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The exceptional sediment load of fine-grained dispersal
systems: Example of the Yellow River, China
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Sedimentary dispersal systems with fine-grained beds are common, yet the physics of sediment movement within
them remains poorly constrained. We analyze sediment transport data for the best-documented, fine-grained river
worldwide, the Huanghe (Yellow River) of China, where sediment flux is underpredicted by an order of magnitude
according to well-accepted sediment transport relations. Our theoretical framework, bolstered by field observations,
demonstrates that the Huanghe tends toward upper-stage plane bed, yielding minimal form drag, thus markedly en-
hancing sediment transport efficiency. We present a sediment transport formulation applicable to all river systems with
silt to coarse-sand beds. This formulation demonstrates a remarkably sensitive dependence on grain sizewithin a certain
narrow range and therefore has special relevance to silt-sand fluvial systems, particularly those affected by dams.
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INTRODUCTION
Sedimentary environments that have fine-grained beds consisting of silt
and very fine sand (median grain size range, 15 to 150 mm) are common
on Earth and extraplanetary surfaces, with examples including fluvial,
deltaic, coastal, andmarine settings, aswell as subglacial transport systems
(Fig. 1A) (1–7). These settings are morphologically active (8), and many
have significant relevance to human well-being. For example, low-lying
deltaic coastal regions, threatened by ocean storms and rising sea levels,
provide living space for approximately 40% of world’s population (9, 10).
To bolster the predictive capabilities of models that assess the evolution
and vulnerability of these regions, it is necessary to evaluate the physics
of fine-graineddispersal systems (FGDS).However, todate, themechanics
of fine-grained sediment transport remain poorly constrained because
of a paucity of field-scale data necessary to properly inform predictive
algorithms. In turn, this is due to the difficulty in measuring quasi-
equilibrium transport conditions for FGDS,whereby the observational
window required to establish approximately steady and uniform flow is
rarely achieved.Although flumeexperiments using fine-grained sediment
haveyielded sediment transport data (11–16), the formulaedeveloped from
these studies have proven inadequate for predictions at field-scale without
significant modifications (17–19). Therefore, no physical formulae that
claim the ability to predict sediment transport for FGDS show convincing
and consistent agreement with both flume and field data (18). In contrast,
coarser sediment dispersal systems (for example, sand to gravel) can be
characterized by numerous physically based and properly validated sedi-
ment transport relations applicable to a range of environments (Fig. 1A).

The lower Huanghe (Yellow River) of China (fig. S1) presents an
exceptional opportunity to develop a physics-based sediment transport
model applicable to FGDS. It is the most robustly measured fine-grained
river system in the world (20), and the spatiotemporal resolution of the
measurements is adequate to document quasi-equilibrium sediment
transport conditions. We use this rich database from the Huanghe to
inform a new model of fine-grained sediment transport that, because
it is grounded in basic physics, is applicable to other dispersal systems
as well. There are cultural and engineering perspectives underlining the
value of using the lower Huanghe to develop a sediment transport for-
mula: This region is the “cradle” of Chinese civilization but is also known
as the “sorrow” of the Chinese people because of rapid channel platform
change produced by an exceptionally high sediment load (21, 22). The
Huanghe traverses 800 km of the North China Plain and, until recently,
delivered approximately 1 billion tons/year of sediment to the Bohai Sea
with as little as 49 billion tons of water. The river has maintained one of
the largest sediment loads worldwide, with a volumetric sediment
concentration exceeding large lowland rivers by an order of magnitude
(23–25). This sediment, derived from the denudation of friable Loess
Plateau soil, has constructed over 30,000 km2of landon theNorthChina
Plainover thepast severalmillennia (fig. S1) (26).The river and floodplain
system perpetually teeters on the brink of societal sustainability. Seven
major avulsions in the past 2000 years have eachdisrupted 8 to 14million
people, collectively inundating approximately 250,000 km2 of floodplain
(27). In the past several centuries, there have been greater than 1000 levee
breaches (28), and the recurrence interval of channel avulsions is 7 to
14 years (29). Over the past century, sediment deposited within the
heavily diked plain has produced riverbed superelevation of as much
as 10 m, jeopardizing the 88 million inhabitants living on the floodplain.
Over the past several decades, Chinese engineers have stabilized the river
by building levees and dikes to constrain channel migration (20). Mean-
while, the Xiaolangdi Dam and Reservoir (fig. S1), which was finished in
2002, stores sediment derived from the Loess Plateau while releasing
sediment-depleted water into to the lower Huanghe in an effort to re-
duce bed elevation. These water-release events have occurred annually for
the past 15 years as part of the government’s Water and Sediment Reg-
ulation Season (WSRS). The effectiveness and impact of Xiaolangdi
DamandWSRS in sustaining the lowerHuanghe require quantitative eval-
uation (30–32).Developingand implementing engineeringmeasures to en-
sure future safety of neighboring inhabitants render critical the ability to
accurately model sediment and water flux.

Here, we first show that the sediment loads in theHuanghe, based on
10 years ofmeasurements, are an order ofmagnitude higher than is oth-
erwise predicted by the well-accepted sediment transport formula. Sec-
ond, this rich database is compiled and used to inform the development
of a physically based theory, which, in turn, is validatedwith field surveys
thatmeasure the geometry of the channel bedforms.These efforts of com-
bining a new theoretical framework and field observations yield the
primary finding that the Huanghe tends toward upper-regime plane bed,
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so as to yield minimal form drag and thus markedly enhance sediment
transport efficiency. Third, we present the unified sediment transport
formulation that is applicable to all other river systemswith channel beds
possessing silt to coarse-sand sediment. This unified formulation dem-
onstrates the remarkable sensitivity of sediment flux to sediment grain
sizewithin a certainnarrow range. The results hereinmaybe applied uni-
versally to assess fluvial responses to changing bedmaterial size, which is
particularly salient for systems impacted by dams.
THEORY AND RESULTS
Our starting point is the development of a generalized form of the
Engelund-Hansen sediment transport theory (EH) (33), which is a
Ma et al., Sci. Adv. 2017;3 : e1603114 12 May 2017
widely validated sand-bed sediment transport relation and therefore
provides the basis to compare the Huanghe to other sand-bed rivers.
For example, Brownlie and Brooks (17) collected ~1000 sets of field
and flume data, tested 13 sediment transport formulae, and determined
that EH performed best. EH derives from basic physics (33); its dimen-
sionless form reads Cfq∗s ¼ aEHt∗

5=2 , where q∗s ¼ qs=
ffiffiffiffiffiffiffiffiffiffi
RgD3

p
is the

dimensionless sediment discharge, that is, the Einstein number [qs =
HUC is the sediment discharge per unit width (H is the water depth;
U is the average flow velocity; and C is the depth-flux–averaged volu-
metric sediment concentration); R is the sediment submerged specific
gravity (1.65 for quartz); g is the gravitational acceleration; and D is the
characteristic (nominal) diameter of bed sediment]; Cf = gHS/U2 is the
bed resistance coefficient (S is the channel bed slope); t* = HS/(RD) is
the dimensionless bed shear stress under normal flow conditions, that
is, the Shields number; and aEH = 0.05. See Materials and Methods
concerning these definitions.

The bed material of the lower Huanghe consists of silt and very fine
sand, with amedian grain diameter (D50) of ~70 mm(Fig. 1A). This is
different from most lowland rivers, where median grain size usually
exceeds 200 mm (34). The bed grain size of the lower Huanghe is far
below the grain size range that existing formulae consider (Fig. 1A and
table S1). Figure 2A shows that EH underpredicts sediment transport
for the Huanghe by an order of magnitude. Nevertheless, because the
EH formula is grounded in physics, it is possible to modify and adapt
this relation to fine-grained sediment transport systems.

To do so, we use a quasi-equilibrium sediment transport database
(see Materials and Methods for the data sources and collection proce-
dures) pertaining to nonhyperconcentrated flow conditions recorded at
six hydrological stations located between Huayuankou and Lijin (figs.
S1 and S2). Along this stretch of river, the mean grain size distributions
(GSDs) of both suspended load and bed material are relatively constant
(Fig. 1B). As shown in Fig. 1B, there is a portion of the suspended load
that is composed of particles smaller than what is found in appreciable
quantities on the stream bed. This size fraction is called wash load (35)
because it does not interact significantlywith the streambednor depend
on local hydraulics. When developing physical relations for total sedi-
ment load, wash load is excluded (36). The fraction of sediment that
interacts with the stream bed is known as the bed material load. The
cutoff grain size for wash load is inferred based on the bed GSD, and
a size ofD5 orD10 (sediment size at which 5 or 10%of the distribution is
finer) has been considered in the past (37, 38). This value varies among
rivers systems, although conventionally, the sand-silt transition (that is,
62.5 mm) is used as a rule of thumb formany sand-bed rivers (39). How-
ever, the Huanghe has a fine-grained bed with a median diameter near
this value (62.5 mm). Hence, an alternative value for the wash load/bed
material load cutoff size is inferred based on the standard criterion
whereby the cutoff is established as the D5 size (37); using the GSDs of
the bedmaterial and suspended sediment from six stations on the lower
Huanghe, this value is estimated to be 15 mm (Fig. 1B). A sensitivity
analysis shows that the results shown below are insensitive to the cutoff
grain size within a fairly broad range (see Supplementary text).

EH considers energy conservation for a unit fluid column of sediment-
laden flow moving along the stoss face of a wavy bedform (for example, a
dune) (fig. S3) (33). The energy required to elevate the column (per unit
time) from trough to crest is rRgCHUHb/Lb, where r is the water density
andHb and Lb are the wave height and wavelength, respectively. The driv-
ing power is related to the product of the sediment driving force, tsf − tc,
and bed shear velocity,U∗ ¼ ffiffiffiffiffiffiffi

t=r
p

, where tsf is the bed shear stress due
to skin friction, tfd is the bed shear stress due to bedform formdrag, tc is
Fig. 1. GSDs of sediment from both silty and sandy dispersal environments.
(A) ComparisonofGSDs for a rangeof sedimentary environments, including theHuanghe,
wheremedian sediment size ranges fromsilt to fine sand. The left-right arrow indicates the
grain size range forwhich standard, physics-based transport formulaehavebeenpreviously
designed. The light brown bar indicates the grain size range that the formula presented
hereaccounts for silt andvery finesand.Note thatmanynatural sediment transport systems
fall in thesilt tovery-finesandrange, forwhichnounifyingsediment transport relationexists.
(B) GSDs of suspended sediment and bedmaterial, sampled at six gauging stations on the
lower Huanghe (see fig. S1 for the locations of the gauging stations).
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the critical shear stress, and t = tsf + tfd. In addition, the total shear stress
is t = rgHS = rCfU

2 in steady and uniform flow. In regard to the two
types of bed stress, skin friction stress is the driving force for sediment
transport, whereas form drag stress represents resistance to flow
produced by topographic irregularities of the channel and is considered
to contribute little to sediment transport. Energy conservation thus dic-
tates rRgqsHb/Lb = e(tsf − tc)U*, where e is an efficiency parameter.

Nondimensionalizing to the respective Einstein and Shields num-
bers, q∗s ¼ qs=

ffiffiffiffiffiffiffiffiffiffi
RgD3

g

q
and t* = t/(RrgDg), we obtain

Cfq
∗
s ¼ eCfLb=Hb � ðt∗sf � t∗c Þ

ffiffiffiffi
t∗

p ð1Þ

EHfoundthatCfLb/Hb takes theconstantvalue0.235andthat therelation
between skin friction shear stress and total shear stress ist∗sf � t∗c ¼ 0:4t∗2

for a dune-covered bed. Calibration with flume data yielded e = 0.532,
giving the original EH relation Cfq∗s ¼ aEHt∗

5=2 . We hypothesize that
the discrepancy between measured and predicted sediment transport
(Fig. 2A) could be due to differences in bedform characteristics between
the Huanghe and other sand-bed rivers.

EH is based on energy conservation, so the underlying physics can
be generalized, whereby the form of the resistance relation (Eqs. 2A and
2B) is used to close Eq. 3

t∗sf � t∗c ¼ bt∗n�0:5 ð2AÞ

a ¼ ebCfLb=Hb ð2BÞ

Here,a is the coefficient, andn is the exponent of the generalized EH
(GEH) formula. Note that n is also contained in the resistance relation
(n − 0.5). Substituting Eqs. 2A and 2B into Eq. 1

Cfq
∗
s ¼ at∗n ð3Þ

The fact that Eqs. 2A and 3 include the same exponent n underlines
the importance of the resistance relation (Eq. 2A) in setting sediment
transport capacity (40). Here, both a and n are strongly related to the
bed state, namely, the presence and geometry of bedforms. A resistance
diagram consisting of a plot of t* versust∗sf in the original EH exposition
shows that when n≥ 2.0, n = 1.5, and n < 1.5, the bed state corresponds
to dunes, upper plane bed, and antidunes, respectively (33). In Eq. 2B,
the aspect ratio Lb/Hb varies greatly from plane bed to dune regime,
whereas e, b, and Cf vary less.

The nondimensional numbers Cfq∗s and t* yield a good power law
relation (similarity collapse) (Fig. 2A), indicating that theGEH accurately
describes measured Huanghe sediment flux values; the coefficient and
power index values are a = 0.90 = 18aEH and n = 1.68, respectively.
Thedifference canbe seen inFig. 2B,whereinwe compare the parameters
for the Huanghe database with the Guy-Simons-Richardson database
(41), which was used to develop the original EH formula.

The coefficient a and power n show abrupt transitions when the bed
material grain size varies through the range of 130 to 190 mm. Recalling
that a = ebCfLb/Hb and that e, b, and Cf are weakly varying coefficients,
the large ratio a/aEH = 18 indicates that Lb/Hb is an order of magnitude
larger in the Huanghe than other sand-bed rivers, implying very low
amplitude bedform features (dunes). The value n = 1.68 is close to the
value for upper-regime plane bed (n = 1.5), suggesting the presence
Fig. 2. GEH formula for the lowerHuanghe sediment transport data and the uni-
versal formula for both fine-grained and sandy environments. (A) Data from the
lower Huanghe collapse to a power law relation, similar to the EH formula, but with a
significantly different coefficient a and power n. Note that the sediment transport
rate in the lower Huanghe is about 15 times larger than that predicted by the original
EH formula. (B) The coefficient a and the power n of GEH show an abrupt transition
(light brown bar) as the grain size of bed material transits through the range of 130
to 190 mm. The error ranges denote the 95% confidence intervals for a and n. The
complete form of the universal sediment transport relation can be found in Supple-
mentary text. The red arrows show themedian bedmaterial grain sizes at Huayuankou
(150 km downstream of Xiaolangdi Dam; see fig. S1) before and after the Xiaolangdi
Dam construction. In addition to the dependence on grain size, the coefficient a and
the power nmay also have a weak dependence on Fr (see fig. S6). The adjusted values
of coefficient a and the power n are based on the complete Guy-Simons-Richardson
database (see Materials and Methods). (C) The grain size range where the abrupt
transition (light brown bar) is seen coincides with the transition of sediment transport
modes; within the grain size range of 130 to 190 mm, the sediment transport mode
transitions from a range where the suspended load is dominant to a range where
the substantial suspended load and bed load coexist. The black dashed line denotes
the threshold of bed load dominance (u*/vs = 0.4), and the blue broken line denotes
the threshold of suspended load dominance (u*/vs = 3). Here, u* is the shear velocity,
and vs is the settling velocity of a sediment particle.
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of long-crested bedforms (dunes) approaching upper-regime plane bed
in the Huanghe. Thus, form drag can be neglected, with t∗fd ≈ 0 and
t∗sf ≈ t∗. Both parameters therefore suggest that the phase transition of
sediment load described above is associated with change in the state of
bedmorphology and, specifically, bedform size. This theoretical prediction
is verified independentlyby comparingt∗sf with t* (see Supplementary text).

The relative absence of dunes in the lower Huanghe has been pre-
viously inferred (42, 43), but direct supporting evidence is sparse. Here,
Ma et al., Sci. Adv. 2017;3 : e1603114 12 May 2017
we provide documentation of dune size in the Huanghe using the re-
cently acquired multibeam bathymetry data collected near Lijin during
the flood period of 2015 WSRS (fig. S7) and base-flow period of 2016
(Fig. 3). Prevailing flow conditions facilitated dune development [that
is, Froude number (Fr), ~0.23 to 0.5] (44), with the aspect ratio Lb/Hb

ranging from 500 to 2000 (1200 for base flow and 500 to 2000 for flood
flow). These values are significantly larger than measurements from
natural rivers and flume experiments with sand beds, where the aspect
Fig. 3. Channelbedbathymetry data of the lowerHuanghe and lowerMississippi River. (A) Bathymetricmapof a straight reach of the lower Huanghe surveyed during the
base flow period of 2016 (A-A′). (B) Bathymetricmap of a straight reach of the lowerMississippi River (B-B′). (C) Relative bed variation along two longitudinal profiles, where x is the
downstream distance from the survey origin point, Hb is the bed elevation, �Hb is the average bed elevation, �H is the average water depth, and Ld and Hd are the wavelength and
wave height of dunes, respectively. (D) Comparison of long profiles of bed elevation between the Huanghe and the Mississippi River, illustrating the difference in bedform
morphology. The A-A′ segment of the Huanghe bed profile shown here is taken from the zone defined by the blue rectangle in (C), whereas the C-C′ segment of Huanghe
profile is taken from fig. S7B and corresponds to the flood season period of WSRS in 2015.
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ratio ranges from 10 to 100 (45, 46). As an example, dunes measured in
the lowerMississippi River have aspect ratios of 18 to 38, that is, close to
those predicted by the standard EH. Therefore, bothmeasurements and
predictions indicate that theHuanghe has bedforms (dunes)with aspect
ratios that are an order of magnitude larger than most large sand-bed
rivers.We speculate that the formof these dunes is due to the fine sand–
silt material of the Huanghe bed because this sediment size has a long
particle advection length (47) and moves mostly in suspended load,
whereas themixture of bed load and suspended load over a typical sand
bed is more conducive to interacting with bedforms that scale with the
depth, such as standard dunes (Fig. 2C). This pointmerits further study,
and a stability analysis of bedforms on fine-grained beds could poten-
tially provide additional insight.

The present universal GEH formula agrees well with both the lower
Huanghe sediment database and the Guy-Simons-Richardson database
(Fig. 4); notably, the universal GEH formula can predict the dimension-
less sediment flux over 10 orders of magnitude, covering characteristic
bed material grain size from 15 mm to 1 mm. The performance of the
GEH formulation for the fine-grained rivers is also compared to three
other relations designed for sediment transport in the Huanghe (see
Supplementary text and table S3). Of the four relations, only the GEH
is based on a known value of bed material size; the others require the
circularity of prior knowledge about the suspended sedimentGSD to pre-
dict transport rates.
 on July 13,
ttp://advances.sciencem

ag.org/
DISCUSSION AND CONCLUSIONS
The exceptionally high sediment transport rate measured for the lower
Huanghe has a physical basis: Bedforms with large aspect ratios reduce
form drag, and thus, boundary shear stress can be nearly entirely used
for sediment transport. It can be expected that results from theHuanghe
can be used to predict the sediment flux in other FGDS, including most
of river-coast-marine settings, inland fine-grained rivers, such as Rio
Bermejo in Argentina (48), Rio Pilcomayo in Argentina and Paraguay
(8), and the Tarim River in western China (49), lahar flows (but with
volumetric sediment concentration of less than 5%) (50), and subglacial
water-sediment systems (51, 52). The new transport formula can not
only help meet the rapidly emerging need to understand the dynamics
Ma et al., Sci. Adv. 2017;3 : e1603114 12 May 2017
of fine-grained sediment transport but also be applied universally to a
wide range of sediment dispersal systems with both silt and coarser-
grained sandy beds.

The analyses presented here indicate that a sediment load phase
transition arises at the grain size range of 130 to 190 mm. This finding
has important implications for evaluating the environmental impacts of
fluvial dam construction and removal. For example, the engineered
WSRS on the Huanghe has led to channel degradation and coarsening
of the bedmaterial (from ~70 to 250 mm; Fig. 2B) for the upper reaches
of the lower Huanghe, just below the Xiaolongdi dam. The formula
presented here indicates that this will lower sediment transport effi-
ciency by an order of magnitude; in addition, the added drag produced
by dunes with a lower aspect ratio could increase water stage. If this
effect exceeds degradation, it could leave the systemprone to levee over-
topping during flood events. This unintended consequence of the
WSRS is worth noting because it could cause a catastrophic failure of
river levees during floods. These consequences may be unique to the
case of the Huanghe. However, more generally, during dam removal
or reservoir sluicing, sediment discharge could rapidly increase due to
bed material fining via the inflow and temporary deposition of fine-
grained sediment from the impoundment (6, 7). This would produce
a local increase in the elevation of the downstream channel bed and
floodplain, further enhancing flood potential. The sediment transport
formula presented here is applicable to nearly the full range of lowland
rivers. The impact of constructing or removing a dam in terms of sed-
iment transport and subsequent stability of the channelmaybe evaluated
with our new sediment transport relation and previous knowledge of the
GSD of bed sediment.
 2017
MATERIALS AND METHODS
Original form of EH formula
The EH formula is a total load equation, comprising both the bed
material part of suspended load and the bed load. Its dimensionless
form readsCfq∗s ¼ aEHt∗

5=2, whereq∗s ¼ qs=
ffiffiffiffiffiffiffiffiffiffi
RgD3

p
is the dimension-

less sediment discharge, that is, the Einstein number [qs = HUC is the
sediment discharge per unit width (H is the water depth;U is the average
flow velocity; and C is the volumetric sediment concentration, with
contributions from both the bedmaterial part of suspended load and
thebed load);R is the sediment submerged specific gravity (1.65 forquartz);
g is the gravitational acceleration; and D is the characteristic (nominal)
grain size of bed material], and aEH = 0.05. In addition, t* = t/(rgRD) is
the dimensionless form of total shear stress, that is, the Shields number,
where t = rCfU

2 = ru*2 is the total shear stress (Cf is the bed resistance
coefficient and u* is the shear velocity). For the normal flow condition
(steady and uniform flow), t = rgHS, where S is the channel bed slope,
so t* = HS/(RD) and Cf = gHS/U2.

While developing the original form of the formula, Engelund and
Hansen (33) used only four of the nine groups of data in the Guy-
Simons-Richardson database (41), obtaining a coefficient aEH = 0.05
and power index nEH = 2.5. Here, all nine groups of data in the Guy-
Simons-Richardson database (41) are used, and the adjusted values for
a and nwere determined to be 0.0355 and 3.0, respectively. The adjusted
formula had only a slight difference from the original form in terms
of predictive accuracy.

Quasi-equilibrium sediment transport database
Measurements of sediment load were collected at hydrological stations
along the Huanghe since the 1950s. During sampling, several positions
Fig. 4. Comparisons between the calculated dimensionless sediment flux
based on the universal GEH formulation and data from two databases.
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were located equally along a cross section, where three to five vertical
sediment samples were collected. The vertical velocity profile, water dis-
charge, water surface level, and surface gradient were also measured.
The sediment concentration and GSDs of sediment samples (from
both the water column and the bed) were subsequently analyzed; the
grain size resolution was 5 mm. The sediment load data used here per-
tain to total load, which comprises the measured suspended load and a
correction with the modified Einstein procedure (MEP) to account for
the bed load. Because themeasurement of both suspended sediment con-
centration and velocity extended down to a reference height not far above
the bed, the MEP was used to calculate the bed load concentration and
velocity below the reference height. On the basis of a theoretical model,
the calculated bed load flux was added to the total sediment load. Addi-
tional details of this procedure were found in the study of Colby and
Hembree (53). However, it should be pointed out that the component
of bed load in the Huanghe was negligible. The average sediment con-
centration C and velocity U used here were the cross-sectional flux-
averaged bedmaterial load concentration and cross-sectionally averaged
velocity, respectively.

The quasi-equilibrium database used here was selected from routine
data collected during the 1980s, for which bed material GSDs are avail-
able, and before the construction of the Xiaolangdi Dam and reservoir.
The criteria for data selection were that (i) water discharges and water
surface level remain unchanged before and after the two-hour survey
(steady flow) and (ii) the suspended load is consistent with other mea-
surements at the same water discharge, surveyed at other times (19, 54).
The quasi-equilibrium data covered a large range of flow and grain size
conditions.Water depth ranged from0.55 to 7.8m, flow velocity ranged
from 0.39 to 2.90m/s, water surface slope ranged from 2 × 10−5 to 9 ×
10−4, and the geometric mean grain size of bed material ranged from
15 to 158 mm. Therefore, the database well characterized the flow and
bed material conditions during both nonflood and flood seasons.

Bed bathymetry data
The survey cruises of the lower Huanghe were conducted during the
WSRS of 2015 and the nonflood (base flow) season of 2016. The survey
site was at Kenli, near Dongying, China, close to Lijin Hydrological
Station and 83 km upstream of the outlet. The bathymetric data were
collected from a boat following a straight reach. The acquisition and
processing procedures followed that of Nittrouer et al. (55). Because of
the relatively shallowdepth of theHuanghe compared to theMississippi
River, the multibeam survey swath width was considerably narrower,
because this width is proportional to water depth beneath the multi-
beam head; for the Huanghe, this depth was 1.0 to 4.0 m during the
survey, whereas for the Mississippi River, it was 20 to 40 m.
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/3/5/e1603114/DC1
Supplementary text
table S1. Summary of hydraulic and grain size conditions of databases that were used for the
development and validation of previous and present formulae.
table S2. Sensitivity analysis of the GEH formulation to cutoff grain size.
table S3. Comparisons between computed and measured sediment discharge in the Huanghe.
fig. S1. Map of the Huanghe Basin and the Loess Plateau.
fig. S2. Sediment concentration diagram.
fig. S3. Schematic diagram of hydrodynamics over asymmetrical, angle-of-repose dunes.
fig. S4. The lower Huanghe data and GEH formulae.
fig. S5. Comparison between the Shields number due to skin friction and the Shields number
due to boundary shear stress at Huayuankou and Lijin gauging stations, respectively.
Ma et al., Sci. Adv. 2017;3 : e1603114 12 May 2017
fig. S6. Dependence of the coefficient a and the power index n of the GEH on Fr.
fig. S7. Channel bed bathymetry data of the lower Huanghe during the flood period of the
2015 WSRS.
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