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Abstract

A labeling of a graph is a mapping that carries some set of graph ele-
ments into numbers (usually positive integers). An (a, d)-edge-antimagic
total labeling of a graph with p vertices and ¢ edges is a one-to-one map-
ping that takes the vertices and edges onto the integers 1,2,...,p+ ¢, so
that the sums of the label on the edges and the labels of their end vertices
form an arithmetic progression starting at a and having difference d. Such
a labeling is called super if the p smallest possible labels appear at the
vertices.

In this paper we prove that every even regular graph and every odd
regular graph with a 1-factor are super (a, 1)-edge-antimagic total. We
also introduce some constructions of non-regular super (a, 1)-edge-anti-
magic total graphs.
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1 Introduction

We consider finite undirected graphs without loops and multiple edges. If G
is a graph, then V(G) and E(G) stand for the vertex set and edge set of G,
respectively. Let a,b, be two integers where a < b. By [a,b] we denote the set
of consecutive integers {a,a +1,...,b}.

For a (p,q)-graph G with p vertices and ¢ edges, a bijective mapping f :
V(G)UE(G) — [1,p + ¢] is a total labeling of G and the associated edge-weights
are wy(uv) = f(u) + f(uv) + f(v) for every wv € E(G).

An (a, d)-edge-antimagic total labeling ((a, d)-E AT for short) of G is the total
labeling with the property that the edge-weights form an arithmetic progression
starting from a and with difference d, where @ > 0 and d > 0 are two given
integers. Definition of an (a, d)-EAT labeling was introduced by Simanjuntak,
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Bertault and Miller in [11] as a natural extension of the magic valuation, which is
also known as the edge-magic labeling defined by Kotzig and Rosa in [9]. Kotzig
and Rosa [9] showed that all caterpillars have magic valuations and conjectured
that all trees have magic valuations. An (a,d)-EAT labeling is called super if
the smallest possible labels appear on the vertices. For more information on
edge-magic and super edge-magic labelings, please see [8] and [13].

The (a,d)-EAT and super (a,d)-EAT labelings are two among several other
“magic-type” labelings. Often results on one or a different type of magic-type
labelings can be adapted or combined to obtain results on a different type. This
idea has been studied by Figueroa-Centeno, Ichishima, and Muntaner-Batle [7].
In this paper, we will study a set of problems which are similar to the problems
studied in [10] for vertex-magic total labelings. For an exhaustive survey on
various magic-type labelings we again recommend [8].

A graph that admits an (a, d)-EAT labeling or a super (a, d)-EAT labeling is
called an (a, d)-EAT graph or a super (a,d)-EAT graph, respectively. Sugeng et
al. in [12] described how to construct super (a, d)-EAT labelings of all caterpillars
for d = 0,1,2 and of certain caterpillars for d = 3. In [2] some constructions
of super (a,d)-EAT labelings for disconnected graphs are presented using the
notion of an a-labeling. Baca et al. [4] also studied super (a,d)-EAT labelings
of path-like trees. Some other results on (a,d)-EAT graphs are presented in [1]
and [6].

Let (p,q)-graph be a super (a,d)-EAT graph. It is easy to see that the
minimum possible edge-weight is at least p+4 and the maximum possible edge-
weight is not more than 3p + ¢ — 1. Thus

2p+q—5

a+(qg—1)d<3p+qg—1 and d< 1

For any (p, ¢)-graph, where p — 1 < ¢, it follows that d < 3. In particular if G
is connected then d < 3.

In this paper we deal with the existence of super (a,1)-EAT labelings of
regular graphs. We also give some constructions of non-regular super (a,1)-
EAT graphs.

2 Super (a,1)-EAT labeling of regular graphs
Results in this and the following sections are based on the Petersen Theorem.

Proposition 2.1. (Petersen Theorem) Let G be a 2r-reqular graph. Then
there exists a 2-factor in G.

Notice that after removing edges of the 2-factor guaranteed by the Petersen
Theorem we have again an even regular graph. Thus, by induction, an even
regular graph has a 2-factorization.

The construction in the following theorem allows to find a super (a, 1)-EAT
labeling of any even regular graph. Notice that the construction does not require
the graph to be connected.

Theorem 2.2. Let G be a graph on p vertices that can be decomposed into two
factors G and Go. If Gy is edge-empty or if Gy is a super (2p + 2,1)-EAT
graph and Gy is a 2r-reqular graph then G is super (2p + 2,1)-EAT.



Proof. First we start with the case when G is not edge-empty. Since G is
a super (2p + 2,1)-EAT graph with p vertices and ¢ edges, there exists a total
labeling f : V(G1) U E(G1) — [1,p + ¢] such that

{f(v) + f(uv) + f(v): uwv € E(G)} = [2p+ 2,2p+ q + 1].

By the Petersen Theorem there exists a 2-factorization of Go. We denote the
2-factors by Fj;, j = 1,2,...,r. Let V(G) = V(G1) = V(F}) for all j and
E(G) = Uj_, E(F;) U E(G1). Each factor F} is a collection of cycles. We order
and orient the cycles arbitrarily. Now by the symbol e?“t(vi) we denote the
unique outgoing arc from the vertex v; in the factor Fj.

We define a total labeling g of G in the following way.

gw) = f(v) forveV(G),
ole) = fle) for e € E(G),
q+(G+Dp+1— f(v) fore=ed" (v;).

The vertices are labeled by the first p integers, the edges of G; by the next ¢
labels and the edges of G2 by consecutive integers starting at p+ ¢+ 1. Thus ¢
is a bijection V(G) U E(G) — [1,p + ¢ + pr] since |E(G)| = g+ pr.

It is not difficult to verify, that g is a super (2p + 2,1)-EAT labeling of G.
For the weights of the edges e in E(G1) is wqy(e) = wy(e). The weights form the
progression 2p + 2,2p+ 3,...,2p + g + 1. For convenience we denote by vy the
unique vertex such that vuy = e3**(v;) in Fj. The weights of the edges in Fj,
J=1,2,...,r are

wg(e§" (vi)) = w(vivk) = g(vi) + (q+ (j + Dp + 1 = f(v3)) + g(ve)

=fv) +q+(G+)p+1—f(vi)+ flor) =g+ (G +1Dp+1+ fox)

foralli=1,2,...,pand j =1,2,...,r. Since F} is a factor, the set {f(vg): vy €
F;} =1, p]. Hence we have that the set of the edge-weights in the factor Fj is
[+ G+ 1)p+2,9g+ (j+1)p+p+ 1] and thus the set of all edge-weights in G
is 2p+2,¢+ (r +2)p+1].

If 1 is edge-empty it is enough to take ¢ = 0 and proceed with the labeling
of factors Fj. O

By taking an edge-empty graph G; we have the following theorem (we prefer
call it a theorem though it is just a corollary of Theorem 2.2).

Theorem 2.3. All even-regular graphs of order p with at least one edge are
super (2p + 2,1)-FEAT.

The construction from Theorem 2.2 can be extended also to the case when
(GG1 is not a factor. One can add isolated vertices to a graph and keep the
property of being super (a,1)-EAT. A graph consisting of m isolated vertices is
denoted by mK;. We can obtain the following lemma.

Lemma 2.4. If G is a super (a,1)-EAT graph then also GUmK, is a super
(a +m +2t,1)-EAT graph for all t € [0,m)].



Proof. Since G is a super (a,1)-EAT graph with p vertices and ¢ edges, there
exists such a total labeling f : V(G)U E(G) — [1,p + ¢ that

{f(v) + f(ww) + f(v): wo € E(G)} = [a,a+q = 1]

Let t be any fixed integer from [0,m]. Let (c1,¢2,...,¢n) be any permutation
of the integers in [1,p+ m]\ [t + 1, + p]. We denote the vertices of mK;
by Ve, , Veys - -+ Ve, arbitrarily. Now we define a labeling g of the graph H =
GU mK1 .

) f)+t forveV(G),
g N 7 for v = v;, where v; € mKy,
gle) = f(e)+m foree E(H).

Obviously ¢ is a bijection V(H)UE(H) — [1,p 4+ ¢ + m]. The edges are labeled
by the ¢ highest labels and the vertices by the first p + m integers. It is easy
to verify that g is super (a + m + 2t,1)-EAT labeling of H, since any edge
wv € E(H) is also in E(G).

wg(uv) = g(u) + g(uv) + g(v)
= (fluw)+t)+ (fluv) +m) + (f(v) +t) = wy(uwv) + m + 2t

and the claim follows. O

Notice that we can find m+1 different (up to isomorphism) super (b, 1)-EAT
labelings of G U mK; but all with the same parity of the smallest edge-weight.

In the last part of this section we show that also all odd-regular graphs
with a perfect matching are super (a,1)-EAT. By P, we denote the path on n
vertices.

Lemma 2.5. Let k, m be positive integers. Then the graph kP, UmKy s super
(2(2k 4+ m) +2,1)-FAT.

Proof. We denote the vertices of the graph G = kP, U mK; by the symbols
V1, V2, ..., Uok+m i1 such a way that E(G) = {vjVgtm+i: ¢ = 1,2,...,k} and

the remaining vertices are denoted arbitrarily by the unused symbols.
We define the labeling f : V(G) U E(G) — [1,3k + m] in the following way

flvj)=3j for j =1,2,...,2k +m,
fivgemsi) =3k+m+1—1i fori=1,2,...,k.

It is easy to see that f is a bijection and that the vertices of G' are labeled by
the smallest possible numbers. For the edge-weights we get

Wy (ViVkym+i) =f (Vi) + f(ViVktmti) + f(Oktmi)
=i+ @Bk+m+1—i)+ (k+m+1)
=22k+m)+1+4 fori=1,2,... k.

Thus f is a super (2(2k +m) + 2,1)-EAT labeling of G. O

Now by taking m = 0 and observing that the number of vertices in kP; is
2k, we immediately obtain the following theorem (we prefer to call it a theorem
though it is just a corollary of Lemma 2.5 and Theorem 2.2).



Theorem 2.6. If G is an odd reqular graph on p vertices that has a 1-factor,
then G is super (2p + 2,1)-EAT.

Unfortunately the construction does not solve the existence of (a,1)-EAT
labelings for all odd-regular graphs, it only works for those that contain a 1-
factor. We know that some graphs that arose by Cartesian products also satisfy
this property, therefore, we can obtain the following corollary.

Corollary 2.7. Let G be a regular graph. Then the Cartesian product G x Ko
is a super (a,1)-EAT graph.

Proof. If G is a (2r+1)-regular graph then the product G x Ks is (2r+2)-regular
and by Theorem 2.3 it is super (a,1)-EAT. If G is 2r-regular then G x K» is
a (2r 4+ 1)-regular graph with a 1-factor and thus according to Theorem 2.6 is
super (a, 1)-EAT. O

Let us point out that many results published on super (a, 1)-EAT labelings
(see [8]) follow from Theorems 2.3 and 2.6 as a corollary.

3 Some non-regular super (a,1)-EAT graphs

Theorem 2.2 is not restricted to regular graphs, it can be used also to obtain
super (a, 1)-EAT labelings of certain non-regular graphs. We illustrate the tech-
nique on a couple of examples. First we introduce the following lemmas.

Lemma 3.1. Let k, m be positive integers, k < 2m + 3. Then the graph
K1, UmK; is super (2(k+m+1)+2,1)-EAT.

Proof. We distinguish two subcases according to the parity of k.

Let k be an odd positive integer. We denote the vertices of the graph G =
Ki  UmK; by the symbols v, va,...,Uk+m+1 in such a way that E(G) =
{vwm+2+% :4=1,2,...,k} and the remaining vertices are denoted arbitrarily
by the unused symbols. Notice that it is possible to use such notation as k <
2m + 3.

We define the labeling f : V(G) U E(G) — [1,2k + m + 1] in the following
way

flvj)=34 forj=1,2,.... k+m+1,

Fom ) m+ 3K 4 fori=1,2,..., L
7 k—1) = . .
m—+2+ =5 m+%+z forz:%,%,...,k.

For the edge-weights we have

CHCUSPISIES ICHE S (CTSIPATSDE Y (ORI

)
i+ (m+ 3L 1) + (m+ 2+ 55
1

B =2m+2k+2+2i for i=12,... L
i+ (m+ 5L i) + (m+ 2+ 5L
=2m+k+2+42i for i=53 53

i.e. the set of the edge-weights is [2m+2k+4, 2m+ 3k +3]. Thus for 2m+3 > k,
k=1 (mod 2), f is a super (2(k +m + 1) + 2, 1)-EAT labeling of G.



Notice that the edge Vit Uy gy kot is labeled under the labeling f by the
highest label m+2k+1 and has also the maximal edge-weight 2m+-3k+3. Thus it
is possible to delete this edge from G and the obtained graph K (;_1)U(m+1)K;
will also be super (2(k + m + 1) + 2,1)-EAT. It means that it is possible to
construct the required labeling also in the case when the star has even number
of pending edges (for k even). O

Lemma 3.2. Let k, m be positive integers, let m be even. Let H be an arbitrary
2-regular graph of order k. Then the graph H UmK; is super (2(k+m)+2,1)-
EAT.

Proof. According to Theorem 2.2 the graph H is super (2k + 2,1)-EAT. Using
Lemma 2.4 for t = %3 we get that H UmK is a super (2(k +m) + 2,1)-EAT
graph. O

Lemma 3.3. Let k, m be positive integers, let m be even. Then the graph
P, UmK is super (2(k +m) +2,1)-FAT.

Proof. Tt is known that the path on k vertices is super (2k + 2,1)-EAT, see [3].

According to Lemma 2.4 for t = % we get that the graph P, UmK) is super

(2(k +m) +2,1)-EAT. O

Immediately from the previous lemmas and Theorem 2.2 we see that it is
possible to “add” certain edges to an even-regular graph and obtain a super
(a,1)-EAT graph. The edges are added in such a way that the graph induced
by these edges is isomorphic to a collection of independent edges, to a star, to
a 2-regular graph, or to a path.

Theorem 3.4. Let k, m be positive integers. Let G be a graph on p vertices
that can be decomposed into two factors G1 and Gs. If Go is a 2r-regular graph
and either

1) Gy is the graph kP, UmK;, or
2) Gy is the graph Ky, UmK, for k < 2m+ 3, or

3) H is an arbitrary 2-reqular graph of order k and G1 =2 HUmK; for even
m, or

4) Gy is the graph P, UmK; for even m,
then the graph G is super (2p +2,1)-FAT.

Proof. Since the smallest edge-weight in G in case 1) is 2(2k+m)+2 = 2p+2
then the claim immediately follows by Lemma 2.5 and Theorem 2.2. By a similar
argument one can prove cases 2), 3), and 4) using Theorem 2.2 and Lemmas 3.1,
3.2, and 3.3, respectively. O

Notice that in Lemmas 2.5, 3.1, 3.2 and 3.3 by taking m = 0 we obtain
an (2p’ 4+ 2,1)-EAT labeling of the corresponding graph on p’ = p — m vertices.
Now adding m isolated vertices one can obtain by Lemma 2.4 not one, but
m—+1 different super (a, 1)-EAT labelings of the graph G; in each of the cases of
Theorem 3.4. This again implies several different super (2p+2, 1)-EAT labelings
of the graph G in Theorem 3.4. There can be significantly more than m + 1



different labelings, since we may choose various orderings of an orientations of
the 2-factors F; of G (as described in the proof of Theorem 2.2).
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