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Abstract

A labeling of a graph is a mapping that carries some set of graph ele-
ments into numbers (usually positive integers). An (a, d)-edge-antimagic

total labeling of a graph with p vertices and q edges is a one-to-one map-
ping that takes the vertices and edges onto the integers 1, 2, . . . , p + q, so
that the sums of the label on the edges and the labels of their end vertices
form an arithmetic progression starting at a and having difference d. Such
a labeling is called super if the p smallest possible labels appear at the
vertices.

In this paper we prove that every even regular graph and every odd
regular graph with a 1-factor are super (a, 1)-edge-antimagic total. We
also introduce some constructions of non-regular super (a, 1)-edge-anti-
magic total graphs.

Keywords: super edge-antimagic total labeling, regular graph

1 Introduction

We consider finite undirected graphs without loops and multiple edges. If G

is a graph, then V (G) and E(G) stand for the vertex set and edge set of G,
respectively. Let a, b, be two integers where a < b. By [a, b] we denote the set
of consecutive integers {a, a + 1, . . . , b}.

For a (p, q)-graph G with p vertices and q edges, a bijective mapping f :
V (G)∪E(G) → [1, p + q] is a total labeling of G and the associated edge-weights
are wf (uv) = f(u) + f(uv) + f(v) for every uv ∈ E(G).

An (a, d)-edge-antimagic total labeling ((a, d)-EAT for short) of G is the total
labeling with the property that the edge-weights form an arithmetic progression
starting from a and with difference d, where a > 0 and d ≥ 0 are two given
integers. Definition of an (a, d)-EAT labeling was introduced by Simanjuntak,
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Bertault and Miller in [11] as a natural extension of the magic valuation, which is
also known as the edge-magic labeling defined by Kotzig and Rosa in [9]. Kotzig
and Rosa [9] showed that all caterpillars have magic valuations and conjectured
that all trees have magic valuations. An (a, d)-EAT labeling is called super if
the smallest possible labels appear on the vertices. For more information on
edge-magic and super edge-magic labelings, please see [8] and [13].

The (a, d)-EAT and super (a, d)-EAT labelings are two among several other
“magic-type” labelings. Often results on one or a different type of magic-type
labelings can be adapted or combined to obtain results on a different type. This
idea has been studied by Figueroa-Centeno, Ichishima, and Muntaner-Batle [7].
In this paper, we will study a set of problems which are similar to the problems
studied in [10] for vertex-magic total labelings. For an exhaustive survey on
various magic-type labelings we again recommend [8].

A graph that admits an (a, d)-EAT labeling or a super (a, d)-EAT labeling is
called an (a, d)-EAT graph or a super (a, d)-EAT graph, respectively. Sugeng et
al. in [12] described how to construct super (a, d)-EAT labelings of all caterpillars
for d = 0, 1, 2 and of certain caterpillars for d = 3. In [2] some constructions
of super (a, d)-EAT labelings for disconnected graphs are presented using the
notion of an α-labeling. Bača et al. [4] also studied super (a, d)-EAT labelings
of path-like trees. Some other results on (a, d)-EAT graphs are presented in [1]
and [6].

Let (p, q)-graph be a super (a, d)-EAT graph. It is easy to see that the
minimum possible edge-weight is at least p+4 and the maximum possible edge-
weight is not more than 3p + q − 1. Thus

a + (q − 1)d ≤ 3p + q − 1 and d ≤
2p + q − 5

q − 1
.

For any (p, q)-graph, where p − 1 ≤ q, it follows that d ≤ 3. In particular if G

is connected then d ≤ 3.
In this paper we deal with the existence of super (a, 1)-EAT labelings of

regular graphs. We also give some constructions of non-regular super (a, 1)-
EAT graphs.

2 Super (a, 1)-EAT labeling of regular graphs

Results in this and the following sections are based on the Petersen Theorem.

Proposition 2.1. (Petersen Theorem) Let G be a 2r-regular graph. Then
there exists a 2-factor in G.

Notice that after removing edges of the 2-factor guaranteed by the Petersen
Theorem we have again an even regular graph. Thus, by induction, an even
regular graph has a 2-factorization.

The construction in the following theorem allows to find a super (a, 1)-EAT
labeling of any even regular graph. Notice that the construction does not require
the graph to be connected.

Theorem 2.2. Let G be a graph on p vertices that can be decomposed into two
factors G1 and G2. If G1 is edge-empty or if G1 is a super (2p + 2, 1)-EAT
graph and G2 is a 2r-regular graph then G is super (2p + 2, 1)-EAT.
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Proof. First we start with the case when G1 is not edge-empty. Since G1 is
a super (2p + 2, 1)-EAT graph with p vertices and q edges, there exists a total
labeling f : V (G1) ∪ E(G1) → [1, p + q] such that

{f(v) + f(uv) + f(v) : uv ∈ E(G)} = [2p + 2, 2p + q + 1] .

By the Petersen Theorem there exists a 2-factorization of G2. We denote the
2-factors by Fj , j = 1, 2, . . . , r. Let V (G) = V (G1) = V (Fj) for all j and
E(G) = ∪r

j=1E(Fj) ∪ E(G1). Each factor Fj is a collection of cycles. We order
and orient the cycles arbitrarily. Now by the symbol eout

j (vi) we denote the
unique outgoing arc from the vertex vi in the factor Fj .

We define a total labeling g of G in the following way.

g(v) = f(v) for v ∈ V (G),

g(e) =

{

f(e) for e ∈ E(G1),

q + (j + 1)p + 1 − f(vi) for e = eout
j (vi).

The vertices are labeled by the first p integers, the edges of G1 by the next q

labels and the edges of G2 by consecutive integers starting at p + q + 1. Thus g

is a bijection V (G) ∪ E(G) → [1, p + q + pr] since |E(G)| = q + pr.
It is not difficult to verify, that g is a super (2p + 2, 1)-EAT labeling of G.

For the weights of the edges e in E(G1) is wg(e) = wf (e). The weights form the
progression 2p + 2, 2p + 3, . . . , 2p + q + 1. For convenience we denote by vk the
unique vertex such that vivk = eout

j (vi) in Fj . The weights of the edges in Fj ,
j = 1, 2, . . . , r are

wg(e
out
j (vi)) = wg(vivk) = g(vi) + (q + (j + 1)p + 1 − f(vi)) + g(vk)

= f(vi) + q + (j + 1)p + 1 − f(vi) + f(vk) = q + (j + 1)p + 1 + f(vk)

for all i = 1, 2, . . . , p and j = 1, 2, . . . , r. Since Fj is a factor, the set {f(vk) : vk ∈
Fj} = [1, p]. Hence we have that the set of the edge-weights in the factor Fj is
[q + (j + 1)p + 2, q + (j + 1)p + p + 1] and thus the set of all edge-weights in G

is [2p + 2, q + (r + 2)p + 1].
If G1 is edge-empty it is enough to take q = 0 and proceed with the labeling

of factors Fj .

By taking an edge-empty graph G1 we have the following theorem (we prefer
call it a theorem though it is just a corollary of Theorem 2.2).

Theorem 2.3. All even-regular graphs of order p with at least one edge are
super (2p + 2, 1)-EAT.

The construction from Theorem 2.2 can be extended also to the case when
G1 is not a factor. One can add isolated vertices to a graph and keep the
property of being super (a, 1)-EAT. A graph consisting of m isolated vertices is
denoted by mK1. We can obtain the following lemma.

Lemma 2.4. If G is a super (a, 1)-EAT graph then also G ∪ mK1 is a super
(a + m + 2t, 1)-EAT graph for all t ∈ [0,m].
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Proof. Since G is a super (a, 1)-EAT graph with p vertices and q edges, there
exists such a total labeling f : V (G) ∪ E(G) → [1, p + q] that

{f(v) + f(uv) + f(v) : uv ∈ E(G)} = [a, a + q − 1] .

Let t be any fixed integer from [0,m]. Let (c1, c2, . . . , cm) be any permutation
of the integers in [1, p + m] \ [t + 1, t + p]. We denote the vertices of mK1

by vc1
, vc2

, . . . , vcm
arbitrarily. Now we define a labeling g of the graph H =

G ∪ mK1.

g(v) =

{

f(v) + t for v ∈ V (G),

i for v = vi, where vi ∈ mK1,

g(e) = f(e) + m for e ∈ E(H).

Obviously g is a bijection V (H)∪E(H) → [1, p + q + m]. The edges are labeled
by the q highest labels and the vertices by the first p + m integers. It is easy
to verify that g is super (a + m + 2t, 1)-EAT labeling of H, since any edge
uv ∈ E(H) is also in E(G).

wg(uv) = g(u) + g(uv) + g(v)

= (f(u) + t) + (f(uv) + m) + (f(v) + t) = wf (uv) + m + 2t

and the claim follows.

Notice that we can find m+1 different (up to isomorphism) super (b, 1)-EAT
labelings of G ∪ mK1 but all with the same parity of the smallest edge-weight.

In the last part of this section we show that also all odd-regular graphs
with a perfect matching are super (a, 1)-EAT. By Pn we denote the path on n

vertices.

Lemma 2.5. Let k, m be positive integers. Then the graph kP2∪mK1 is super
(2(2k + m) + 2, 1)-EAT.

Proof. We denote the vertices of the graph G ∼= kP2 ∪ mK1 by the symbols
v1, v2, . . . , v2k+m in such a way that E(G) = {vivk+m+i : i = 1, 2, . . . , k} and
the remaining vertices are denoted arbitrarily by the unused symbols.

We define the labeling f : V (G) ∪ E(G) → [1, 3k + m] in the following way

f(vj) = j for j = 1, 2, . . . , 2k + m,

f(vivk+m+i) = 3k + m + 1 − i for i = 1, 2, . . . , k.

It is easy to see that f is a bijection and that the vertices of G are labeled by
the smallest possible numbers. For the edge-weights we get

wf (vivk+m+i) =f(vi) + f(vivk+m+i) + f(vk+m+i)

=i + (3k + m + 1 − i) + (k + m + i)

=2(2k + m) + 1 + i for i = 1, 2, . . . , k.

Thus f is a super (2(2k + m) + 2, 1)-EAT labeling of G.

Now by taking m = 0 and observing that the number of vertices in kP2 is
2k, we immediately obtain the following theorem (we prefer to call it a theorem
though it is just a corollary of Lemma 2.5 and Theorem 2.2).
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Theorem 2.6. If G is an odd regular graph on p vertices that has a 1-factor,
then G is super (2p + 2, 1)-EAT.

Unfortunately the construction does not solve the existence of (a, 1)-EAT
labelings for all odd-regular graphs, it only works for those that contain a 1-
factor. We know that some graphs that arose by Cartesian products also satisfy
this property, therefore, we can obtain the following corollary.

Corollary 2.7. Let G be a regular graph. Then the Cartesian product G × K2

is a super (a, 1)-EAT graph.

Proof. If G is a (2r+1)-regular graph then the product G×K2 is (2r+2)-regular
and by Theorem 2.3 it is super (a, 1)-EAT. If G is 2r-regular then G × K2 is
a (2r + 1)-regular graph with a 1-factor and thus according to Theorem 2.6 is
super (a, 1)-EAT.

Let us point out that many results published on super (a, 1)-EAT labelings
(see [8]) follow from Theorems 2.3 and 2.6 as a corollary.

3 Some non-regular super (a, 1)-EAT graphs

Theorem 2.2 is not restricted to regular graphs, it can be used also to obtain
super (a, 1)-EAT labelings of certain non-regular graphs. We illustrate the tech-
nique on a couple of examples. First we introduce the following lemmas.

Lemma 3.1. Let k, m be positive integers, k < 2m + 3. Then the graph
K1,k ∪ mK1 is super (2(k + m + 1) + 2, 1)-EAT.

Proof. We distinguish two subcases according to the parity of k.
Let k be an odd positive integer. We denote the vertices of the graph G ∼=

K1,k ∪ mK1 by the symbols v1, v2, . . . , vk+m+1 in such a way that E(G) =
{vivm+2+ k−1

2

: i = 1, 2, . . . , k} and the remaining vertices are denoted arbitrarily

by the unused symbols. Notice that it is possible to use such notation as k <

2m + 3.
We define the labeling f : V (G) ∪ E(G) → [1, 2k + m + 1] in the following

way

f(vj) = j for j = 1, 2, . . . , k + m + 1,

f(vivm+2+ k−1

2

) =

{

m + 3k+1
2 + i for i = 1, 2, . . . , k+1

2 ,

m + k+1
2 + i for i = k+3

2 , k+5
2 , . . . , k.

For the edge-weights we have

wf (vivm+2+ k−1

2

) =f(vi) + f(vivm+2+ k−1

2

) + f(vm+2+ k−1

2

)

=



















i +
(

m + 3k+1
2 + i

)

+
(

m + 2 + k−1
2

)

= 2m + 2k + 2 + 2i for i = 1, 2, . . . , k+1
2 ,

i +
(

m + k+1
2 + i

)

+
(

m + 2 + k−1
2

)

= 2m + k + 2 + 2i for i = k+3
2 , k+5

2 , . . . , k,

i.e. the set of the edge-weights is [2m+2k+4, 2m+3k+3]. Thus for 2m+3 > k,
k ≡ 1 (mod 2), f is a super (2(k + m + 1) + 2, 1)-EAT labeling of G.
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Notice that the edge v k+1

2

vm+2+ k−1

2

is labeled under the labeling f by the

highest label m+2k+1 and has also the maximal edge-weight 2m+3k+3. Thus it
is possible to delete this edge from G and the obtained graph K1,(k−1)∪(m+1)K1

will also be super (2(k + m + 1) + 2, 1)-EAT. It means that it is possible to
construct the required labeling also in the case when the star has even number
of pending edges (for k even).

Lemma 3.2. Let k, m be positive integers, let m be even. Let H be an arbitrary
2-regular graph of order k. Then the graph H ∪mK1 is super (2(k + m) + 2, 1)-
EAT.

Proof. According to Theorem 2.2 the graph H is super (2k + 2, 1)-EAT. Using
Lemma 2.4 for t = m

2 we get that H ∪ mK1 is a super (2(k + m) + 2, 1)-EAT
graph.

Lemma 3.3. Let k, m be positive integers, let m be even. Then the graph
Pk ∪ mK1 is super (2(k + m) + 2, 1)-EAT.

Proof. It is known that the path on k vertices is super (2k + 2, 1)-EAT, see [3].
According to Lemma 2.4 for t = m

2 we get that the graph Pk ∪ mK1 is super
(2(k + m) + 2, 1)-EAT.

Immediately from the previous lemmas and Theorem 2.2 we see that it is
possible to “add” certain edges to an even-regular graph and obtain a super
(a, 1)-EAT graph. The edges are added in such a way that the graph induced
by these edges is isomorphic to a collection of independent edges, to a star, to
a 2-regular graph, or to a path.

Theorem 3.4. Let k, m be positive integers. Let G be a graph on p vertices
that can be decomposed into two factors G1 and G2. If G2 is a 2r-regular graph
and either

1) G1 is the graph kP2 ∪ mK1, or

2) G1 is the graph K1,k ∪ mK1 for k < 2m + 3, or

3) H is an arbitrary 2-regular graph of order k and G1
∼= H ∪mK1 for even

m, or

4) G1 is the graph Pk ∪ mK1 for even m,

then the graph G is super (2p + 2, 1)-EAT.

Proof. Since the smallest edge-weight in G1 in case 1) is 2(2k +m)+2 = 2p+2
then the claim immediately follows by Lemma 2.5 and Theorem 2.2. By a similar
argument one can prove cases 2), 3), and 4) using Theorem 2.2 and Lemmas 3.1,
3.2, and 3.3, respectively.

Notice that in Lemmas 2.5, 3.1, 3.2 and 3.3 by taking m = 0 we obtain
an (2p′ + 2, 1)-EAT labeling of the corresponding graph on p′ = p−m vertices.
Now adding m isolated vertices one can obtain by Lemma 2.4 not one, but
m+1 different super (a, 1)-EAT labelings of the graph G1 in each of the cases of
Theorem 3.4. This again implies several different super (2p+2, 1)-EAT labelings
of the graph G in Theorem 3.4. There can be significantly more than m + 1
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different labelings, since we may choose various orderings of an orientations of
the 2-factors Fj of G2 (as described in the proof of Theorem 2.2).
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[10] P. Kovář, Magic labelings of regular graphs, AKCE Intern. J. Graphs and
Combin., 4 (2007) 261–275.

[11] R. Simanjuntak, F. Bertault, M. Miller, Two new (a, d)-antimagic graph
labelings, Proc. of Eleventh Australasian Workshop on Combinatorial Al-
gorithms (2000) 179–189.

[12] K.A. Sugeng, M. Miller, Slamin, M. Bača, (a, d)-edge-antimagic total la-
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[13] W.D. Wallis, Magic Graphs, Birkhäuser, Boston - Basel - Berlin, 2001.

7


