On Super ($a, 1$)-Edge-Antimagic Total Labelings of Regular Graphs

Martin Bača ${ }^{1,3}$, Petr Kovář² ${ }^{2}$, Andrea Semaničová-Feňovčíková ${ }^{1}$, and Muhammad Kashif Shafiq ${ }^{3}$
${ }^{1}$ Department of Appl. Mathematics, Technical University, Letná 9, 04200 Košice, Slovakia
${ }^{2}$ Department of Appl. Mathematics, V $\mathrm{S} B$ - Technical University of Ostrava, 17. listopadu 15, 70833 Ostrava-Poruba, Czech Republic
${ }^{3}$ Abdus Salam School of Mathematical Sciences, GC University, 68-B, New Muslim Town, Lahore, Pakistan
E-mail: martin.baca@tuke.sk, petr.kovar@vsb.cz, andrea.fenovcikova@tuke.sk, kashif4v@gmail.com

Abstract

A labeling of a graph is a mapping that carries some set of graph elements into numbers (usually positive integers). An (a,d)-edge-antimagic total labeling of a graph with p vertices and q edges is a one-to-one mapping that takes the vertices and edges onto the integers $1,2, \ldots, p+q$, so that the sums of the label on the edges and the labels of their end vertices form an arithmetic progression starting at a and having difference d. Such a labeling is called super if the p smallest possible labels appear at the vertices.

In this paper we prove that every even regular graph and every odd regular graph with a 1 -factor are super ($a, 1$)-edge-antimagic total. We also introduce some constructions of non-regular super ($a, 1$)-edge-antimagic total graphs.

Keywords: super edge-antimagic total labeling, regular graph

1 Introduction

We consider finite undirected graphs without loops and multiple edges. If G is a graph, then $V(G)$ and $E(G)$ stand for the vertex set and edge set of G, respectively. Let a, b, be two integers where $a<b$. By $[a, b]$ we denote the set of consecutive integers $\{a, a+1, \ldots, b\}$.

For a (p, q)-graph G with p vertices and q edges, a bijective mapping f : $V(G) \cup E(G) \rightarrow[1, p+q]$ is a total labeling of G and the associated edge-weights are $w_{f}(u v)=f(u)+f(u v)+f(v)$ for every $u v \in E(G)$.

An (a, d)-edge-antimagic total labeling $((a, d)-E A T$ for short) of G is the total labeling with the property that the edge-weights form an arithmetic progression starting from a and with difference d, where $a>0$ and $d \geq 0$ are two given integers. Definition of an (a, d)-EAT labeling was introduced by Simanjuntak,

Bertault and Miller in [11] as a natural extension of the magic valuation, which is also known as the edge-magic labeling defined by Kotzig and Rosa in [9]. Kotzig and Rosa [9] showed that all caterpillars have magic valuations and conjectured that all trees have magic valuations. An (a, d)-EAT labeling is called super if the smallest possible labels appear on the vertices. For more information on edge-magic and super edge-magic labelings, please see [8] and [13].

The (a, d)-EAT and super (a, d)-EAT labelings are two among several other "magic-type" labelings. Often results on one or a different type of magic-type labelings can be adapted or combined to obtain results on a different type. This idea has been studied by Figueroa-Centeno, Ichishima, and Muntaner-Batle [7]. In this paper, we will study a set of problems which are similar to the problems studied in [10] for vertex-magic total labelings. For an exhaustive survey on various magic-type labelings we again recommend [8].

A graph that admits an (a, d)-EAT labeling or a super (a, d)-EAT labeling is called an (a, d)-EAT graph or a super (a, d)-EAT graph, respectively. Sugeng et al. in [12] described how to construct super (a, d)-EAT labelings of all caterpillars for $d=0,1,2$ and of certain caterpillars for $d=3$. In [2] some constructions of super (a, d)-EAT labelings for disconnected graphs are presented using the notion of an α-labeling. Bača et al. [4] also studied super (a, d)-EAT labelings of path-like trees. Some other results on (a, d)-EAT graphs are presented in [1] and [6].

Let (p, q)-graph be a super (a, d)-EAT graph. It is easy to see that the minimum possible edge-weight is at least $p+4$ and the maximum possible edgeweight is not more than $3 p+q-1$. Thus

$$
a+(q-1) d \leq 3 p+q-1 \text { and } d \leq \frac{2 p+q-5}{q-1}
$$

For any (p, q)-graph, where $p-1 \leq q$, it follows that $d \leq 3$. In particular if G is connected then $d \leq 3$.

In this paper we deal with the existence of super $(a, 1)$-EAT labelings of regular graphs. We also give some constructions of non-regular super ($a, 1$)EAT graphs.

2 Super ($a, 1$)-EAT labeling of regular graphs

Results in this and the following sections are based on the Petersen Theorem.
Proposition 2.1. (Petersen Theorem) Let G be a $2 r$-regular graph. Then there exists a 2 -factor in G.

Notice that after removing edges of the 2-factor guaranteed by the Petersen Theorem we have again an even regular graph. Thus, by induction, an even regular graph has a 2 -factorization.

The construction in the following theorem allows to find a super $(a, 1)$-EAT labeling of any even regular graph. Notice that the construction does not require the graph to be connected.

Theorem 2.2. Let G be a graph on p vertices that can be decomposed into two factors G_{1} and G_{2}. If G_{1} is edge-empty or if G_{1} is a super $(2 p+2,1)$-EAT graph and G_{2} is a $2 r$-regular graph then G is super $(2 p+2,1)$-EAT.

Proof. First we start with the case when G_{1} is not edge-empty. Since G_{1} is a super $(2 p+2,1)$-EAT graph with p vertices and q edges, there exists a total labeling $f: V\left(G_{1}\right) \cup E\left(G_{1}\right) \rightarrow[1, p+q]$ such that

$$
\{f(v)+f(u v)+f(v): u v \in E(G)\}=[2 p+2,2 p+q+1] .
$$

By the Petersen Theorem there exists a 2-factorization of G_{2}. We denote the 2-factors by $F_{j}, j=1,2, \ldots, r$. Let $V(G)=V\left(G_{1}\right)=V\left(F_{j}\right)$ for all j and $E(G)=\cup_{j=1}^{r} E\left(F_{j}\right) \cup E\left(G_{1}\right)$. Each factor F_{j} is a collection of cycles. We order and orient the cycles arbitrarily. Now by the symbol $e_{j}^{\text {out }}\left(v_{i}\right)$ we denote the unique outgoing arc from the vertex v_{i} in the factor F_{j}.

We define a total labeling g of G in the following way.

$$
\begin{aligned}
g(v) & =f(v) \text { for } v \in V(G), \\
g(e) & = \begin{cases}f(e) & \text { for } e \in E\left(G_{1}\right) \\
q+(j+1) p+1-f\left(v_{i}\right) & \text { for } e=e_{j}^{\text {out }}\left(v_{i}\right)\end{cases}
\end{aligned}
$$

The vertices are labeled by the first p integers, the edges of G_{1} by the next q labels and the edges of G_{2} by consecutive integers starting at $p+q+1$. Thus g is a bijection $V(G) \cup E(G) \rightarrow[1, p+q+p r]$ since $|E(G)|=q+p r$.

It is not difficult to verify, that g is a super $(2 p+2,1)$-EAT labeling of G. For the weights of the edges e in $E\left(G_{1}\right)$ is $w_{g}(e)=w_{f}(e)$. The weights form the progression $2 p+2,2 p+3, \ldots, 2 p+q+1$. For convenience we denote by v_{k} the unique vertex such that $v_{i} v_{k}=e_{j}^{\text {out }}\left(v_{i}\right)$ in F_{j}. The weights of the edges in F_{j}, $j=1,2, \ldots, r$ are

$$
\begin{aligned}
& w_{g}\left(e_{j}^{\text {out }}\left(v_{i}\right)\right)=w_{g}\left(v_{i} v_{k}\right)=g\left(v_{i}\right)+\left(q+(j+1) p+1-f\left(v_{i}\right)\right)+g\left(v_{k}\right) \\
& =f\left(v_{i}\right)+q+(j+1) p+1-f\left(v_{i}\right)+f\left(v_{k}\right)=q+(j+1) p+1+f\left(v_{k}\right)
\end{aligned}
$$

for all $i=1,2, \ldots, p$ and $j=1,2, \ldots, r$. Since F_{j} is a factor, the set $\left\{f\left(v_{k}\right): v_{k} \in\right.$ $\left.F_{j}\right\}=[1, p]$. Hence we have that the set of the edge-weights in the factor F_{j} is $[q+(j+1) p+2, q+(j+1) p+p+1]$ and thus the set of all edge-weights in G is $[2 p+2, q+(r+2) p+1]$.

If G_{1} is edge-empty it is enough to take $q=0$ and proceed with the labeling of factors F_{j}.

By taking an edge-empty graph G_{1} we have the following theorem (we prefer call it a theorem though it is just a corollary of Theorem 2.2).

Theorem 2.3. All even-regular graphs of order p with at least one edge are super $(2 p+2,1)$-EAT.

The construction from Theorem 2.2 can be extended also to the case when G_{1} is not a factor. One can add isolated vertices to a graph and keep the property of being super $(a, 1)$-EAT. A graph consisting of m isolated vertices is denoted by $m K_{1}$. We can obtain the following lemma.

Lemma 2.4. If G is a super ($a, 1$)-EAT graph then also $G \cup m K_{1}$ is a super $(a+m+2 t, 1)-E A T$ graph for all $t \in[0, m]$.

Proof. Since G is a super $(a, 1)$-EAT graph with p vertices and q edges, there exists such a total labeling $f: V(G) \cup E(G) \rightarrow[1, p+q]$ that

$$
\{f(v)+f(u v)+f(v): u v \in E(G)\}=[a, a+q-1] .
$$

Let t be any fixed integer from $[0, m]$. Let $\left(c_{1}, c_{2}, \ldots, c_{m}\right)$ be any permutation of the integers in $[1, p+m] \backslash[t+1, t+p]$. We denote the vertices of $m K_{1}$ by $v_{c_{1}}, v_{c_{2}}, \ldots, v_{c_{m}}$ arbitrarily. Now we define a labeling g of the graph $H=$ $G \cup m K_{1}$.

$$
\begin{aligned}
& g(v)= \begin{cases}f(v)+t & \text { for } v \in V(G), \\
i & \text { for } v=v_{i}, \text { where } v_{i} \in m K_{1},\end{cases} \\
& g(e)=f(e)+m \text { for } e \in E(H) \text {. }
\end{aligned}
$$

Obviously g is a bijection $V(H) \cup E(H) \rightarrow[1, p+q+m]$. The edges are labeled by the q highest labels and the vertices by the first $p+m$ integers. It is easy to verify that g is super $(a+m+2 t, 1)$-EAT labeling of H, since any edge $u v \in E(H)$ is also in $E(G)$.

$$
\begin{aligned}
w_{g}(u v) & =g(u)+g(u v)+g(v) \\
& =(f(u)+t)+(f(u v)+m)+(f(v)+t)=w_{f}(u v)+m+2 t
\end{aligned}
$$

and the claim follows.
Notice that we can find $m+1$ different (up to isomorphism) super ($b, 1$)-EAT labelings of $G \cup m K_{1}$ but all with the same parity of the smallest edge-weight.

In the last part of this section we show that also all odd-regular graphs with a perfect matching are super $(a, 1)$-EAT. By P_{n} we denote the path on n vertices.

Lemma 2.5. Let k, m be positive integers. Then the graph $k P_{2} \cup m K_{1}$ is super $(2(2 k+m)+2,1)-E A T$.

Proof. We denote the vertices of the graph $G \cong k P_{2} \cup m K_{1}$ by the symbols $v_{1}, v_{2}, \ldots, v_{2 k+m}$ in such a way that $E(G)=\left\{v_{i} v_{k+m+i}: i=1,2, \ldots, k\right\}$ and the remaining vertices are denoted arbitrarily by the unused symbols.

We define the labeling $f: V(G) \cup E(G) \rightarrow[1,3 k+m]$ in the following way

$$
\begin{aligned}
f\left(v_{j}\right) & =j & & \text { for } j=1,2, \ldots, 2 k+m \\
f\left(v_{i} v_{k+m+i}\right) & =3 k+m+1-i & & \text { for } i=1,2, \ldots, k
\end{aligned}
$$

It is easy to see that f is a bijection and that the vertices of G are labeled by the smallest possible numbers. For the edge-weights we get

$$
\begin{aligned}
w_{f}\left(v_{i} v_{k+m+i}\right) & =f\left(v_{i}\right)+f\left(v_{i} v_{k+m+i}\right)+f\left(v_{k+m+i}\right) \\
& =i+(3 k+m+1-i)+(k+m+i) \\
& =2(2 k+m)+1+i \quad \text { for } i=1,2, \ldots, k
\end{aligned}
$$

Thus f is a super $(2(2 k+m)+2,1)$-EAT labeling of G.
Now by taking $m=0$ and observing that the number of vertices in $k P_{2}$ is $2 k$, we immediately obtain the following theorem (we prefer to call it a theorem though it is just a corollary of Lemma 2.5 and Theorem 2.2).

Theorem 2.6. If G is an odd regular graph on p vertices that has a 1-factor, then G is super $(2 p+2,1)$-EAT.

Unfortunately the construction does not solve the existence of $(a, 1)$-EAT labelings for all odd-regular graphs, it only works for those that contain a 1 factor. We know that some graphs that arose by Cartesian products also satisfy this property, therefore, we can obtain the following corollary.

Corollary 2.7. Let G be a regular graph. Then the Cartesian product $G \times K_{2}$ is a super ($a, 1$)-EAT graph.

Proof. If G is a $(2 r+1)$-regular graph then the product $G \times K_{2}$ is $(2 r+2)$-regular and by Theorem 2.3 it is super ($a, 1$)-EAT. If G is $2 r$-regular then $G \times K_{2}$ is a $(2 r+1)$-regular graph with a 1 -factor and thus according to Theorem 2.6 is super $(a, 1)$-EAT.

Let us point out that many results published on super ($a, 1$)-EAT labelings (see [8]) follow from Theorems 2.3 and 2.6 as a corollary.

3 Some non-regular super ($a, 1$)-EAT graphs

Theorem 2.2 is not restricted to regular graphs, it can be used also to obtain super ($a, 1$)-EAT labelings of certain non-regular graphs. We illustrate the technique on a couple of examples. First we introduce the following lemmas.
Lemma 3.1. Let k, m be positive integers, $k<2 m+3$. Then the graph $K_{1, k} \cup m K_{1}$ is super $(2(k+m+1)+2,1)$-EAT.

Proof. We distinguish two subcases according to the parity of k.
Let k be an odd positive integer. We denote the vertices of the graph $G \cong$ $K_{1, k} \cup m K_{1}$ by the symbols $v_{1}, v_{2}, \ldots, v_{k+m+1}$ in such a way that $E(G)=$ $\left\{v_{i} v_{m+2+\frac{k-1}{2}}: i=1,2, \ldots, k\right\}$ and the remaining vertices are denoted arbitrarily by the unused symbols. Notice that it is possible to use such notation as $k<$ $2 m+3$.

We define the labeling $f: V(G) \cup E(G) \rightarrow[1,2 k+m+1]$ in the following way

$$
\begin{aligned}
f\left(v_{j}\right) & =j \quad \text { for } j=1,2, \ldots, k+m+1, \\
f\left(v_{i} v_{m+2+\frac{k-1}{2}}\right) & = \begin{cases}m+\frac{3 k+1}{2}+i & \text { for } i=1,2, \ldots, \frac{k+1}{2}, \\
m+\frac{k+1}{2}+i & \text { for } i=\frac{k+3}{2}, \frac{k+5}{2}, \ldots, k .\end{cases}
\end{aligned}
$$

For the edge-weights we have

$$
\begin{aligned}
& w_{f}\left(v_{i} v_{m+2+\frac{k-1}{2}}\right)= f\left(v_{i}\right)+f\left(v_{i} v_{m+2+\frac{k-1}{2}}\right)+f\left(v_{\left.m+2+\frac{k-1}{2}\right)}\right. \\
&=\left\{\begin{array}{c}
i+\left(m+\frac{3 k+1}{2}+i\right)+\left(m+2+\frac{k-1}{2}\right) \\
=2 m+2 k+2+2 i
\end{array} \text { for } i=1,2, \ldots, \frac{k+1}{2}\right. \\
& i+\left(m+\frac{k+1}{2}+i\right)+\left(m+2+\frac{k-1}{2}\right) \\
&=2 m+k+2+2 i \text { for } i=\frac{k+3}{2}, \frac{k+5}{2}, \ldots, k,
\end{aligned}
$$

i.e. the set of the edge-weights is $[2 m+2 k+4,2 m+3 k+3]$. Thus for $2 m+3>k$, $k \equiv 1(\bmod 2), f$ is a super $(2(k+m+1)+2,1)$-EAT labeling of G.

Notice that the edge $v_{\frac{k+1}{2}} v_{m+2+\frac{k-1}{2}}$ is labeled under the labeling f by the highest label $m+2 k+1$ and has also the maximal edge-weight $2 m+3 k+3$. Thus it is possible to delete this edge from G and the obtained graph $K_{1,(k-1)} \cup(m+1) K_{1}$ will also be super $(2(k+m+1)+2,1)$-EAT. It means that it is possible to construct the required labeling also in the case when the star has even number of pending edges (for k even).

Lemma 3.2. Let k, m be positive integers, let m be even. Let H be an arbitrary 2-regular graph of order k. Then the graph $H \cup m K_{1}$ is super $(2(k+m)+2,1)$ EAT.

Proof. According to Theorem 2.2 the graph H is super $(2 k+2,1)$-EAT. Using Lemma 2.4 for $t=\frac{m}{2}$ we get that $H \cup m K_{1}$ is a super $(2(k+m)+2,1)$-EAT graph.

Lemma 3.3. Let k, m be positive integers, let m be even. Then the graph $P_{k} \cup m K_{1}$ is super $(2(k+m)+2,1)$-EAT.

Proof. It is known that the path on k vertices is super $(2 k+2,1)$-EAT, see [3]. According to Lemma 2.4 for $t=\frac{m}{2}$ we get that the graph $P_{k} \cup m K_{1}$ is super $(2(k+m)+2,1)$-EAT.

Immediately from the previous lemmas and Theorem 2.2 we see that it is possible to "add" certain edges to an even-regular graph and obtain a super $(a, 1)$-EAT graph. The edges are added in such a way that the graph induced by these edges is isomorphic to a collection of independent edges, to a star, to a 2-regular graph, or to a path.

Theorem 3.4. Let k, m be positive integers. Let G be a graph on p vertices that can be decomposed into two factors G_{1} and G_{2}. If G_{2} is a $2 r$-regular graph and either

1) G_{1} is the graph $k P_{2} \cup m K_{1}$, or
2) G_{1} is the graph $K_{1, k} \cup m K_{1}$ for $k<2 m+3$, or
3) H is an arbitrary 2-regular graph of order k and $G_{1} \cong H \cup m K_{1}$ for even m, or
4) G_{1} is the graph $P_{k} \cup m K_{1}$ for even m,
then the graph G is super $(2 p+2,1)$-EAT.
Proof. Since the smallest edge-weight in G_{1} in case 1) is $2(2 k+m)+2=2 p+2$ then the claim immediately follows by Lemma 2.5 and Theorem 2.2. By a similar argument one can prove cases 2), 3), and 4) using Theorem 2.2 and Lemmas 3.1, 3.2 , and 3.3 , respectively.

Notice that in Lemmas 2.5, 3.1, 3.2 and 3.3 by taking $m=0$ we obtain an $\left(2 p^{\prime}+2,1\right)$-EAT labeling of the corresponding graph on $p^{\prime}=p-m$ vertices. Now adding m isolated vertices one can obtain by Lemma 2.4 not one, but $m+1$ different super $(a, 1)$-EAT labelings of the graph G_{1} in each of the cases of Theorem 3.4. This again implies several different super ($2 p+2,1$)-EAT labelings of the graph G in Theorem 3.4. There can be significantly more than $m+1$
different labelings, since we may choose various orderings of an orientations of the 2 -factors F_{j} of G_{2} (as described in the proof of Theorem 2.2).

Acknowledgement. The research for this article was supported by Slovak VEGA Grant 1/4005/07, Higher Education Commission Pakistan Grant HEC(FD)/2007/555 and by the Ministry of Education of the Czech Republic grant No. MSM6198910027.

References

[1] M. Bača, C. Barrientos, On super edge-antimagic total labelings of $m K_{n}$, Discrete Math. 308 (2008) 5032-5037.
[2] M. Bača, M. Lascsaková, A. Semaničová, On connection between α labelings and edge-antimagic labelings of disconnected graphs, Ars Combin., to appear.
[3] M. Bača, Y. Lin, M. Miller, R. Simanjuntak, New constructions of magic and antimagic graph labelings, Utilitas Math 60 (2001) 229-239.
[4] M. Bača, Y. Lin, F.A. Muntaner-Batle, Super edge-antimagic labelings of the path-like trees, Utilitas Math. 73 (2007) 117-128.
[5] Z. Chen, On super edge-magic graphs, J. Combin. Math. Combin. Comput. 38 (2001) 55-64.
[6] Dafik, M. Miller, J. Ryan, M. Bača, Super edge-antimagic total labelings of $m K_{n, n, n}$, Ars Combin., to appear.
[7] R.M. Figueroa-Centeno, R. Ichishima, F.A. Muntaner-Batle, The place of super edge-magic labelings among other classes of labelings, Discrete Math. 231 (2001) 153-168.
[8] J. Gallian, A dynamic survey of graph labeling, Electron. J. Combin., (2008) DS6.
[9] A. Kotzig, A. Rosa, Magic valuations of finite graphs, Canad. Math. Bull. 13 (1970) 451-461.
[10] P. Kovář, Magic labelings of regular graphs, AKCE Intern. J. Graphs and Combin., 4 (2007) 261-275.
[11] R. Simanjuntak, F. Bertault, M. Miller, Two new (a, d)-antimagic graph labelings, Proc. of Eleventh Australasian Workshop on Combinatorial Algorithms (2000) 179-189.
[12] K.A. Sugeng, M. Miller, Slamin, M. Bača, (a, d)-edge-antimagic total labelings of caterpillars, Lecture Notes Comput. Sci., 3330 (2005) 169-180.
[13] W.D. Wallis, Magic Graphs, Birkhäuser, Boston - Basel - Berlin, 2001.

