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brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at VSB Technical University of Ostrava

https://core.ac.uk/display/8981212?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


I declare I elaborated this thesis by myself. All literary sources and publications I have used
had been cited.

Ostrava, May 7, 2010 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



I want to express my deep gratitude to my supervisor Dr. Kamil Postava from Department
of Physic at the Technical University of Ostrava (TUO) who introduced me to the magic
world of optics.



Abstract

This master thesis is focused to modeling of the optical response from periodical optial struc-
tures. The first part is devoted the Berreman and Yeh approach for solving the Maxwell
equations in planar layers medium. Theoretical results are demonstrated on the system
with sufrace plasmon resonance in the gold layer. The main part of the work is devoted to
the modeling of one dimensional periodical structures with the RCWA (Rigorous Coupled
Wave Analysis) method. Photonics crystals with non-reciprocity effect are modeled using
using S-matrix algorithm. The effect of truncation Fourier series and Fourier factorization is
demonstrated. Generalization of spectroscopic ellipsometry method for characterization of
uniaxial anisotropic material is presented.

Keywords: planar layers, periodical structures, optical grating, RCWA, plasmon resonance,
photonics crystal, ellipsometry

Abstrakt

Tato diplomová práce je zaměřena na modelovánı́ optické odezvy od periodických struktur.
V prvnı́ části jsou řešeny Maxwellovy rovnice pro struktury planárnı́ch vrstev pomoci
Berremanova a Yehova přı́stupu. Výsledne vztahy jsou demonstrovovány na přı́kladu
planárnı́ zlaté vrstvy s excitovanou plazmonovou resonancı́. Hlavnı́ část práce je věnována
modelovánı́ periodických lamelárnı́ch (1D) mřı́žek pomoci metody vázaných vln, RCWA
(Rigorous Coupled Wave Analysis). Pomoci S-maticového algoritmu je modelován
fotonický krystal s nereciproými optickými vlastnostmi. Je diskutována přesnost výpočtu
při použitı́ konečného počtu členů Fourierovy aproximace nespojité funkce permitivity
a metoda Fourierovy faktorizace pro zlepšenı́ konvergence. Pro zpětnou charakterizaci
materiálu je uvedeno zobecněnı́ elipsometrických měřenı́ pro připad jednoosé anisotropie.

Klı́ čov á slova: planárnı́ vrstvy, periodické struktůry, optická mřı́žka, RCWA, plasmonová
rezonance, fotonický krystal, elipsometrie
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1 Introduction

Thin films and periodic nanostructures found new applications in telecommunications and
data storage technologies. In the line with the technical progresses in preparation process of
the novel nanostructures it is necessary to evolve calculation methods for the modeling of
optical response and field distribution.Example of application of the thin films technology
are the metallic layers on the window-glass obstructing outside or inside heat radiation. Ma-
terials with the unusual effective optical properties can be designed as a periodical structures
uses the plasmonic or the magnetoplasmonic resonance effect. Example of these advanced
structures is the plasmonics structure with strong non-reciprocity effect. This structure has
different propagation constant in one direction of propagation than in the opposite. In the
telecommunications the optical insulator is used as a one-way optical filter protecting the
device against backward reflected light. Because the actual conception of stand-alone (Fig-
ure. 1) optical insulator is bulky device which can not be integrated, it is necessary to design
material structure with hight transmission in forward direction and strong attenuation in
backward direction. This is a need for design and modeling of the structure, understanding
of new physical phenomena, and efficient characterization of device prototype.

Polarizer
Polarization
rotator

PolarizationIntegrated
device

Optical network

Reflection from
interface

Polarizer

Laser
Beam

Figure 1: Conception of the stand alone optical insulator in telecommunication.

Objective of this work is modeling optical response from the system of planar layers and
from the optical one-dimensional gratings. If we talking about light and its interaction with
medium, it is obvious that there are two basic approaches for solving the Maxwell equa-
tions. First was introduced by D. W. Berreman in 1972, [1], and the second by P. Yeh in
1979, [2]. Both approaches are based on Maxwell equations and have the same results, but
the keynote is different which gives us possibility for the derivation of analytical formulas
in some special cases. Modeling of optical response from the one-dimensional gratings is
little more complicated because of discontinuity of permitivity. The way for solving this
discontinuous structures is the rigorous coupled wave analysis (RCWA), [3, 4]. For effective
numerical calculation L. Li introduced advanced algorithms based on recursive S-matric al-
gorithm [5, 6]. Beside numerical modeling of structure an experimental feedback between
models and fabricated materials is needed. Spectroscpic ellipsometry [7, 8] is one of efficient
optical methods for characterization thin films and nanostructures and is based on detection
of changes in reflected polarized light. The measured signals are directly connected to the
Jones reflection matrix of the sample. This method is usualy applied to the both isotropic
materials [9]. Characterization of anisotropic materials using phase modulated method is
elaborated in this work.

This master thesis consist of tree main chapters. Chapter 2. summarizes transformation of
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Maxwell equations into form used in the Berreman and Yeh approach. Using the continuity
of the electric and magnetic field tangential components at the planar interface the M-matrix
algorithm is introduced. Using the mathematical approach the the planar structure with
excited surface plasmon resonance is modeled. In Chapter 3. the theoretical knowledge of
solving Maxwell equations is applied to the one-dimensional (1D) lammelar gratings. For
the expression of the field inside periodical structure the truncated Fourier series of the per-
mitivity tensor is introduced using the RCWA method. Implementation of the code for 1D
grating based on MATLAB software is the most important result of this master thesis. Nu-
merical stability and convergence is improved using the scattering matrix algorithm for the
one-dimensional gratings and the Fourier Factorization method. The effect of truncation
Fourier series is demonstrated on the example as well as the improvement of the conver-
gence with the Fourier factorization method. The main result of this chapter is modeling
optical periodical structures and presentation of photonics crystal with strong nonreciproc-
ity effect. After the designing and modeling the new structures and their fabrication we have
to characterize it using, for example, optical ellipsometry. Chapter 4. is devoted generaliza-
tion of the spectroscopic ellipsometry to characterize anisotropic samples. The method is
demonstrated on example of the uniaxial anisotropic crystal of the SnO2.
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2 Theoretical background

2.1 Maxwell equations

Electromagnetic field and its interactions with surroundings is described by a set of the
Maxwell equations defining the relations between the electric field E (r, t), the magnetic
field H (r, t), the electric displacement D (r, t), the magnetic flux volume density B (r, t), the
density volume of the free charges ρ (r, t), the and current density j (r, t):

∇× H (r, t) = j (r, t) +
∂D (r, t)

∂t
, (2.1a)

∇× E (r, t) = −∂B (r, t)

∂t
, (2.1b)

∇ · D (r, t) = ρ (r, t) , (2.1c)

∇ · B (r, t) = 0, (2.1d)

and additional constitution relations between the polarization P (t, t) and the magnetization
M (r, t) volume density:

D (r, t) = ǫ0E (r, t) + P (r, t) , (2.2a)

B (r, t) = µ0H (r, t) + µ0M (r, t) , (2.2b)

µ0 is the free space permeability and ǫ0 is the free space permitivity. At following calcula-
tions let’s consider magnetization volume density for optical frequencies M = 0 and linear
material properties without free charges at the interfaces:

ρ (r, t) = 0. (2.3)

The charge volume density j can be expressed using conductivity tensor σ̂ by relation:

j (r, t) = σ̂E (r, t) . (2.4)

Using tensor of the electric susceptibility χ̂e defining relation between the polarization vol-
ume density and electric intensity:

P (r, t) = ǫ0χ̂eE (r, t) , (2.5)

we defined the permitivity tensor ǫ̂:

ǫ̂ = ǫ0

(

Î + χ̂e

)

= ǫ0ǫ̂R. (2.6)

Those premises let’s us write Maxwell equations (2.1a - 2.1d) in the new form:

∇× H (r, t) = ǫ̂
∂E (r, t)

∂t
+ σ̂E (r, t) , (2.7a)

∇× E (r, t) = −µ0
∂H (r, t)

∂t
, (2.7b)

∇ · [ǫ̂E (r, t)] = 0, (2.7c)

∇ · H (r, t) = 0. (2.7d)
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During following calculations let impeach only monochromatic plane waves and separation
of time- and space-dependency. Than the electric and magnetic field vector can be expressed
in form:

E (r, t) = E0e exp (i (kr − ωt)) = E (r)exp (−iωt) , (2.8a)

H (r, t) = H0h exp (i (kr − ωt)) = H (r)exp (−iωt) , (2.8b)

where ω = 2π
λ

, λ is the wavelength, complex constants E0, H0 are time and space inde-
pendent amplitudes and e,h are polarization vectors time and space independent as well.
Relations (2.8aa,b) used in (2.7) leads to time-dependency elimination:

∇× H (r) = −iωǫ̂E (r) + σ̂E (r) , (2.9a)

∇× E (r, t) = iωµ0H (r) . (2.9b)

Final form of Maxwell’s equations is obtained with complex permitivity tensor ǫ̂
′

in equation
(2.9a):

ǫ̂
′

= ǫ̂ +
i

ω
σ̂, (2.10)

This tensor describes optical properties of any anisotropic material. In case of absorbing
material the imaginary part of complex permitivity tensor is nonzero, ℑǫ̂

′ 6= 0. Therefore
final expression of Maxwell equations in the form:

∇× H (r) = −iωǫ̂
′

E (r) , (2.11a)

∇× E (r, t) = iωµ0H (r) , (2.11b)

∇ · [ǫ̂E (r, t)] = 0, (2.11c)

∇ · H (r, t) = 0, (2.11d)

describing any absorbing or non-absorbing linear homogeneous non-dispersive anisotropic
material.

2.2 Polarized light

Light is an electromagnetic wave defined by vector of electric and magnetic intensity con-
nected together with Maxwell’s equations (2.11). For monochromatic plane wave these vec-
tors can be expressed in form:

E (r, t) = E0e exp ([i (k · r − ωt)]) ,

H (r, t) = H0h exp ([i (k · r − ωt)]) . (2.12)

With respect to complementarity of electric and magnetic field intensity E,H (see
eq.(2.11a,2.11b)), following derivations will be done only for electric field E. Real part
of wave vector ℜ{k} represents direction of propagation and imaginary ℑ{k} effects
increasing or decaying of amplitude. Vector e is the polarization vector. In general case it is
the elliptical polarization (ending point of vector copying out the ellipse). In right-handed
cartesian system of coordinates with z-axis parallel to k vector the plane wave polarization
ellipse is perpendicular to direction of propagation (z-axis). In common configuration in
calculations and experiments the system of coordinates is chosen with respect to perpen-
dicularity x-axis to plane of incidence-plane of incidence is y − z plane (Figure 3.). In that
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x

y

Figure 2: Real part of elliptically polarized vector e, propagation in z-axis direction.

geometry there are two significant polarizations. S-polarization (TE, Transversal Electric,
e perpendicular to plane of incidence) and p-polarization (TM, Transversal Magnetic, e
parallel with plane of incidence). Because of orthogonality of the s- and p-polarizations, any

x

y

z

φ

p

s

Figure 3: s- and p-polarization in system of coordinates.

linear polarized wave could be determined by linear combination of them. According to
Jones formalism [10]:

e =




ex

ey



 =




exeiϕx

eye
iϕy



 (2.13)

the s- and p-polarization is represented by the vector:

es =




1

0



 , ep =




0

1



 . (2.14)
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2.3 Material parameters

Optical response of material is effected by material parameters, which are permitivity ǫ and
permeability µ. For optical frequencies the permeability is equal permeability of the free
space, µ = µ0. Tensor of permeability in (2.11a) is in general in form:

ǫ̂
′

R =








ǫxx ǫxy ǫxz

ǫyx ǫyy ǫyz

ǫzx ǫzy ǫzz








. (2.15)

Form of general anisotropic tensor can be reduced into simplest form:

• Isotropic material

Isotropic material has rotation symmetry around all exes:

ǫ̂
′

R =








ǫxx 0 0

0 ǫxx 0

0 0 ǫxx








. (2.16)

• Uniaxial anisotropy

Uniaxial anisotropic material has rotation symmetry around one symmetry axis, in the
following case the y-axes:

ǫ̂
′

R =








ǫxx 0 0

0 ǫyy 0

0 0 ǫxx








. (2.17)

• Biaxial anisotropy

Tensor of biaxial anisotropic material has all diagonal elements different:

ǫ̂
′

R =








ǫxx 0 0

0 ǫyy 0

0 0 ǫzz








. (2.18)

Effect when the permitivity tensor depends on outer magnetic field is called Magneto-optic
effect. If the dependency is linear - characterized with Voight parameter q, there are three
basic anisotropic configurations:

• Polar configuration

ǫxx








1 −iq 0

iq 1 0

0 0 1








, (2.19)
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• Longitudinal configuration

ǫxx








1 0 iq

0 1 0

−iq 0 1








, (2.20)

• Transversal configuration

ǫxx








1 0 0

0 1 −iq

0 iq 1








. (2.21)

If the space orientation of tensor does not corresponds with specified system of coordinates
it can be transformed by rotation matrix R:

ǫ̂rot = R−1ǫ̂R (2.22)

Each rotation transformation can be described with combination of rotation around all axes
apart: Rotation matrix around x axis with angle ϕ, y with α and z with β has form:

R(ϕ, α, β) =








cos ϕ − sinϕ 0

sinϕ cos ϕ 0

0 0 1















1 0 0

0 cos α sinα

0 − sinα cos α















cos β 0 − sinβ

0 1 0

sinβ 0 cos β








(2.23)

2.4 Solving Maxwell equations in planar structure

Berreman (and Yeh (2.4.2)) approach to finding solutions of Maxwell equations (2.11) is
based on continuity of tangential component of the electric field E and magnetic field H
on the plane interface between two media. From continuity fact comes out the idea of solv-
ing sets of Maxwell equations only for their tangential components and recalculate normal
components from them.

2.4.1 Berreman approach for solving Maxwell equations

Berreman calculation [1] starts from (2.11a,2.11b) and expand them into system of linear
differential equations with constant coefficients. Is necessary to do a few transformations to
get final form of system of equation. First step is applying normalization:

E
′

(r) = 4

√

µ−1
0 ǫ0E (r) , (2.24a)

H
′

(r) = 4

√

ǫ−1
0 µ0H (r) , (2.24b)

into (2.11a,2.11b):

∇× H
′

(r) = −ik0ǫ̂E
′

(r) , (2.25a)

∇× E
′

(r, t) = ik0H
′

(r) , (2.25b)
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superstrat (0)

layer (1)

layer (2)

layer (N)

z = 0

x

y

z

substrat (N + 1)

Figure 4: System of coordinates for planar structure

where k0 = ω
c

is the amplitude of wave vector in the free space. With general permitivity
tensor (2.15) equations could be written with matrix notation in form:

















0 0 0 0 − ∂
∂z

∂
∂y

0 0 0 ∂
∂z

0 − ∂
∂x

0 0 0 − ∂
∂y

∂
∂x

0

0 − ∂
∂z

∂
∂y

0 0 0

∂
∂z

0 − ∂
∂x

0 0 0

− ∂
∂y

∂
∂x

0 0 0 0

































E
′

x (r)

E
′

y (r)

E
′

z (r)

H
′

x (r)

H
′

y (r)

H
′

z (r)

















=

= ik0

















−ǫxx −ǫxy −ǫxz 0 0 0

−ǫyx −ǫyy −ǫyz 0 0 0

−ǫzx −ǫzy −ǫzz 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

































E
′

x (r)

E
′

y (r)

E
′

z (r)

H
′

x (r)

H
′

y (r)

H
′

z (r)

















. (2.26)

With respect to the structure and the system of coordinates (see Fig.4), solving plane waves
would be constant at x − y plane:

E
′

(r) = E
′

0e
′

exp (ik0 (νxx + νyy)) , (2.27a)

H
′

(r) = H
′

0h
′

exp (ik0 (νxx + νyy)) , (2.27b)
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which lead to constant derivation in direction of tangential components and electromagnetic
field in structure is a function of z-coorinate:

















0 0 0 0 − ∂
∂z

ik0νy

0 0 0 ∂
∂z

0 −ik0νx

0 0 0 −ik0νy ik0νx 0

0 − ∂
∂z

ik0νy 0 0 0

∂
∂z

0 −ik0νx 0 0 0

−ik0νy ik0νx 0 0 0 0

































e
′

x

e
′

y

e
′

z

h
′

x

h
′

y

h
′

z

















=

= ik0

















−ǫxx −ǫxy −ǫxz 0 0 0

−ǫyx −ǫyy −ǫyz 0 0 0

−ǫzx −ǫzy −ǫzz 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

































e
′

x

e
′

y

e
′

z

h
′

x

h
′

y

h
′

z

















, (2.28)

where νx, νy are the components of normalized wave vector k:

k = k0 (iνx + jνy + kνz) . (2.29)

Dependency of z-components on x−, y-components coming out from (2.28) could be written:




0 0 0 −ik0νy ik0νx 0

−ik0νy ik0νx 0 0 0 0





















e
′

x

e
′

y

e
′

z

h
′

x

h
′

y

h
′

z

















= ik0




−ǫzx −ǫzy −ǫzz 0 0 0

0 0 0 0 0 1





















e
′

x

e
′

y

e
′

z

h
′

x

h
′

y

h
′

z

















.

(2.30)
Before following deductions let’s introduce vector of tangential components F (z) depending
on z-direction:

F (z) =
[

e
′

x (z) ,h
′

y (z) , e
′

y (z) ,h
′

x (z)
]T

, (2.31)
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Using F-vector it is possible to obtain explicit formulas for normal components e
′

z,h
′

z :




−ǫ−1

zz ǫzx −ǫ−1
zz νx −ǫ−1

zz ǫzy ǫ−1
zz νy

−νy 0 νx 0















e
′

x

h
′

y

e
′

y

h
′

x











︸ ︷︷ ︸

F(z)

=




e
′

z

h
′

z



 . (2.32)

Normal components relations used in (2.28) leads to dependency reduction on z-direction.
System of four differential equations (4× 4) is obtained ant it is solvable with different tech-
niques. By proper reorganization is possible to transform this problem into eigenvalue prob-
lem and it should be easy numerically solved.

Tangential component can be written in the same way as normal (2.32):










0 0 0 − ∂
∂z

0 0 ∂
∂z

0

0 − ∂
∂z

0 0

∂
∂z

0 0 0





















e
′

x

e
′

y

h
′

x

h
′

y











+ ik0











νye
′

z

−νxe
′

z

νyh
′

z

−νxh
′

z











=

= ik0











−ǫxx −ǫxy 0 0

−ǫyx −ǫyy 0 0

0 0 1 0

0 0 0 1





















e
′

x

e
′

y

h
′

x

h
′

y











+




−ǫxze

′

z

ǫyze
′

z



 . (2.33)

The system is reorganized with respect to the vector F (z) (2.31) substitutions e
′

z , e
′

z accord-
ing to (2.32) are used:




















0 − ∂
∂z

0 0

0 0 0 ∂
∂z

0 0 − ∂
∂z

0

∂
∂z

0 0 0











+ ik0











−ν2
y 0 νyνx 0

νyνx 0 −ν2
x 0

−νyǫ
−1
zz ǫzx −νyǫ

−1
zz νx −νyǫ

−1
zz ǫzy νyǫ

−1
zz νy

νxǫ−1
zz ǫzx νxǫ−1

zz νx νxǫ−1
zz ǫzy νxǫ−1

zz νy





















F (z) =

=





















−ǫxx 0 −ǫxy 0

−ǫyx 0 −ǫyy 0

0 0 0 1

0 1 0 0





















ǫxzǫ
−1
zz ǫzx ǫxzǫ

−1
zz νx ǫxzǫ

−1
zz ǫzy −ǫxzǫ

−1
zz νy

ǫyxǫ−1
zz ǫzx ǫyzǫ

−1
zz νx ǫyzǫ

−1
zz ǫzx −ǫyzǫ

−1
zz νy

0 0 0 0

0 0 0 0





















ik0F (z) .

(2.34)
Final form of eigenvalue problem:

∂

∂z
F (z) = ik0CF (z) , (2.35)
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where matrix C comes out (2.34):

C =











−νxǫ−1
zz ǫzx 1 − νxǫ−1

zz νx −νxǫ−1
zz ǫzy νxǫ−1

zz νy

−ν2
y + ǫxx − ǫxzǫ

−1
zz ǫzx −ǫxzǫ

−1
zz νx νyνx + ǫxy − ǫxzǫ

−1
zz ǫzy ǫxzǫ

−1
zz νy

−νyǫ
−1
zz ǫzx −νyǫ

−1
zz νx −νyǫ

−1
zz ǫzy νyǫ

−1
zz νy − 1

−νxνy − ǫyx + ǫyzǫ
−1
zz ǫzx ǫyzǫ

−1
zz νx ν2

x + ǫyy − ǫyzǫ
−1
zz ǫzy −ǫyzǫ

−1
zz νy











.

(2.36)
Equation (2.35) is soluble as an eigenvalue problem of C matrix.
Eigenvalue decomposition:

CT = VT, (2.37)

where T is column matrix of eigenvector and V is diagonal matrix of eigenvalues. Because of
linear independence of eigenvectors, any vector which is in conformity with Maxwell equa-
tions (2.11) can be expressed as linear combination of eigenvectors and vector of amplitudes
g (z) :

F (z) = Tg (z) . (2.38)

Final system of differential equations for amplitudes vector is obtained by substituting (2.38)
do (2.35):

∂

∂z
g (z) = ik0Vg (z) , (2.39)

and the solution g (z) can be written:

g (z) = exp (ik0ziV)A, (2.40)

where A is the vector of amplitudes on i-th interface, and zi =∈ 〈0, di〉 is the z-coordinate at
i-th layer.

Example 2.4.1

T and V matrices of isotropic homogeneous material

Let the plane of incidence wave is identical with y − z plane (according to Figure. 3) and
the medium is isotropic and homogeneous. Than component of normalized wave vector
νx = 0, permitivity tensor ǫ̂ is a diagonal matrix, ǫ̂ = diag (ǫ, ǫ, ǫ) and C matrix describing
this medium can be written in form:

Ciso =











0 1 0 0

ǫ − ν2
y 0 0 0

0 0 0 νyǫ
−1νy − 1

0 0 −ǫ 0











. (2.41)

The next step is calculation eigenvalues Viso and eigenvectors Tiso of matrix Ciso. Analytical
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formulas are necessary because of knowledge of ordering up and down vectors.

Viso =












√

ǫ − ν2
y 0 0 0

0 −
√

ǫ − ν2
y 0 0

0 0
√

ǫ − ν2
y 0

0 0 0 −
√

ǫ − ν2
y












, (2.42)

Tiso =












1 1 0 0
√

ǫ − ν2
y −

√

ǫ − ν2
y 0 0

0 0 (
√

ǫ)
−1

√

ǫ − ν2
y (

√
ǫ)

−1
√

ǫ − ν2
y

0 0 −√
ǫ

√
ǫ












. (2.43)

Considering to vector of the tangential components F (2.31) are column vectors at matrix
Tiso organized by following way:

Tiso = [Sdown, Sup, Pdown, Pup] (2.44)

2.4.2 Yeh approach for solving Maxwell equations

Another way how to solve the electromagnetic wave propagating in anisotropic medium
has been introduced by Yeh [2, 11]. Instead of solving system of linear differential first-order
equations, the system is conversed into one second-order equation. With the aid of Yeh
approach is easy to get analytical formulas for some special mediums. For example isotropic
homogeneous media or media with special anisotropy caused by external magnetic field.
Firstly the Helmholtz wave equation is deducted from Maxwell equations (2.7) and expected
solution (2.8):

k × [k × E] + ω2ǫ̂E = 0, (2.45)

and equation for H:
H = N × E, (2.46)

where N = k0 (νxi + νyj + νzk).
Equation (2.45) is expanded and assuming isotropic medium (ǫ̂ = diag (ǫ, ǫ, ǫ)) simplified
into form: 






ǫ − ν2
y − nu2

z νyνx νzνx

νxνy ǫ − ν2
x − ν2

z νzνy

νxνz νyνz ǫ − ν2
x − ν2

y








︸ ︷︷ ︸

B

·








ex

ey

ez








= 0 (2.47)

Goal of solving (2.47) is to find nontrivial solution for normal component νz for νx and νy

given by incident wave. Values νz describes propagation direction as well as values in T
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matrix, (3.14). Let estimate det (B) = 0, than νz is equal to:

νz,1 = +
√

ǫ − ν2
x − ν2

y

νz,2 = −νz,1 = −
√

ǫ − ν2
x − ν2

y

νz,3 = +
√

ǫ − ν2
x − ν2

y

νz,4 = −νz,3 = −
√

ǫ − ν2
x − ν2

y

(2.48)

Propagation constant with positive real part represents down-propagating modes, with neg-
ative real part up-propagating modes. This propagation constants are connected with two
up- and two down-propagating plane waves. Thus can be chose arbitrary wit limitation
of linearly independence. Advantageously they are chosen as a s- and p-polarized waves,
however each wave satisfying wave equation (2.47) can be used.

e1 =








νy

−νx

0








, h1 =








νxνz,1

νyνz,1

−
(
ν2

x + ν2
y

)








,

e2 =








νy

−νx

0








, h2 =








−νxνz,1

νyνz,1

−
(
ν2

x + ν2
y

)








,

e3 =








νxνz,3

νyνz,3
(
ν2

x + ν2
y

)








, h3 =








νyν
−1
z,3

(
ν2

x + ν2
y − ν2

z,3

)

νxν−1
z,3

(
ν2

x + ν2
y − ν2

z,3

)

0








,

e4 =








−νxνz,3

−νyνz,3
(
ν2

x + ν2
y

)








, h4 =








−νyν
−1
z,3

(
ν2

x + ν2
y − u2

z,3

)

νxν−1
z,3

(
ν2

x + ν2
y − ν2

z,3

)

0








.

(2.49)

Realiton (2.46) has been used for calculation magnetic field. Matrix of the tangential compo-
nents T is assembled from components of field vectors (2.49) according to the column vector
F (2.31) and propagation direction (constant νz).

Example 2.4.2

Matrix of tangential component with Yeh approach applied to isotropic homogeneous

material

Let the plane of incidence wave be in y − z plane (according to Figure. 3) and isotropic
homogeneous medium. Than component of normalized wave vector νx = 0, permitivity
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tensor ǫ̂ is a diagonal matrix, ǫ̂ = diag (ǫ, ǫ, ǫ) and wave equation (2.47) has form:








ǫ − ν2
y − ν2

z 0 0

0 ǫ − ν2
z νzνy

0 νyνz ǫ − ν2
y








︸ ︷︷ ︸

B

·








ex

ey

ez








= 0 (2.50)

From condition det (B) = 0 are the normal component of refractive index νz :

νz,1,3 =
√

ǫ − ν2
y , νz,2,4 = −

√

ǫ − ν2
y (2.51)

Solutions related to values νz,i presenting linear polarized waves can be written:

e1 =








1

0

0








, h1 =








0

νz,1

−νy








,

e2 =








1

0

0








, h2 =








0

−νz,1

−νy








,

e3 =











0

0

(
√

ǫ)
−1

√

ǫ − ν2
y

−√
ǫνy











, h3 =








−√
ǫ

0

0








,

e4 =











0

0

(
√

ǫ)
−1

√

ǫ − ν2
y

√
ǫνy











, h4 =








√
ǫ

0

0








.

(2.52)

Separating tangential components of e and h is assembled matrix Tiso. Columns of matrix
are ordered with respect to related propagation constants, normal components of refractive
index νz,i. According to system of coordinates and convention (2.12) has down-propagating
wave positive real part of νz,i and up-propagating mode negative real part. Using the same
ordering as in Example. 2.4.1 and (2.44), is the tangential component matrix:

Tiso =












1 1 0 0
√

ǫ − ν2
y −

√

ǫ − ν2
y 0 0

0 0 (
√

ǫ)
−1

√

ǫ − ν2
y (

√
ǫ)

−1
√

ǫ − ν2
y

0 0 −√
ǫ

√
ǫ












, (2.53)
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and matrix of propagation constant:

Viso =












√

ǫ − ν2
y 0 0 0

0 −
√

ǫ − ν2
y 0 0

0 0
√

ǫ − ν2
y 0

0 0 0 −
√

ǫ − ν2
y












, (2.54)

It is easy to see that two different approaches, Berreman’s and Yeh’s formalism, has the same
result in form of the tangential components matrices and the propagation constant matrices.

2.5 Boundary conditions for planar interface

In this section theoretical results about solving Maxwell equations in medium based on tan-
gential components continuity (Chapter 2.4.) is applied to planar layers system. Firstly is
discussed case with one layer (see Figure 5.) surrounded with substrate and superstrate.
System contains two interfaces and is necessary cover up propagation thought layer. Eigen-
modes of ellipticaly polarized electromagnetic wave in i-th medium are represented by C(i)

matrix eigenvectors.

T(i)A(i) (zi)

T(i+1)A(i+1) (zi)
(zi)

P(i+1)

T(i+1)A(i+1) (zi+1)

T(i+2)A(i+2) (zi+1)
z(i+1)

Figure 5: Wave transformation in propagation across from one layer

Analytical formulas for isotropic homogeneous medium is derived in Example 2.4.1. Let
us to define vector of amplitudes A(i):

A(i) =
[

A
(i)
1down

, A
(i)
2up

, A
(i)
3down

, A
(i)
4up

]T

(2.55)

because columns of eigenmodes matrix T(i)iso (2.43) has the same ordering. Matrix T(i+1) is
easy to calculate from C(i+1) (2.36). Followed equation results from tangential components
continuity:

T(i)A(i) (zi) = T(i+1)A(i+1) (zi) . (2.56)

Now it is easy to give an expression of amplitudes on the other interface side:

A(i) (zi) =
(

T(i)
)
−1

T(i+1)A(i+1) (zi) . (2.57)

Amplitudes change at the lower interface (zi+1) is in the same relation:

A(i+1) (zi+1) =
(

T(i+1)
)
−1

T(i+2)A(i+2) (zi+1) . (2.58)
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Propagating wave through layer from interface (zi) to (zi+1) is changed and this effect is
described with propagation matrix P(i):

P(i) =












exp
(

ik0 [V]1,1 d(i)
)

0 0 0

0 exp
(

ik0 [V]2,2 d(i)
)

0 0

0 0 exp
(

ik0 [V]3,3 d(i)
)

0

0 0 0 exp
(

ik0 [V]4,4 d(i)
)












,

(2.59)
where [V]ii are propagation constants, di is the thickness of i-th layer and the vector of am-
plitudes is transformed according to relation:

A(i+1) (zi+1) = P(i)A(i+1) (zi) . (2.60)

Relation between wave in superstrate A(i) (zi) and wave in substrate A(i+2) (zi+1) is given
by combination (2.56-2.60):

A(i) (zi) =
(

T(i)
)
−1

T(i+1)
(

P(i+1)
)
−1 (

T(i+1)
)
−1

T(i+2)A(i+2) (zi+1) . (2.61)

For system with N planar layers is relation between vector of amplitudes in superstrate and
substrate following form1:

A(0) =
(

T(0)
)
−1

(
N∏

i=1

T(i)
(

P(i)
)
−1 (

T(i)
)
−1

)

T(N+1)A(N+1) = MA(N+1). (2.62)

In each point of layer can exists four independent modes, F
(i)
up,F

(i)
down,F

(i)
up,F

(i)
down. Consider-

ing C of general material (anisotropic, homogeneous), eigenvectors matrix T can be written:

T(i) =











e
(i)
1,x e

(i)
2,x e

(i)
3,x e

(i)
4,x

h
(i)
1,y h

(i)
2,y h

(i)
3,y h

(i)
4,y

e
(i)
1,y e

(i)
2,y e

(i)
3,y e

(i)
4,y

h
(i)
1,x h

(i)
2,x h

(i)
3,x h

(i)
4,x











. (2.63)

For each wave in structure is defined amplitudes vector A(i) =
[

A
(i)
1down

, A
(i)
2up

, A
(i)
3down

, A
(i)
4up

]T

.

Product of T(i)A(i) is total values of tangential field components at various point of structure:











e1,x e2,x e3,x e4,x

h1,y h2,y h3,y h4,y

e1,y e2,y e3,y e4,y

h1,x h2,x h3,x h4,x











︸ ︷︷ ︸

T











A1down

A2up

A3down

A4up











=











ex

hy

ey

hx











. (2.64)

1It is not necessary to calculate inversion to matrix P(i) in numerical implementation, changing the sign in
exponential factor spends calculation time.
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2.5.1 Reflection coefficients

In case of isotropic medium, the eigenmodes are linearly s- and p-polarized waves. Reflec-
tion coefficients of s- and p-polarized wave can be expressed from relation (2.62) and ampli-
tude vector definition (2.55). Components of amplitudes vectors are partially set down from

character of physical problem: incidence wave from superstrat A
(0)
1 = 1, (A

(0)
3 = 1) for s-

(or p-) polarized wave and no incoming wave from substrat A
(N)
2 = A

(N)
2 = 0. Remaining

components of amplitude vector can be computed from reflection coefficients:

rss =
M21M33 − M23M31

M11M33 − M13M31

rsp =
M41M33 − M43M31

M11M33 − M13M31

rps =
M11M23 − M21M13

M11M33 − M13M31

rpp =
M11M43 − M41M13

M11M33 − M13M31
(2.65)

2.6 Numerical model: surface plasmon resonance on gold laye r

Plasmon resonances in nanostructures are very promissing to locally enhance electromag-
netic field in the structure and new phenomena are observed. A new phenomena of ”plas-
mons” and ”magnetopalasmons” is in the focus of recent research. In this subsection the
surface plasmon in Au-wather interface is modeled. Figure 6. demonstrates system of the
glass prism with gold layer and water as substrate. For proper configuration of the angle of
incidence in glass, the wavelength, thickness of gold layer and p-polarized light the plasnom
plasmon resonance can be excited on gold layer.

SiO2( glass, BK7)

Au

H2O

Figure 6: Configuration for Surface plasmon resonance with glass prism and gold layer.
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Parameters used in model:

• wavelength: 589.3 nm

• thick of Au film: 44nm

• refractive index of glass: 1, 515

• refractive index of gold: 0.28 + 3.017i

• refractive index of water: 1, 33

Figure 7. shows schematically the glass superstrate, the planar gold layer and water as
substrate.

TSiO2ASiO2 SiO2

TAuAAu Au

TH2OAH2O
H2O

Figure 7: System of planar layers in SPR system

According to M-matrix algorithm (2.62) is assembled the M-matrix of the system for angles
of incidence φ ∈ (0, 90). For each angle of incidence is calculated the M-matrix and the
reflectance coefficients RS = rssr

∗

ss and Rp = rppr
∗

pp, (see eq. 2.65):
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Figure 8: Dependence of the reflectance on angle of incidence for system glass-gold-water.

From Figure 8. we can see the plasmon excitation for the angle of incidence φ = 74.8◦.
As expected, the surface plasmon resonance is observed onlz for p-polarized wave.
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3 Polarized light in periodical structures

3.1 One-dimensional grating

One dimensional grating consists of periodical lamellar structure. System of planar layers
presented in previous chapter can be considered as a zero-dimension problem because there
is no periodical medium. Other point of view is that planar layer is periodical structure made
of two same materials with the infinite period Λ. Usual one-dimensional grating is shown
on Figure 9. In following calculations let’s consider the plane of incidence in y − z plane,

x

y

zΛ ǫ1 ǫ2

k

k1

k−1

k0

Figure 9: System of coordinates for 1D grating

the plane of incidence is perpendicular to lamellas. Because gratings permitivity tensor is
a discontinuous function it is necessary to use more advanced method for calculating with
field tangential components instead of M-matrix algorithm (2.62) in planar layers. Algorithm
discussed in this work is Rigorous Coupled Wave Analysis (RCWA) based on approximation
of permitivity function by its truncated Fourier series [12].

3.1.1 RCWA algorithm for periodic structures

Equations describing field in the structure are the same normalized Maxwell equations as
defined in Chapter 2.4 (2.25):

∇× H
′

(r) = −ik0ǫ̂E
′

(r) , (3.1a)

∇× E
′

(r, t) = ik0H
′

(r) . (3.1b)

Difference is that the permitivity tensor ǫ̂ is now function of y axis direction. For that can be
elements ǫij expanded into its Fourier series (see Example 3.1.2.):

ǫij (r) =
∞∑

n=−∞

ǫij,nexp

(

in
2π

Λ
y

)

, (3.2)
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where Λ is period of gratings lammelas and ǫij,n is n-th Fourier series coefficient defined2.:

ǫij,n =
1

Λ

Λ∫

0

ǫij (y) exp

(

−in
2π

Λ
y

)

dy. (3.3)

Same expansion is applied to electric and magnetic field vectors E
′

,H
′

in every layer in
medium including homogeneous layers. In superstrate the expansion has meaning of all
possible incident a reflected waves. In substrate expansion leads to description of all prop-
agated modes through medium. Because the x and y components of wave vector does not
change in each layer, they can be described in the form:

E
′

(r) =
∞∑

n=−∞

E0,nen (z) exp (ik0 (νxx + νyy)) exp

(

in
2π

Λ
y

)

, (3.4a)

H
′

(r) =
∞∑

n=−∞

H0,nhn (z) exp (ik0 (νxx + νyy)) exp

(

in
2π

Λ
y

)

. (3.4b)

In computing is not possible to calculate with infinite Fourier expansion. For that is expan-
sion symmetrically truncated to 2N + 1 diffraction orders. Using equations (3.4a) and (3.4b)
in Maxwell equation (2.25a) and (2.25b) can be written in form:

∇×
N∑

n=−N

hnexp (ik0 (νxx + νyy)) exp

(

in
2π

Λ
y

)

=

−ik0

N∑

n=−N

N∑

m=−N

ǫ̂n−menexp (ik0 (νxx + νyy)) exp

(

in
2π

Λ
y

)

, (3.5)

∇×
N∑

n=−N

enexp (ik0 (νxx + νyy)) exp

(

in
2π

Λ
y

)

=

ik0

N∑

n=−N

hnexp (ik0 (νxx + νyy)) exp

(

in
2π

Λ
y

)

, (3.6)

where ǫ̂n is tensor of n-th truncated Fourier expansion components. Compact form of (3.5)
and (3.6) is better for further calculation and implementation:

∇× {F ⌈h (z)⌉ exp (ik0 (νxx + νyy))} = −ik0F ⌈⌈ǫ̂⌉⌉ ⌈e (z)⌉ exp (ik0 (kxx + kyy)) , (3.7a)

∇× {F ⌈e (z)⌉ exp (ik0 (νxx + νyy))} = F ⌈h (z)⌉ exp (ik0 (νxx + νyy)) , (3.7b)

Matrix F is a matrix with Fourier exponents on its diagonal and has size (2N + 1)×(2N + 1):

Fij = δijexp

(

i (j − N − 1)
2π

Λ

)

. (3.8)

The symbol ⌈.⌉ stands by the amplitudes vector of truncated Fourier expansion (in the y
direction) and symbol ⌈⌈.⌉⌉ stands by Toeplitz amplitude matrix of expanded permitivity

2In general case grating layer can be made of more than two materials
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tensor function ǫ̂ (y) (see Example 3.1.1.). Before transforming equations in the same way
like in (2.26) are both sides multiplied with F−1 and equations are particularly derived with
respect to constant tangential components (much like in (2.28))

















0 0 0 0 − ∂
∂z

∂
∂y

0 0 0 ∂
∂z

0 − ∂
∂x

0 0 0 − ∂
∂y

∂
∂x

0

0 − ∂
∂z

∂
∂y

0 0 0

∂
∂z

0 − ∂
∂x

0 0 0

− ∂
∂y

∂
∂x

0 0 0 0

































⌈ex (r)⌉
⌈ey (r)⌉
⌈ez (r)⌉
⌈hx (r)⌉
⌈hy (r)⌉
⌈hz (r)⌉

















=

= ik0

















−ǫxx −ǫxy −ǫxz 0 0 0

−ǫyx −ǫyy −ǫyz 0 0 0

−ǫzx −ǫzy −ǫzz 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

































⌈ex (r)⌉
⌈ey (r)⌉
⌈ez (r)⌉
⌈hx (r)⌉
⌈hy (r)⌉
⌈hz (r)⌉

















. (3.9)

And after derivation:

















0 0 0 0 − ∂
∂z

ik0q

0 0 0 ∂
∂z

0 −ik0p

0 0 0 −ik0q ik0p 0

0 − ∂
∂z

ik0q 0 0 0

∂
∂z

0 −ik0p 0 0 0

−ik0q ik0p 0 0 0 0

































⌈ex (r)⌉
⌈ey (r)⌉
⌈ez (r)⌉
⌈hx (r)⌉
⌈hy (r)⌉
⌈hz (r)⌉

















=

= ik0

















−ǫxx −ǫxy −ǫxz 0 0 0

−ǫyx −ǫyy −ǫyz 0 0 0

−ǫzx −ǫzy −ǫzz 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

































⌈ex (r)⌉
⌈ey (r)⌉
⌈ez (r)⌉
⌈hx (r)⌉
⌈hy (r)⌉
⌈hz (r)⌉

















. (3.10)

The matrices p and q are diagonal with elements representing tangential compo-
nent of normalized wave vector, pij = δi,jνx and qij = δij

(
νy + (j − N − 1) λ

Λ

)
, for

i, j ∈ {1, 2, . . . , 2N + 1}. From the equation (3.10) can be separated normal component and
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expressed with tangential components in the same meaning as in (2.30-2.34). Finally after
some calculation the vector of tangential components is defined :

⌈ F (z)⌉ =
[⌈

e′x (z)
⌉
,
⌈
h′

y (z)
⌉
,
⌈
e′y (z)

⌉
,
⌈
h′

x (z)
⌉]T

, (3.11)

and the same type of eigenvalue problem:

∂

∂z
⌈F (z)⌉ = ik0C ⌈F (z)⌉ . (3.12)

The size of the matrix C is now 4 (2N + 1) × 4 (2N + 1) and has the following form:












−p
⌈⌈

ε−1
zz

⌉⌉
⌈⌈εzx⌉⌉ I − p

⌈⌈
ε−1
zz

⌉⌉ ...

−q2 + ⌈⌈εxx⌉⌉ − ⌈⌈εxz⌉⌉
⌈⌈

ε−1
zz

⌉⌉
⌈⌈εzx⌉⌉ − ⌈⌈εxz⌉⌉

⌈⌈
ε−1
zz

⌉⌉
p

...

−q
⌈⌈

ε−1
zz

⌉⌉
⌈⌈εzx⌉⌉ −q

⌈⌈
ε−1
zz

⌉⌉
p

...

pq − ⌈⌈εyx⌉⌉ + ⌈⌈εyz⌉⌉
⌈⌈

ε−1
zz

⌉⌉
⌈⌈εzx⌉⌉ ⌈⌈εyz⌉⌉

⌈⌈
ε−1
zz

⌉⌉
p

...
... −p

⌈⌈
ε−1
zz

⌉⌉
⌈⌈εzy⌉⌉ p

⌈⌈
ε−1
zz

⌉⌉
q

... qp + ⌈⌈εxy⌉⌉ − ⌈⌈εxz⌉⌉
⌈⌈

ε−1
zz

⌉⌉
⌈⌈εzy⌉⌉ ⌈⌈εxz⌉⌉

⌈⌈
ε−1
zz

⌉⌉
q

... −q
⌈⌈

ε−1
zz

⌉⌉
⌈⌈εzy⌉⌉ q

⌈⌈
ε−1
zz

⌉⌉
q − I

... p2 − ⌈⌈εyy⌉⌉ + ⌈⌈εyz⌉⌉
⌈⌈

ε−1
zz

⌉⌉
⌈⌈εzy⌉⌉ − ⌈⌈εyz⌉⌉

⌈⌈
ε−1
zz

⌉⌉
q












(3.13)

Again is result system of first degree differential equations with constant coefficients and the
solution g (z) can be written:

⌈g (z)⌉ = exp (ik0ziV)A, (3.14)

where A is the vector of amplitudes of each wave mode.

Example 3.1.1

Toeplitz matrix of permitivity tensor function

In general Toeplitz matrix A has the following form:

A =


















a0 a−1 a−2 . . . . . . a−n+1

a1 a0 a−1
. . .

...

a2 a1
. . .

. . .
. . .

...
...

. . .
. . .

. . . a−1 a−2

...
. . . a1 a0 a−1

an−1 . . . . . . a2 a1 a0


















(3.15)
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Let the permitivity tensor is a piecewise constant function:

ǫ̂ (y) =







ǫ̂1 for y ∈ 〈0, y1)

ǫ̂2
... y ∈ 〈y1, y2)

...
...

...

ǫ̂n for y ∈ 〈yn−1, Λ〉

(3.16)

where ǫ̂i, i ∈ {1, 2, · · · , n} is 3 × 3 matrix (2.15). Lets consider Fourier approxima-
tion only for ǫxx (y) component and number of diffraction orders N = 1. Recipe of
constructing symmetrical Fourier approximation (3.3) gives five amplitude constants
[ǫxx,−2, ǫxx,−1, ǫxx,0, ǫxx,1, ǫxx,2]. Toeplitz matrix approximating permitivity function ǫxx (y)
has form:

⌈⌈ǫxx⌉⌉ =








ǫxx,0 ǫxx,−1 ǫxx,−2

ǫxx,1 ǫxx,0 ǫxx,−1

ǫxx,2 ǫxx,1 ǫxx,0








(3.17)

Example 3.1.2

Truncated Fourier series approximation

Truncation of Fourier series bring an error into truly function of permitivity. For that trun-
cation is appropriate to have an idea about difference between real function ǫ̂ (y) and its
approximation ˆ̃ǫ (y). For simplicity it was chosen isotropic material with diagonal permitiv-
ity ǫij = δijǫ (y) defined:

ǫ̂ (y) =







1 for y ∈ 〈0, 10e − 9)

4 y ∈ 〈10e − 9, 30e − 9〉
, (3.18)

period of grating Λ = 30nm. Figure 10. shows effect of truncation of the series (3.2) for the
piece wise function (3.18).
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Figure 10: The quality of truncated Fourier series approximation for number of diffraction
orders N = {10, 20, 40, 80, 160}.

3.1.2 S-matrix algorithm

Using the M-matrix algorithm presented in Section 2.5, (2.62) does not work for gratings.
Problem is with finite precision of numerical calculation, because introduction of diffraction
orders and Fourier amplitudes coefficient causes that arguments of exponential function
are higher for higher diffraction orders and the computing sooner or later exceeds numer-
ical precision. Idea of S-matrix algorithm is separation of up and down modes and calcu-
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lation propagation of highly exponentially increasing function of higher diffraction orders
in opposite direction which modify exponential factors. Figure 11. shows different calcu-

A
(0)
down A

(0)
up

A
(n)
up

A
(n)
down

M-matrix algorithm

A
(0)
down A

(0)
up

A
(n)
up

A
(n)
down

S-matrix algorithm

Figure 11: Differences between input (red) and output (blue) arguments in M-matrix and
S-matrix algorithms

lation approach in M-matrix and S-matrix algorithm. M-matrix calculate transformations
of amplitude vector during propagation medium from superstrate to substrate in contrast
with S-matrix algorithm describing relations between waves incoming and outcoming from
medium. Following calculations shows basic steps of the S-matrix algorithm. First step is
separation of up and down modes:

A
(i)
up

A
(i+1)
up

A
(i+2)
up

A
(i)
down

A
(i+1)
down

A
(i+2)
down

(zi)

(zi+1)

Figure 12: Separated up and down propagating modes in medium

From continuity of field tangential components are the amplitudes A(i) (zi) and
A(i+1) (zi) in relation (2.57):

A(i) (zi) =
(

T(i)
)
−1

T(i+1)

︸ ︷︷ ︸

M

A(i+1) (zi) , (3.19)

next step is separate up and down modes:




A

(i)
up

A
(i)
down



 =




M

(i)
11 M

(i)
12

M
(i)
21 M

(i)
22








A

(i+1)
up

A
(i+1)
down



 . (3.20)

This continuity equation with M is now reorganized into s-matrix form, which keep conti-
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nuity too:



A

(i)
up

A
(i+1)
down



 = s(i)




A

(i+1)
up

A
(i)
down



 , (3.21)

where matrix s(i) comes from M matrix:

s(i) =




s
(i)
11 s

(i)
12

s
(i)
21 s

(i)
22



 =




M

(i)
11 − M12

(i)
M

(i)
22

−1
M

(i)
21 M

(i)
12 M

(i)
22

−1

M
(i)
22

−1
M

(i)
21 M

(i)
22

−1



 . (3.22)

Now is description of the amplitudes changes on the interface clear and next step is the de-
scription of the wave propagation through layer with the propagation matrix P(i) according
to (2.60). The propagation matrix can be also written separately for up and down modes:

A(i+1)
up (zi) = P(i+1)

up A(i+1)
up (zi+1) , (3.23a)

A
(i+1)
down (zi+1) = P

(i+1)
downA

(i+1)
down (zi) , (3.23b)

where propagation matrices are diagonal with eigenvalues as a argument in exponential
factor:

P(i+1)
up = exp (−ik0di+1Vup) , (3.24a)

P
(i+1)
down = exp (ik0di+1Vdown) , (3.24b)

the parameter di+1 is the thickness of layer. Relations (3.24) used in (3.21) leads to rela-
tion between waves on upper medium and waves propagated though interface and layer
material: 


A

(i)
up (zi)

A
(i+1)
down (zi+1)



 = s̃(i)




A

(i+1)
up (zi+1)

A
(i)
down (zi)



 , (3.25)

and s̃(i) is a matrix describing the continuity on interface and the propagation through layer:

s̃(i) =




s̃
(i)
11 s̃

(i)
12

s̃
(i)
21 s̃

(i)
22



 =




s
(i)
11P

(i+1)
up s

(i)
12

P
(i+1)
downs

(i)
21P

(i+1)
up P

(i+1)
downs

(i)
22



 (3.26)

If the structure has only one planar interface, the problem is solved with matrix (3.26) for
di+1 = 0. The Matrix s̃(i+1) can be also calculated for following interfaces (for example
(zi+1), see Figure 12.). Problem is with input and output amplitudes vectors which are bun-
dled with inner interface, but goal of calculation is to get relation between input and output
amplitudes (Figure 11). This problem can be solved with recurrent relation step by step
connecting s̃(k), k = 1, 2, · · · , n < N matrices together with resulting S(n)-matrix:




A

(0)
up (z0)

A
(n+1)
down (zn+1)



 = S(n)




A

(n+1)
up (zn+1)

A
(0)
down (z0)



 , (3.27)

where matrix S(n):

S(n) =




S

(n)
11 S

(n)
12

S
(n)
21 S

(n)
22



 . (3.28)
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Components of S(n+1) are recurrently defined:

S
(n+1)
11 = S

(n)
11

[

I − s̃
(n+1)
12 S

(n)
21

]
−1

s̃
(n+1)
11 ,

S
(n+1)
12 = S

(n)
12 + S

(n)
11

[

I − s̃
(n+1)
12 S

(n)
21

]
−1

s̃
(n+1)
12 S

(n)
22 ,

S
(n+1)
21 = s̃

(n)
12 + s̃

(n+1)
22 S

(n)
21

[

I − s̃
(n+1)
12 S

(n)
21

]
−1

s̃
(n+1)
11 ,

S
(n+1)
22 = S̃

(n)
22

[

S
(n)
21

[

I − s̃
(n+1)
12 S

(n)
21

]
−1

s̃(n+1)

]

S
(n)
22 .

(3.29)

Applying recursive formula to all layers in structure is obtained global scattering matrix S:




(A)

(0)
up (z0)

(A)
(N)
down (zN )



 = S




(A)

(N)
up (zN )

(A)
(0)
down (z0)



 (3.30)

3.1.3 Reflection coefficients

Elements in S-matrix (3.30) directly represents the transmission and the reflection coefficients
which can be easy determined from the expanded form of equation:











(A)
(0)
Sup

(z0)

(A)
(0)
Pup

(z0)

(A)
(N)
Sdown

(zN )

(A)
(N)
Pdown

(zN )











=











S11 S12 S13 S14

S21 S22 S23 S24

S31 S32 S33 S34

S41 S42 S43 S44





















(A)
(N)
Sup

(zN )

(A)
(N)
Pup

(zN )

(A)
(0)
Sdown

(z0)

(A)
(0)
Pdown

(z0)











. (3.31)

Following the computing defined in Section 2.5.1 (where the reflection coefficients were cal-
culated from M-matrix) are obtained forward reflection and transmission coefficients:

rss = S13 tss = S33,

rps = S14 tps = S34,

rsp = S23 tsp = S43,

rpp = S24 tpp = S44,

the backward reflection and transmission coefficients:

rss = S31 tss = S11,

rps = S32 tps = S12,

rsp = S41 tsp = S21,

rpp = S42 tpp = S22,

It is necessary take into consideration that reflection coefficients (3.35) are now matrices with
the size (2N + 1 × 2N + 1) and their elements are reflection coefficients for all diffraction
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orders. In most cases the specular reflection coefficients corresponding to zero diffraction
order are needed. Absolute position of them in S is:

rss = [S]N+1,5N+3 , (3.32)

rps = [S]N+1,7N+4 , (3.33)

rsp = [S]3N+2,5N+3 , (3.34)

rpp = [S]3N+2,7N+4 . (3.35)

3.1.4 Fourier factorization

The S-matrix algorithm presented in previous section completely eliminate problems with
numerical stability and theoretically for infinite Fourier series, but there is a problem with
convergence for p-polarized waves, especially for highly absorbing grating material like met-
als, if the Fourier series are truncated. Problem comes from situation when the product of
two multiplied discontinuous function at the same point is continuous function, h (y) =
f (y) g (y). If all function has the same period Λ than Fourier image of equation is:

j=−∞
∑

∞

hjexp

(

ij
2π

Λ
y

)

=
k=−∞∑

∞

fkexp

(

ik
2π

Λ
y

)

·
l=−∞∑

∞

glexp

(

il
2π

Λ
y

)

. (3.36)

Right side of equation can be simplified according to Laurent rule: product of two multiplied
function is discrete convolution of their Fourier images:

∀j ∈ Z : hj =
k=−∞∑

∞

fkgj−k =
k=−∞∑

∞

fj−kgj . (3.37)

Electric field and electric flux vectors are in relation:







Dx

Dy

Dz








=








εxx εxy εxz

εyx εyy εyz

εzx εzy εzz















Ex

Ey

Ez








. (3.38)

Now the problem is, that permititity tensor is discontinuous and field and flux components
Ey, Dx and Dz are discontinuous too. Components Ex, Ez and Dy are continuous. For cor-
rect application of Laurent rule is need to reorganize equation (3.38) into form discontinuous
= discontinuous × continuous: 






Dx

Dz

Ey








= B








Ex

Ez

Dy








, (3.39)

where:

B =








εxx − εxyε
−1
yy εyx εxz − εxyε

−1
yy εyz εxyε

−1
yy

εzx − εzyε
−1
yy εyx εzz − εzyε

−1
yy εyz εzyε

−1
yy

−ε−1
yy εyx −ε−1

yy εyz ε−1
yy








. (3.40)
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This material tensor can be expanded according to number of calculation diffraction orders
and transformed into Toeplitz form. Because our problem has to accord relation between
electric flux and field (3.38), system of equation (3.40) is reassembled into previous form:








⌈Dx⌉
⌈Dy⌉
⌈Dz⌉








= Q








⌈Ex⌉
⌈Ey⌉
⌈Ez⌉








, (3.41)

where:

Q =









⌈⌈
εxx − εxyε

−1
yy εyx

⌉⌉
−

⌈⌈
εxyε

−1
yy

⌉⌉ ⌈⌈
ε−1
yy

⌉⌉
−1 ⌈⌈

ε−1
yy εyx

⌉⌉ ⌈⌈
εxyε

−1
yy

⌉⌉ ⌈⌈
ε−1
yy

⌉⌉
−1 ...

−
⌈⌈

ε−1
yy

⌉⌉
−1 ⌈⌈

ε−1
yy εyx

⌉⌉ ⌈⌈
ε−1
yy

⌉⌉
−1 ...

⌈⌈
εzx − εzyε

−1
yy εyx

⌉⌉
−

⌈⌈
εzyε

−1
yy

⌉⌉ ⌈⌈
ε−1
yy

⌉⌉
−1 ⌈⌈

ε−1
yy εyx

⌉⌉ ⌈⌈
εzyε

−1
yy

⌉⌉ ⌈⌈
ε−1
yy

⌉⌉
−1 ...

...
⌈⌈

εxz − εxyε
−1
yy εyz

⌉⌉
−

⌈⌈
εxyε

−1
yy

⌉⌉ ⌈⌈
ε−1
yy

⌉⌉
−1 ⌈⌈

ε−1
yy εyz

⌉⌉

... −
⌈⌈

ε−1
yy

⌉⌉
−1 ⌈⌈

ε−1
yy εyz

⌉⌉

...
⌈⌈

εzz − εzyε
−1
yy εyz

⌉⌉
−

⌈⌈
εzyε

−1
yy

⌉⌉ ⌈⌈
ε−1
yy

⌉⌉
−1 ⌈⌈

ε−1
yy εyz

⌉⌉









(3.42)
Matrix Q is now used instead of Toeplitz permitivity tensor matrix wit better convergence
as a result (see Example 3.2.1.).

3.2 Numerical experiments

3.2.1 Convergence test for Fourier factorization

The truncation of Fourier series brings an inaccuracy into the calculated data. It can be
improved by calculating with more diffraction orders, but it increase calculating time and
more memory is needed to get better convergence. Fourier factorization method is a trick
how to improve convergence to spend computing time or get more accurate results. The
number of the diffraction orders which gives accurate result and has not too big requirement
to the memory and time is appropriate to known. Following graphs has been calculated for
the angle of incidence φ = 45◦, the wavelength λ = 400 nm, f denotes filling factor:

ǫ̂ (y) =







1 for y ∈ 〈0, fΛ)

7 y ∈ 〈fΛ, (1 − f) Λ〉
, (3.43)

the period of grating Λ = 1000 nm, thickness 10 nm and a air (ǫ = 1) as a substrate and a
superstrate the same.
On Figure 13 we can see, that for the calculating without factorization is needed almost 80
diffraction orders to obtain precise calculation for the p-polarized light. On the other hand,
if the factorization is applied 30 diffraction orders is enough and further increase does not
increase calculated precision. This convergence analysis should be done for each calculating
structure.
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Figure 13: Comparison convergence speed without and with applied Fourier factorization
method in model.

3.2.2 Dependecy of reflectance on a simple grating layer with the variab le fill-factor

Following graphs has been calculated for the angle of incidence φ = 45◦, the wavelength
λ = 400nm and the variable fill factor f ∈ 〈0, 1〉, period of grating Λ = 100nm:

ǫ̂ (y) =







1 for y ∈ 〈0, fΛ)

7 y ∈ 〈fΛ, (1 − f) Λ〉
, (3.44)

thickness 100nm and a the air (ǫ = 1) as a superstrate and the substrate with ǫ = 7.
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Figure 14: Dependency of specular from grating on the fill factor

Figure 14. shows dependency of the reflectance and transmittance as a function of the fill
factor f . The model were observed for N = 30 and the Fourier factorization was used. The
first and last points of graph has the same value, because for fill factor f = {0, 1} the grating
degrades into homogeneous layer with the interface between medium with the ǫ = 1 and
ǫ = 7.
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3.2.3 Nonreciprocal periodic structure

Limitation of actual optical insulator conception is interface between the integrated part of
device and the optical insulator and from that comes the idea of the integrated optical insu-
lator into one chip together with laser diode, modulating device, multiplexer, etc. Problem
of he integrated conception is in usable materials, because the optical properties of natural
materials are in the contradiction with required properties for the integration.

There are two essential properties, the first is magneto-optic (MO) effect and the second
is losslessness. Magnetic garnet is a material with low losses bud with small MO effect.
Metals have big MO effect but also big losses. From that contradiction comes out the idea of
designing new material with the big magneto-optic effect and small losses and can be used
in integrated optical insulator [13, 14].
Figure 15. shows elements (one period) of the hexagonal modeled structure for wavelength
λ = 1300nm

Λ

db
2a

a

a a a

Figure 15: Scheme of photonics crystal structure.

where:

f = 0.4548

Λ = fλ = 591.24nm

a = fΛ
3 = 89.632nm

db = 33.276nm

Structure has been calculated for the 12 period shown on the Figure 15. The T-shaped
elements are air holes with the permitivity ǫ = 1 was surrounded and separated (gap with
thickness db) with the magnetic garnet:

ǫm garnet =








n2 0 0

0 n2 i ε1

0 −i ε1 n2








, (3.45)

where n = 2.25 and ǫ1 = 0.1. Superstrate and substrate was nonmagnetic garnet with
refractive index n = 2.25.
On the Figure 17. is enlarged area with big difference between forward and backward trans-
mission coefficients for p-polarized wave.
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Figure 16: Transmission coefficient for forward and backward propagation in photonics crys-
tal.



3 POLARIZED LIGHT IN PERIODICAL STRUCTURES page 35

61.5 62 62.5 63 63.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 

 
Ts

d2u

Tp
d2u

Ts
u2d

Tp
u2d

photonics crystal

angle of incidence

Figure 17: Detail of difference between forward and backward propagation constant for
angle of incidence φ = 62.44◦.
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4 Ellipsometric response from anisotropic medium

Spectroscopic ellipsometry is an optical method for characterization of the sample optical
properties. This method is based on the detection of changes in reflected polarized light
from sample, Figure 18. If the sample is isotropic sample the polarization state change is
expressed with the ellipsometric angles ψ and ∆. If the sample is anisotropic the problem
becomes more complex because one pair of ellipsometric angles ψ and ∆ is not enough and
more advanced method, generalized ellipsometry is needed([9, 15, 16]).

x

y

z

φ

Figure 18: Light polarization state change after reflection from sample.

4.1 Matrix description of ellipsometer optical system with anisotropic sample

In further text will be described face-modulation ellipsometer Uvisel, Horiba Jobin Yvon in
configuration polarizer-sample-modulator-analyzer (PCMA) with Jones matrix formalism
providing nondepolarizing sample.

Xe Lamp

polarizer

Φ

sample

analyzer

photoelastic modulator

polarizer at 45◦

detector

Figure 19: Ellipsometer configuration is shown schematically.

Anisotropic nondepolarizing sample is described using the Jones matrix:




rss rps

rsp rpp



 ∝




1

rps

rss

rsp

rss

rpp

rss



 , (4.1)
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whose normalized form (right side) defines free complex ratios and three pairs of the ellip-
sometric angles connect with them. First is the same as in ellipsometry o isotropic materials:

χ0 =
rpp

rss
= tanψ0 ei∆0 , (4.2)

and another two rps/rss = tanψpse
i∆ps and rsp/rss tanψspe

i∆sp , which will ensue from fol-
lowing matrix description. Firstly the complete matrix description of ellipsometer using
Jones matrix formalism is in a form:

A =
1
√

2

2

4

1 0

0 0

3

5

2

4

ei
ϕ

2 −e−i
ϕ

2

ei
ϕ

2 e−i
ϕ

2

3

5

2

4

sin M cos M

− cos M sin M

3

5

2

4

rss rps

rsp rpp

3

5

2

4

sin P

cos P

3

5 , (4.3)

where M is azimuthal angle of photoelastic modulator fixtly linked to analyzer at 45◦ and
both components rotate together as one component called modulator, P is the azimuthal
angle of polarizer, (Figure 19.). Amplitude A on detector is easy to determine with the
substitutions:

a = (rss sin P + rps cos P ) sin M + (rsp sinP + rpp cos P ) cos M, (4.4a)

b = (rsp sinP + rpp cos P ) sinM − (rss sinP + rps cos P ) cos M, (4.4b)

and the final amplitude product:

A =
1√
2

(

aei ϕ

2 − be−i ϕ

2

)

. (4.5)

Because nor amplitude A the equation (4.5) is measurable only the intensity I we have to
multiply with its complex conjugate form and result can be written:

I =
1

2
(aa∗ + bb∗)

︸ ︷︷ ︸

I0

+ i
1

2
(ba∗ − ab∗)

︸ ︷︷ ︸

I1

sin ϕ − 1

2
(ab∗ + ba∗)

︸ ︷︷ ︸

I2

cos ϕ. (4.6)

Value I0 is the DC component of signal, I1 and I2 are are the signals detected on modula-
tion the frequency f = 50kHz and on second harmonics frequency 2ω. For elimination of
fluctuating intensity is measured ratios of modulated and DC signal components:

IS =
I1

I0
a IC =

I2

I0
. (4.7)

4.1.1 Measured signal IS and IC from anisotropic sample

For the different configuration of azimuthal angles P and M the measured signals represents
different elements (or their combination) of samples reflection matrix. Commonly are used
following combinations of angles:

P ∈ {0◦, 90◦, 45◦,−45◦} M ∈ {0◦, 90◦, 45◦,−45◦} . (4.8)
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Evaluating (4.7) with the angles P and M (4.8) the IS and IC signals express products of

reflection coefficients, notation IP,M
S or IP,M

C is used:

I45,M
S = −i

(rss + rps) (rpp + rsp)
∗ − c. c.

|rss + rps|2 + |rpp + rsp|2
, (4.9a)

I−45,M
S = i

(rss − rps) (rpp − rsp)
∗ − c. c.

|rss − rps|2 + |rpp − rsp|2
, (4.9b)

I0,M
S = i

(
rppr

∗

ps

)
−

(
rpsr

∗

pp

)

|rps|2 + |rpp|2
, (4.9c)

I90,M
S = i

(rspr
∗

ss) −
(
rssr

∗

sp

)

|rss|2 + |rsp|2
, (4.9d)

I45,0
C = −I45,90

C =
(rss + rps) (rpp + rsp)

∗ + c. c.

|rss + rps|2 + |rpp + rsp|2
, (4.10a)

I−45,0
C = −I−45,90

C =
(rss − rps) (rpp − rsp)
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I90,45
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|rss|2 + |rsp|2
, (4.10h)

where c. c. is the complex conjugate number.

4.2 Experimental data

The experimental data were measured on the SnO2 crystal with expected tetragonal crys-
tal structure for photon energy 3.9eV (3179nm) and angle of incidence 60◦. This type of
structure corresponds with uniaxial optical anisotropy (2.17). Inducement for recognition
of off-diagonal elements in reflection matrix is the signal IS and IC for the configuration
P = 0◦, P = 0◦, (4.9c,4.10e), incident wave is p-polarized. Thus signals are for isotropic
medium equal to the zero, but for uniaxal anisotropy they are nonzero and depends on az-
imuthal angle of sample rotation.
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Figure 20: Effect of the uniaxial optical anisotropy in ellipsometric data as a function of
azimuthal rotation.

In the measured data are four significant points where the lines cross each other, Figure
20. For these angles of azimuthal rotation of the sample are axes of the rotation symmetry
parallel or perpendicular to the plane of incidence light and effect of anisotropy disappears.
In this configuration we can measure sample with the classical ellipsometric method.
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5 Conclusion and perspectives

Main contribution of this master thesis are:

• understood of Berreman and Yeh approach for solving Maxwell equation in layered
media,

• implemented program in MATLAB software for modeling optical response from the
structure of planar layers and the lammelar (1D) gratings,

• modeled of planar layered medium with the plasmon resonance,

• designed and modeled photonics crystal structure with the non-reciprocity effect:
hight transmission in forward direction and strong attenuation in backward direction,

• measurement technique for characterization uniaxial optical crystal anisotropy.

Goals for future work:

• understanding to calculation process for more general grating profile: saw-like, sinu-
soidal, etc.,

• calculation of two-dimensional (2D) gratings,

• optimisation of phototonics crystal structure for better isolating ratio.
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