, the above scheme uses gradients in specific directions, 

and therefore, is not sampled isotropically. Sampling of diffusion in any one direction, 

therefore, may be influenced by diffusion along other directions. Bias in the measurement 

direction may be overcome by sampling isotropically with the same diffusion weighting 

along each sampled direction. Second, using a gradient in a single direction such as xx, yy, 

and zz, pulsing will generate stronger eddy currents, because physical direction is not being 

shared by two gradients. Any spatial distortion will be more evident because the level of 
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eddy current generation along xx, yy, and zz directions will be significantly greater than 

along the xy, yz, and zx directions, where the sensitization direction is being shared between 

two physical gradients.

These drawbacks are avoided with a balanced gradient approach in which gradients are used 

simultaneously in multiple directions, as described by Conturo et al. (27) and Basser and 

Pierpaoli (28). The scheme that we chose in our work is one in which the gradient directions 

are sampled isotropically and all DWIs have the same diffusion weighting. By sharing the 

sensitization direction with all six projections, the b-value can be maintained and eddy 

currents minimized. This will subsequently minimize spatial distortions in the final result. In 

our study, the gradient direction scheme is similar to one used by Basser and Pierpaoli (28), 

in which the unit vectors represent the following six independent directions.

(35)

Substituting these gradient vectors in eq. 25, six independent equations are given by:

(36a)

(36b)

(36c)

(36d)

(36e)
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(36f)

These simultaneous equations are solved for diffusion tensor elements:

(37a)

(37b)

(37c)

(37d)

(37c)

(37f)

The denominator in eq. 33 with a factor of 2 differs from eq. 6 of Basser and Pierpaoli (28). 

The difference is due to the factor of 2 used in the definition of bij by Basser and Pierpaoli.

 SCALAR ROTATIONALLY INVARIANT MEASURES FROM DIFFUSION TENSOR

The diagonal and off-diagonal terms constitute a diffusion tensor. In tissue, the diffusion 

tensor as defined in eq. 18 can be mathematically represented by a symmetric second-rank 

Cartesian tensor in LAF. These elements are defined as:

(38)
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The diffusion tensor can be decomposed into symmetric (isotropic) and asymmetric 

(anisotropic) parts as follows:

(39)

Here, D̄ defines an isotropic diffusion tensor, (D – D̄) is a diffusion deviation tensor whose 

elements represent deviation from isotropy, the symbol < > is the average of diffusion tensor, 

and I is the identity matrix. In terms of corresponding eigenvalues, eq. 39 in PAF becomes;

(40)

Eigenvalues and eigenvectors are useful in defining morphologic features of the diffusion 

tensor. However, diffusion anisotropy is intrinsically related to eigenvalues, which is based 

on shape of the diffusion tensor, not related to eigenvectors, which define the orientation. 

The best way to compare between tissue structures is to define a set of several rotationally 

invariant indices derived strictly from the eigenvalues of the tensor that do not contain 

eigenvectors. These are algebraic combinations of eigenvalues normalized such that a value 

of 0 represents perfectly isotropic diffusion, and a value of 1 represents completely 

anisotropic diffusion where diffusion is parallel to the infinitely long, thin fiber. By imposing 

these limits, tensors based on different morphologies can be compared and distinguished 

using scalar indices. For example, there are three main groups resulting from algebraic 

combination of eigenvalues normalized between (0) and (1): relative anisotropy (RA), 

fractional anisotropy (FA), and volume ratio (VR). RA measures the ratio of anisotropic and 

isotropic parts of the diffusion tensor. The exact expression for RA is given by the ratio of 

RMS difference between the calculated principal diagonal values and the average diffusion 

value and mean diffusion value (10, 18). It is zero with complete isotropy (λ1 = λ2 = λ3) and 

is equal to 1 with complete anisotropy (λ1 = λ2 = 0, λ3 > 0)(42, 49–52)

(41)

where .

In the principal axes frame, off-diagonal terms are zero and the diagonal terms represent 

eigenvalues, in which case eq. 41 reduces to
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(42)

The second and more commonly used anisotropy measure, FA, is a measure of the fraction 

of total magnitude of D that varies from a value of 0 (complete isotropy) to 1 (complete 

anisotropy). It is defined as (50–53):

(43)

Interestingly, FA also measures the deviation of the tensor from a sphere (1–Csph), which is 

also the sum of linear and planar measures. The relationship between FA and RA is defined 

analytically as;

(44)

The scaling method used in defining RA and FA is based on its value being 0 for complete 

isotropy and 1 for complete anisotropy (diffusion strictly along a single direction). This 

approach is not important as long as one clearly states the anisotropy index when reporting 

anisotropy values. The analytical relationship between RA and FA as shown in eq. 44 is 

plotted in Fig. 3.

Pierpaoli et al. (54) and Le Bihan et al. (55) have suggested a third scalar invariant that is the 

ratio of the volumes of a diffusion ellipsoid and a diffusion sphere. This ratio is defined as 

VR:

(45a)

which has a normalized value between 1 (complete isotropy) and 0 (complete anisotropy). 

Some authors prefer to use the volume fraction,VF, which has normalized values between 0 

(complete isotropy) and 1 (complete anisotropy) (55).

(45b)
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Additionally, various authors have also used other indices to represent the degree of 

anisotropy in the morphological features of a diffusion tensor (56–58).

 VISUALIZATION OF DIFFUSION TENSORS IN HUMAN BRAIN IMAGING

A practical application of DTI was demonstrated in human brain imaging. DTI was 

performed on 10 normal healthy volunteers who consented with an Institutional Review 

Board's approval. Data was acquired using Siemens Magnetom (Sonata 1.5 T) equipped with 

echo-planar capability. A circularly polarized head coil was used for image acquisition. All 

images were acquired in an axial plane with the head positioned firmly inside the circularly 

polarized head coil. To maintain rigid position of head, a tape over the forehead was used to 

secure the position inside the coil throughout scanning. A standard echo-planar version of 

spin–echo pulse sequence was used with b = 0 and b = 1,000 s/m2. A single loop with a 

repetition time included gradient sensitization along six noncollinear directions: (x,y,z) = 

[(1,0,1), (−1,0,1), (0,1,1), (0,1,–1), (1,1,0), (−1,1,0)]. A b-value requested by the user was 

then used to scale the gradient amplitudes (x,y,z) appropriately to coincide with the final b-

value. Diffusion sensitive gradient pulses were trapezoidal pulses whose magnitudes were 

determined based on the Stejskal–Tanner scheme in which the time interval between leading 

edges of gradient pulses (Δ) is 32.5 ms and the width of gradient pulse (δ) is 5.40 ms. Using 

appropriate gradient amplitudes across x, y, and z directions, a b-value of 1,000 s/mm2 was 

achieved. Other MR parameters included TR (ms)/TE (ms) = 4,600/105, 5 mm thick slices, 

30% interslice gap, 104 lines with echo factor = 0.84, matrix = 104 × 128 interpolated to 256 

× 256, FOV = 180 × 220 mm2 with an in-plane resolution of 1.7 × 1.7 mm2. A single 

chemically selective Gaussian RF pulse was used for fat saturation and the readout pixel 

bandwidth = 1,346 Hz.

Figure 4 shows the set of source images obtained with a combination of gradients, resulting 

in six noncol-linear directions based on eqs. 35 and 36. A total of six averages per 

measurement direction were performed to improve the signal/noise ratio and to avoid 

potential negative eigenvalues in the measurements.

Figure 5 represents a symmetric diffusion tensor obtained with six non-zero component 

images. The diagonal elements are similar except for intensity differences in the white 

matter near genu and splenium. Each image represents a calculated ADC image based on eq. 

37. The symmetry of the off-diagonal elements are due to the fact Di,j = Dj,i. The off-

diagonal elements are based on combination of gradient directions in the LAF. In addition, 

the gray scale level of the off-diagonal images differs strongly from that of the diagonal 

ones. Figure 6 shows the eigenvalue image based on diagonalization scheme described in the 

text. Figure 7 shows corresponding calculated maps based on eqs. 42, 43, and 45a. For 

comparison, a corresponding ADC map is also included.

Among all parameters derived from DTI, FA is the most commonly reported parameter. The 

measure of FA is based on relative asymmetry between eigenvalues. The CSF in ventricular 

system has an FA value near zero, whereas moving from gray matter to the genu (Fig. 8) 

shows a steady increase in FA, indicating an organization of fiber structures in a regular and 

parallel fashion. Any decrease in FA from an expected range in these areas shows 

compromised white matter integrity. Figure 8 shows a bar graph of anisotropy indices 
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compared with ADC values obtained at eight different ROIs that covered tissues with both 

white and gray matter. This result is based on an average value obtained among 10 subjects.

Overall, the elements of the diffusion tensor matrix in the PAF contain information about the 

magnitude of water diffusion that is independent of measurement coordinate axes. The 

relationship between PAF and LAF is provided through the use of Euler rotation angles. 

Scaled invariants and anisotropy measures are derived based on tensor elements in the PAF. 

Noisy DWI will alter the elements of diffusion tensor, causing in some instances negative 

eigenvalues. Such negative eigenvalues are meaningless, as negative diffusion does not exist; 

the observed tensor must be positive, which is the case only when the diagonal elements are 

larger than the off-diagonal elements of the tensor. To avoid numerically setting negative 

eigenvalues to be zero, the non-negative eigenvalue requirement can be fulfilled with higher 

signal/noise ratios or increased voxel size. Multiple averages may also be used to improve 

signal/noise ratios.

Among rotationally invariant quantities, FA maps are routinely used for comparison between 

various tissues. FA maps provide gray–white matter contrast, and are a widely utilized index 

of anisotropy in the literature (59–62). Our measurements on normal healthy volunteers 

showed relative differences in ADC and FA in eight different regions of interest (ROI). The 

measurements of FA in the putamen and CSF were found to be the lowest but non-zero. This 

result is obvious due to the nature of the environment of the CSF and putamen, where 

diffusion is less restrictive. The non-zero apparent asymmetry may be due to acquired noise, 

contaminating eigenvalue computation intrinsic to the putamen. The splenium of corpus 

callosum showed, by far, the strongest apparent asymmetry in diffusion. Our technique of 

measurement yielded a wide range of apparent anisotropy within the various portions of the 

corpus callosum. The work by Chepuri et al. (63) suggests multiple possible explanations, 

including tighter packing of axons or less permeable myelin sheaths. Further investigation is 

warranted in a larger study population.

 TRACTOGRAPHY

One of the applications of DTI is to noninvasively map out anatomic white matter 

connectivity. Several methods have defined connectivity between different regions of the 

brain. While diffusion weighting information uses sampling along three orthogonal 

directions, DTI uses a minimum of six directions to assess connectivity in anisotropic 

regions of tissue. More robust methods use more than six directions to minimize sampling 

bias. The resulting images are known as “fiber-tractography,” and can be used to display 

structures that are parallel to native fiber orientations.

There are two main approaches to tractography: deterministic or “tract propagation” 

approaches, and probabilistic or “energy minimization” approaches (64, 65). Deterministic 

tractography computes fiber tracks based on the assumption of a single value for the 

dominant fiber orientation, whereas probabilistic tractography explicitly characterizes the 

distribution of fiber orientation to provide a probabilistic treatment of the different fiber 

track possibilities. The deterministic approach, however, has difficulty tracing reliably in 

areas with low diffusion anisotropy, and as such, generally may not produce reliable tracks 

in areas with low diffusion anisotropy. As a result, the tracts reconstructed by deterministic 
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tractography tend to be the major pathways in the brain such as the commissural projection 

and association pathways (66). Additionally, the assumption of a single dominant fiber 

direction per voxel fails to accurately represent voxels with multiple fiber populations, as is 

the case in voxels with crossing or closely adjacent fibers. Probabilistic tractography, 

conversely, allows for reconstruction of more minor pathways, by accounting for the 

possibility of multiple fiber populations per voxel.

Deterministic approaches, also known as “principal eigenvector streamline approaches,” 

involve three basic steps: 1) estimation of local fiber orientation for a given voxel; 2) 

propagation of a line from this voxel based on estimated fiber orientation; and 3) 

termination, which is typically based either on low anisotropy or sharp bends in fiber 

orientation (64).

1. Fiber orientation is first estimated, using either the diffusion tensor or the 

principal eigenvector of the diffusion tensor. The latter is more 

straightforward (64), involving spectral decomposition of the diffusion 

tensor D=UVU−1, where U is a 3 × 3 matrix whose ith column is the ith 

eigenvector, and V is a 3 × 3 diagonal matrix such that Vii = λi for all i = 

1, 2, 3. However, use of the principal eigenvector alone is reliable only in 

the case of oblate tensors (λ3 ≠ λ1 ≈ λ2). It is less accurate in cases of low 

anisotropy, in which the diffusion ellipsoid approaches a sphere. In this 

case, the principal eigenvector is determined by noise rather than by the 

longest axis of the ellipsoid.

2. The fiber assignment by continuous tracking algorithm, proposed by Mori 

et al. (67), provides the basis for many deterministic fiber-tracking 

algorithms. Tracking is initiated from the center of a voxel, and is 

propagated along the direction given by the diffusion tensor or principal 

eigenvector of the diffusion tensor for the given voxel. As the direction of 

the principal eigenvector does not have polarity, the line is propagated in 

two opposite directions. When the track leaves the voxel and enters 

another, it assumes the direction of the next voxel. Because of the 

nonpolarity of the principal eigenvector of the next voxel, there are two 

possible choices for propagating the next line: an acute and obtuse angle 

from the original eigenvector. The line is always propagated by choosing 

the obtuse angle, except in the case of a 90° angle, in which case the line is 

terminated. A continuous rather than discrete vector field is utilized (Fig. 

9), so that tracking is not limited to the 26 angle directions that would only 

be available if a discrete vector field were used (64).

3. One criteria for termination is based on the occur-rence of sharp bends in 

fiber orientation. Specifically, we calculate

(46)
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the summation of the inner product of the nearby data points, where νλ1 is 

the unit vector representing the longest eigenvector, and s is the number of 

data points. Smaller values of R correspond to sharper bends in fiber 

orientation, with a common termination criterion being R < 0.8 (67). An 

alternative termination criterion involves termination when FA falls below 

0.15–0.3, as gray matter typically has an FA of 0.05–0.15 (64) (Fig. 10). 

Smoothing is then induced using any of a variety of interpolation methods.

Streamline approaches generally suffer from several limitations, including sensitivity to 

noise and the interpolation scheme chosen. Although the “fibers” tracked by any tracking 

algorithm are generally considered representative of actual nerve axons, they are more 

accurately understood as estimates of the principal direction of diffusion, which may differ 

from actual axonal architecture in cases when fibers cross, diverge, or display tight 

curvature. Noise generated by differences between the estimated vector direction and actual 

fiber orientation also accumulates with increased track propagation, so that longer tracks are 

noisier than shorter tracks. Other limitations include partial volume effects, in which voxels 

falling between multiple unrelated fibers may have an estimated fiber angle, which is a 

weighted average of the unrelated fiber angles, and failure to model branching fibers, as only 

one line propagates from each seed voxel (64). There are several approaches that have been 

proposed to handle these limitations, including smoothing via B-splines, bootstrapping the 

diffusion weighted images to generate tensor fields (64), and front propagation methods, 

described below.

A central problem in deterministic tractography is that the diffusion tensor is a reliable 

indicator of the principal direction of diffusion only if oblate tensors (λ3 ≠ λ2 ≈ λ1) are 

present. The diffusion tensor fails to account for situations in which the fiber orientation is 

undetermined, which is the case in prolate or isotropic cases. Tracking based on the 

diffusion tensor model also fails in brain regions with multiple fiber orientations, such as 

crossing or kissing fibers, due to the assumption of a single dominant fiber orientation per 

voxel. This presents a large practical problem, as brain histology in primates shows that 

much of white matter is composed of multiple fiber directions (68). Assuming a single 

dominant fiber orientation in the case of crossing fibers has two possible implications in 

tractography. First, the voxel may appear isotropic due to the summation of several fiber 

directions, leading to early termination of the track due to a falsely low anisotropy levels 

(false negatives). Second, crossing fibers may lead to inference of erroneous directions: 

either the tracking may be shifted systematically from the true path, or the tracking may 

switch from the true path to an unrelated crossing tract (false positives) (64, 69). One 

effective model-free approach for addressing crossing fibers is to increase directional 

information through more sensitized scanning techniques, including high angular resolution 

diffusion imaging (70, 71), diffusion spectrum imaging (72), q-ball imaging (73), and high 

b-value imaging (74). However, scan time is long for these techniques compared with the 

time available for clinical scans. Therefore, current research on crossing fibers commonly 

focuses on approaches that utilize DTI data acquired in short, clinically practical scan times 

(69, 75). Many approaches to crossing-fiber regions using conventional DTI acquisitions 

have been proposed, including cylindrically constrained two-component models (68, 76), 

direct deconvolution using a discrete diffusion tensor basis functions (77), and utilization of 
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compressed sensing optimization criteria for estimating mixture fractions (75), and research 

is ongoing.

Many issues in deterministic tractography relating to false positives, however, may be 

resolved through tract editing based on a priori anatomical knowledge. After tractography is 

performed, tracks can be required to pass through multiple ROIs drawn using Boolean 

operators. This may include “AND” operators, which allow for the elimination of false paths 

due to the low probability of a false path intersecting all of the same regions as the true path, 

and “NOT” operators, which allow specification of regions through which the path is known 

not to pass based on biological knowledge.

 FAST MARCHING TRACTOGRAPHY

Front propagation methods attempt to identify connectivity pathways through the brain by 

propagating a 3D surface (or front), rather than a line, from the seed voxel, using the 

principal eigenvector of the tensor (78, 79). Fast marching tractography (FMT) provides an 

illustrative example of a front propagation method, which accounts for multiple fibers 

through the fast marching method (Fig. 11). The four main steps of FMT are detailed below, 

following the proposed description by Parker et al. (78).

1. A 3D front is first evolved from the seed voxel using the principal 

eigenvector of the tensor, at a rate governed by a defined speed function. 

For example, the front propagation speed at position r can be defined 

based on voxel similarity, as (78)

(47)

where n(r) is the direction of the normal to the front at the point where 

front expansion is considered, ε1 is the principal eigenvector; r is the 

position of any voxel potentially crossed by the front; and r′ is the position 

of a voxel neighboring r that has already been crossed by the front such 

that (r – r′) is most closely aligned with n(r). This ensures that front 

evolution will be fastest along white matter tracts. Another possible speed 

function is based on embedded connectivity information, given by (69)

(48)

so that dependence on F2(r) provides “memory” of previous front 

locations.

2. Level set and fast marching methods are then used to generate minimum 

cost paths from all possible voxels to the seed point. Specifically, given a 
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cost function G(x1,x2,. . .,xn) and seed pointA ∈ R3, the minimum cost 

path χ(τ):[0, ∞)→R3 from A to r ∈ R3 minimizes

where L is the total length of χ and τ is the position on χ. By the fast 

marching algorithm, the minimum cost in traveling from A to r is the time 

of arrival, T(r). Therefore, the minimum cost path satisfies

which can be found by gradient descent through T (78).

3. A connectivity metric φ, estimating the likelihood that a given pathway 

represents a true anatomical connection, is then computed for each 

pathway. A natural choice for φ is

where F is the speed function defined above. An alternative metric 

measures how faithful the path is to the underlying ε1 field, by using the 

inner product of the path tangent w and the ε1 direction (78):

4. Lastly, by thresholding φ, the most probable subset of pathways is 

selected.

 PROBABILISTIC METHODS

Probabilistic tractography was developed to overcome a critical limitation in deterministic 

tractography, namely that deterministic tractography fails to account for the variability in 

estimating fiber orientation. Probabilistic methods differ from deterministic methods in the 

use of the probability density functions (PDFs) of fiber orientation to explicitly characterize 

the distribution of fiber orientations, in order to estimate the probability of connection 

between regions. Methods may assume a Gaussian or Watson distribution, or the distribution 

may otherwise be estimated using Bayesian or bootstrap methods. Parametric assumptions 

center a Gaussian (80, 81) or Watson (82) distribution on a point estimate of the dominant 

fiber orientation, such as the principal eigenvector of a diffusion tensor. However, 

calibrations are inefficient in the case of noisy data, such as in the case of interexperimental 

variation or intersubject variation (83). Bayesian methods estimate a posterior distribution 

on the dominant fiber orientation given a prior distribution and likelihood function, whereas 

bootstrap methods estimate the true distribution of samples by permuting the data samples 

with replacement. The Bayesian approach is useful in allowing the placement of prior 

constraints on parameters when such constraints make sense, such as requiring that the 
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eigenvalues have positive values. Both Bayesian and bootstrap approaches have been 

developed to account for multifiber populations per voxel (69, 84–86).

There are four main classes of probabilistic tractography methods: 1) front propagation 

methods (described above); 2) Monte Carlo streamline approaches; 3) random walk and 

simulated diffusion approaches; and 4) global connection probability models (83). Front 

propagation methods may use either a deterministic approach as described above (see Fast 

Marching Tractography), or a probabilistic approach, in which the point estimate for fiber 

orientation direction is replaced with a random sample from the fiber orientation PDF. 

Monte Carlo streamline approaches simulate the range of possible pathways according to the 

probability distribution of fiber orientations in order to quantify the confidence of each 

estimate (Fig. 12).

In Monte Carlo streamline approaches, fiber orientation PDFs are first generated for each 

voxel according to the methods described above. Next, deterministic tracking is run on data 

for n iterations (where n is some large number typically greater than 1,000), each iteration 

using fiber orientations drawn with replacement, with a draw probability based on the given 

voxel's fiber orientation PDF. Each streamline is then recorded (66, 81, 83). Another class of 

methods includes the random walk and simulated diffusion approach, in which a particle 

performs a random walk through the set of voxels. At each step, the particle jumps to 

another site within the image volume, using a constant jump size and jump direction defined 

by a transition probability matrix. Out of n random walks starting in region A, the proportion 

of random walks ending in region B is calculated to yield an estimate of the neuronal 

connectivity between regions A and B (87, 88). For example, one set of transition 

probabilities from voxel m to voxel n is given by Koch et al. (88) as

(49)

where a is a tuning parameter set empirically and d(rmn, m) is the diffusion coefficient in 

voxel m along the line connecting the centers of voxels m and n.

Global connection probability models (89–91) assess all proposed pathways simultaneously, 

rather than successively and independently defining connections using local, voxel-wise 

fiber orientations. Based on a predictive model of some characteristic of the proposed tract, 

the predicted values for the tract characteristic are compared to the observed values, with the 

highest probability route of connection minimizing the difference between the two. For 

example, the dominant orientation of diffusion for a given voxel is one tract characteristic 

that may be used for this purpose (83). Several optimization methods for identifying the 

route that minimizes differences between the observed and predicted data, including 

simulated annealing and maximum likelihood, have been proposed (83, 89). These 

optimization routines are often subject to a constraint on curvature (90, 91), based on the 

assumption that fiber tracts generally do not exhibit high curvature (83, 89–91).
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 APPLICATIONS

DTI enables in vivo assessment of white matter pathology by measuring FA, a measure of 

fiber tract coherence derived from water diffusion properties. DTI also permits visualization 

of the 3D structure of major axonal projection, commissural and association pathways of the 

white matter. In addition, DTI can be used to identify subtle pathologies in white and gray 

matter. This has been proven to be useful especially in multiple sclerosis, where normal-

appearing white matter on conventional imaging techniques reveals underlying diffuse white 

matter changes with DTI (92, 93). A recent study suggests decreased apparent anisotropy of 

white matter in children with developmental delays and autism (94–97). Another potential 

application of DTI is in evaluating stroke patients in which the diffusion of water during the 

temporal evolution of stroke is related to the histopathological response of white and gray 

matter to ischemic injury (6–8, 98, 99). Overall, DTI may prove to be a useful tool for in 

vivo detection of subtle brain abnormalities present in early stage diseases, before detection 

is possible by conventional MRI techniques.
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 APPENDIX A

 DIFFUSION TENSOR

The experimental measurement of ADCs is made with respect to laboratory frame of 

reference where gradient magnitudes are known. The diffusion measured along the axes in 

the LAF are not the eigenvalues. Upon transforming to the principal axes frame fixed with 

local fiber, the axes are along the diffusion ellipsoid axes and the ADC measured along these 

directions is an eigenvalue.

Measured components of diffusion tensor (Dlab) are expressed as elements of 3 × 3 matrix in 

the LAF (39, 40).

(A1)

The eigenvalues of the tensor are assumed to represent the size and shape of the tensor 

whereas; the eigenvectors represent the orientation of the tensor. For example, the 

eigenvector corresponding to the largest eigenvalue represents the longest fiber axis.

However, to express the motional aspects at the molecular or local myelin fiber level, one 

defines another frame of reference that is fixed with respect to local fiber orientation in 

which the long axis of the fiber is fixed along one of the axes of this frame. This frame is 

called the PAF (x′,y′,z′). The elements of diffusion tensor in this PAF are:
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(A2)

Here, the goal is to define components of D measured in (x,y,z) LAF system in terms of 

elements of the diffusion tensor in (x′,y′,z′) PAF system. This is same as describing the 

orientation of final rotated coordinate system (x,y,z) relative to fixed coordinate system (x′,y
′,z′). Transformation of coordinates is described by three sets of angles called Euler angles. 

The transformation matrix provides projections of original elements of diffusion tensor in 

LAF system on to an orthogonal PAF system. Corresponding transformation is defined by;

(A3)

where αi;mare the direction cosines in terms of the three Euler angles (φ, θ, ψ) represent the 

elements of the rotation matrix. These angles define the relative orientation between LAF 

and PAF by three successive rotations of the LAF coordinate system that align with the PAF 

coordinate system. Therefore, the rotation operator R is defined by the product of three Euler 

angle rotations acting on LAF to project it on to PAF system. Here again, LAF coordinate 

system in which measurements are made and the PAF frame fixed with tissue fiber, which 

coincides with the self directions of diffusivity. The diffusion tensor defined in the PAF has 

only the diagonal elements with nondiagonal elements = 0.

The rotation matrix of cumulative rotations is defined as

(A4)

where ψ, φ ∈ [0,2π) and θ ∈ [0,π). The corresponding matrix elements representing 

projections are written as

(A5)

where
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(A6)

Upon simplification (39)

(A7a)

(47b)

(47c)

(47d)

(47e)

(47f)

(47g)

(47h)

(47i)

A generalized expression may be obtained for estimating diffusion coefficient in any 

arbitrary direction in terms of principal values as
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(48a)

(48b)

(A8c)

(A8d)

(A8e)

(A8f)

Although axial symmetry is a good approximation of parallel fiber tissue architecture, it is 

generally not applicable to all anisotropic media. The advantage of cylindrical symmetry is 

that the process of diagonalization reduces the number of estimated parameters to four in 

determining the diffusion tensor. However, a generalized approach should include all 

elements of the diffusion tensor.

 A.1. Axially Symmetric Diffusion Tensor

A useful assumption is that fiber tracts are cylindrically symmetric. Under this condition one 

has

and

(A9)

With this approximation one can reduce the tensor to have only diagonal elements:
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(A10)

Upon substitution of direction cosine angles;

(A11a)

(A11b)

(A11c)

(A11d)

(A11e)

(A11f)

It is further simplified following notational terms (27).

(A12)

(A13)

(A14)
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Upon substitution,

(A15a)

(A15b)

(A15c)

(A15d)

(A15e)

(A15f)

The angle θ can be defined as the angle between the long axis of the fiber and the z axis of 

the LAF and angle φ is the angle between x axis and the projection of fiber on to x–y plane;

(A16)

and

(A17)

On substituting for sin φ,

(A18)

One defines, using axial symmetry in fibers, an anisotropy index of fiber as
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(A19)

Alternatively, one can determine principal diffusivities based on measured elements of 

diffusion tensor. Upon substitution, one finds

(A20)

and

(A21)

Again using eqs. A.12 and A.13

(A22)

Above equation shows the required number of diffusion coefficients is reduced to four 

elements of the diffusion tensor, namely Dxx, Dyy, Dzz, and Dxy to determine the principal 

diffusion tensor.

 B.1. Nonaxially Symmetric Diffusion Tensor

In this case, Dx′x′ ≠ Dy′y′ ≠ Dz′z′. Although axial symmetry is a good approximation in the 

case of parallel fiber tissue, in general it is not applicable to all anisotropic media. 

Advantage of cylindrical symmetry is that it reduces the number of estimated parameters to 

four in describing diffusion tensor. However, in a truly anisotropic medium the expression 

relating each of these components in principal axes to components measured in laboratory 

axes gets more complicated. The diagonalization of the experimentally observed diffusion 

tensor always provides the values for the principal axes components, which can be used to 

deduce anisotropy. A simplified picture is presented in which only z direction in laboratory 

frame is fixed.

Using ν′ and δ, one finds ADC along z axis as

(A23)

Here,
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(A24)

The above relationship simplifies to eq. A.15c when an axial symmetry is considered.

 APPENDIX B

 ROTATIONALLY INVARIANT QUANTITIES OF A DIFFUSION TENSOR

The inherent diffusivity measure of molecules is possible when measurements are 

represented along the principal coordinate system. However, both laboratory coordinate 

system and principal coordinate system seldom coincide. It is possible to define certain 

invariant scalar combinations from the diffusion tensor elements (41). In a second rank 

tensor Tik, the eigenvalues are scalars and independent of the choice of coordinate system. 

For example, the characteristic equation for a tensor Tik is obtained by diagonalizing the 

tensor. Second rank tensors can be represented by a matrix and also be decomposed into 

eigenvalues and eigenvectors. The eigenvector and corresponding eigenvalue of a tensor 

have the property that inner product of the original tensor and the eigenvector results in a 

vector, that is, a scalar multiple of the original eigenvector:

(B1)

The solutions λl are the eigenvectors of tensor Tik. The above equation can be rewritten as 

(T–λlI)x=0, where I represents the identity matrix. It also implies that the matrix T – λlI is 

singular and its determinant is zero and solutions are the eigenvalues of the secular equation:

(B2)

(B3)

or

(B4)

where quantities
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(B5)

are invariants of the tensor Tik. In our study, the elements Dij, measured in a laboratory 

frame are transformed to elements of Di′j′ in the PAF. The relationship between diffusion 

tensor invariants and Dij and Di′j′ are

(B6)

The most widely known of these invariant quantities is the trace, I1, which is given by the 

sum of the three diagonal elements of diffusion tensor in either measurement coordinate 

system. When scaled properly, it provides average diffusion, which is a useful parameter that 

represents averaged motion when diffusion along each axis is different. It is defined as Dav = 

I1/3.

The other two invariants can be defined based on geometric properties of tensor ellipsoid, 

namely;

(B7)

(B8)

 Biography
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Figure 1. 
A. Stejskal–Tanner diffusion prep uses gradients of equal amplitude and duration placed on 

either side of 180 RF pulse. The gradients are high enough to be sensitive to microscopic 

motion. B. Typical trapezoidal gradients used in a diffusion-weighted imaging experiment. 

Due to finite rise time, gradient maximum plateau is reached in a time, ε. Equation 15 refers 

to elements of modified b-matrix.
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Figure 2. 
Diffusion paths of molecules experiencing Brownian motion (A). (B) and (C) show 

isoprobability surfaces corresponding to eq. 22 and 24. The surfaces represent the locations 

in space where the probability of finding water molecule at time t. For spherical diffusion 

(B), the motion is isotropic with equal likelihood of diffusion in all direction with 

eigenvalues equal in magnitude in all directions λ3 = λ1 = λ2). However, with anisotropy in 

diffusion, the anisotropy is described by three orthogonal Gaussian distributions with 

magnitude (eigenvalues) resulting in ellipsoidal diffusion. (C) shows a configuration where 

eigenvalues differ from each other. The actual magnitude of displacement in each of the 

orthogonal direction is proportional to the square root of the product of the eigenvalue and 

the time of diffusion.
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Figure 3. 
Analytical relationship between RA and FA.
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Figure 4. 
Source images obtained using a combination of gradients resulting in 6 noncollinear 

directions based on eq. 31a. Six averages per each measurement direction were acquired to 

improve S/N and to avoid potential negative eigenvalue in the measurement. Imaging 

parameters are; TE = 105 ms, TR = 4,600 ms, 5 mm slices with 30% interslice gap, 104 lines 

with echo factor 50.84, matrix = 104 × 128 interpolated to 256 × 256, field-of-view × 180 × 

220 mm2 with an in-plane resolution = 1.7 × 1.7 mm2. A single chemically selective 

Gaussian RF pulse was used for fat saturation with a read-out bandwidth per pixel of 1,346 

Hz.
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Figure 5. 
The symmetric diffusion tensor with six non-zero components. Each image is a calculated 

apparent diffusion coefficient image along the direction in the laboratory frame. These 

images are calculated pixel-by-pixel by solving eq. 32.
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Figure 6. 
The eigenmap along the three mutually orthogonal directions of principal axes frame fixed 

with local fiber direction.

SHETTY et al. Page 47

Concepts Magn Reson Part A Bridg Educ Res. Author manuscript; available in PMC 2016 July 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. 
The calculated anisotropy maps of RA, FA, and VR. For comparison, ADC map is included 

at the same slice level.
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Figure 8. 
Bar graph shows calculated ADC, normalized values of FA, RA, and VF = (1 – VR). We 

have chosen VF (instead of VR) such that FA, RA, and VF are normalized between zero 

(isotropic) and one (anisotropic). The measurements are based on ROIs selected around 

corpus callosum and putamen to include white and gray matter region. Across the range of 

ROIs, there is relatively a little difference in ADC values when compared with anisotropy 

values. (cc: corpus callosum, AIC: anterior internal capsule, PIC: posterior internal capsule, 

EC: external capsule, LP: left putamen, RP: right putamen). ADC is measured in units of 

×10−3 mm2/s. Larger change in FA, RA compared to ADC make them a sensitive marker for 

evaluating anisotropy in tissues.
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Figure 9. 
Deterministic tracking in (A) discrete versus (B) continuous voxel coordinates. A continuous 

rather than discrete vector field is utilized in order not to constrain tracking to a limited 

number of angle directions.
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Figure 10. 
Deterministic tractography performed using an FA termination threshold of 0.20 and 

minimum fiber length of 10 mm. Color green refers to association fibers along A–P 

direction, red refers to commissural fibers along L–R direction and blue refers to projection 

fibers along S–I direction. A-P, anterior-posterior; L-R, left-right; S-I, superior-inferior.
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Figure 11. 
Front propagation in the fast marching algorithm. Black voxels represent voxels passed by 

the front, with front voxels located at the border of the evolving wave. Gray voxels represent 

narrow band voxels, and white voxels represent outside voxels not yet crossed by the front. 

In each propagation step from r′ → r, one voxel of the narrow band, selected such that the 

vector (r – r′) is most closely aligned with the direction n(r), is included into the set of front 

voxels.
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Figure 12. 
Schematic of Monte Carlo streamline methods. First, the PDF of fiber orientations for each 

given voxel is estimated using either parametric assumptions, Bayesian, or bootstrap 

methods. Next, a fiber orientation is drawn with replacement from the fiber orientation PDF. 

Deterministic tracking is then performed using the sampled fiber orientation, and the 

streamline is recorded. The process is repeated for n > 1,000 iterations.
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Table 1

Expression for Estimating b-Values Based on Different Gradient Structures

Gradient Waveform b-Value Expression

Constant gradient: Hahn single echo γ2g2T
E3

12
Constant gradient—Carr–Purcell multiple n-echoes γ2g2T

E3

12n2

Sinusoidal 3γ2g2δ3

π2

Pulse gradient—Stejskal–Tanner γ2g2δ2 Δ − δ
3

Pulse gradient—trapezoidal
γ2g2 δ2 Δ − δ

3 + ϵ3
30 − δϵ2

6

Here, g = gradient amplitude, TE = echo time, γ = gyromagnetic ratio, Δ = time interval between leading edges of pulse gradient g, δ = width of 

gradient g, and ε = rise and fall time of trapezoidal gradient of amplitude.
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