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Abstract 

This paper focuses on the development of simple models for describing the influence of initial 
out-of-plane imperfections on the post-buckling strength of square uniformly compressed plates 
without stiffeners. This is the first step in gaining a better understanding of the behavior of 
compression flanges of cold-formed steel members, necessary for the development of new, accurate 
and insight providing design rules for first and second generation trapezoidal profiled sheeting, 
subjected to the combined action of a concentrated load (support reaction) and a bending moment. 

Abstrakt 

Předmětem článku je vývoj jednoduchého modelu popisujícího pokritické chování 
čtvercových rovnoměrně tlačených nevyztužených stěn se zahrnutím vlivu počátečních imperfekcí. 
Tento výzkum může být chápán jako první krok pro lepší pochopení chování tlačených stěn 
tenkostěnných ocelových profilů, je nezbytný pro vývoj nového přesného a zároveň jednoduchého 
výpočetního postupu pro návrh první a druhé generace trapézových plechů namáhaných kombinací 
zatížení osamělým břemenem a ohybovým momentem (v místě nad vnitřní podporou). 

 1 INTRODUCTION 
In this paper the post-buckling failure behavior of square plates is studied. All edges of the 

plate are simply supported (uz = 0). The edges loaded by the compression force are forced to remain 
straight, but free to experience Poisson’s contraction. The other two edges are free to wave in-plane, 
thus membrane stresses in the y-direction are equal to zero. These boundary conditions correspond to 
the boundary conditions usually used for the modeling of compression flanges in thin-walled steel 
deck sections. The research is focused on the strength of cold-formed deck sections subjected to the 
combined action of bending moment and concentrated load (Hofmeyer et al; 2001 and 2006). The 
concentrated load causes deformations of the compression flange which are large. Therefore it was 
decided to study the failure behavior of uniformly compressed plates with initial imperfections. 

When a perfectly flat simply supported plate is subjected to uniaxial compression, the stress 
distribution is uniform over the plate, until the buckling load is reached. After buckling the stress 
distribution becomes non-uniform, both over the width b and the length a of the plate. Plate with 
unloaded edges forced to remain straight but free to move in-plane have the same buckling load, but 
differ in their post-buckling behavior. For plates with initial imperfections the stress distribution is 
non-uniform from the onset of loading. In this paper, it is assumed that the plate has a sinusoidal 
initial imperfection, with the maximum imperfection occurring at the center of the plate, see Fig. 1. 
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Fig. 1: Schematic view of numerical model: 

a) Boundary conditions; 
b) Initial imperfection, load, measures and location of points A and B and C. 
Point A is located in the middle fibers, points B and C are located in outer fibers which are 
most compressed. 

In this paper the following results will be discussed: 
• the load F or average stress in x-direction: σx;av = F/(bt); 
• the axial shortening u or the average strain in x-direction: εx;av = u/a; 
• membrane stresses σx;A in the x-direction at point A. 

These results will be presented as functions of the out-of-plane deflection w at the center of the plate, 
where w is the total out-of-plane deflection at the center of the plate, including the initial 
imperfection w0. These results can be made dimensionless by using the buckling stress: 
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from which we can define the critical strain: 
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the critical axial shortening: 
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and the critical load: crcr btF σ=  (4) 

  

and D is the plate flexural rigidity factor: ( )2

3

112 ν−
=

EtD  (5) 

t is the plate thickness, a and b are the length and width of the plate (for a square plate a = b), E is the 
modulus of elasticity and K is the buckling coefficient (for a square plate K = 4), and ν is Poisson’s 
ratio. 

According to Little (1980), for two plates having the same values of ν, a/b, b/t, √(fy /E) 
(or fy /σcr) and w0 /t, but different values of fy, E, and w0 /b, numerical analysis will predict precisely 
the same non-dimensional load-shortening response. Tab. 1 gives an overview of the material and 
plate properties which were kept constant in the parameter study. The critical stress was varied in five 
steps between fy and fy /8 by varying the width b of the plate. For each plate 7 different imperfections 
were considered (0.01t, 0.1t, 0.25t, 0.5t, t, 1.5t, and 2t). Each simulation with the finite element 
program ANSYS 8.1 has been performed once with linear-elastic material properties, and once with 
linear-elastic/ideal plastic (bilinear) material properties. All boundary conditions, axis convention and 
the specific points on the plate are presented in Fig. 1. In the model rectangular elements Shell43 
were used. The mesh density for each plate was 40 x 40 elements. In the calculations the effect of 
large deformations was included. 
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Tab. 1: Input data for performed numerical (FEM) parameter study. 

critical stresses determined values, see eqs. (1) – (4) 
constant properties 

σcr [N/mm2] b [mm] b/t [-] Fcr [N] ucr [mm] 
fy [N/mm2] 300 fy 35.2 50.3 7392.0 5.021.10-2 
t [mm] 0.7 2fy /3 40.7 58.1 6410.3 4.361.10-2 
ν [-] 0.3 fy /2 49.8 71.1 5229.0 3.557.10-2 
E [N/mm2] 2.1.105 fy /4 70.4 100.6 3696.0 2.514.10-2 
D [Nmm] 6596 fy /8 99.6 142.3 2614.5 1.779.10-2 

 2 RESULTS OF FINITE ELEMENT SIMULATIONS 
Fig. 2 gives an overview of the elastic and elasto-plastic behavior of the investigated plates 

obtained from the performed finite element simulations. In this Fig. 2 the solid dots indicate the 
ultimate loads. The meaning of the other symbols is discussed later in this paper. 

The finite element simulations showed that for most cases first yield occurs in the outer fibers 
in an area near the corners of the plate (point C). Yielding continues along the longitudinal plate 
edge, with first membrane yield occurring at the midpoint of the longitudinal edges (point A). Failure 
is not at first membrane yield but after some membrane yielding of the plate edges. At failure the 
outer fibers in the center of the plate (point B) do not yield yet. This type of failure is ductile in nature 
and results in a failure load which may be significantly larger than the load corresponding to first 
membrane yield at the plate edge. It was also found that outer fiber yield at the corner hardly 
influences the load-deformation behavior. The elasto-plastic load-deformation behavior starts to 
deviate from the elastic behavior only after first membrane yield. This type of failure will be denoted 
further as failure by membrane yielding. 
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Fig. 2: Overview of selected curves obtained from the FEM simulations. 

For the specific case of a plate with both small imperfections and a buckling stress close to the 
yield stress, first yield occurs in the outer fibers of the center of the plate (point B), resulting in an 
immediate deviation of the elasto-plastic load-deformation behavior from the elastic behavior. Next 
the outer fibers in an area near the corners of the plate (point C) start yielding. The ultimate load may 
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be reached before or after first membrane yield at point A. This type of failure is more violent, and 
may result in a load which may be either smaller or larger than the elastic load corresponding to first 
membrane yield. This type of failure will be denoted further as failure by outer fiber yield. 

 3 PREDICTION OF FAILURE LOADS 
According to Rhodes (1982) the maximum load a plate can withstand is very close to the 

elastic load causing first membrane yield at point A. This assumption is also the starting point for 
strength predictions based on the effective width approach. According to Calladine (1985), failure 
occurs when the outer fibers in the center of the plate (at point B) start yielding. In this paper it is 
proposed to develop different models to predict failure by membrane yielding respectively failure by 
outer fiber yield. According to Rhodes (1982) the maximum load a plate can withstand is very close 
to the elastic load causing first membrane yield at point A. This assumption is also the starting point 
for strength predictions based on the effective width approach. According to Calladine (1985), failure 
occurs when the outer fibers in the center of the plate (at point B) start yielding. In this paper it is 
proposed to develop different models to predict failure by membrane yielding respectively failure by 
outer fiber yield. 

Failure by membrane yielding is defined to occur in plates where first membrane yield at the 
midpoint of the longitudinal edges (point A) occurs before outer fiber yield at the center of the plate. 
To model the additional elasto-plastic strength after first membrane yield (which is disregarded in the 
effective width approach), the assumption is made that the plates fail at an average applied strain 
equal to the yield strain (or at in-plane shortening equal to fy /σcr times the critical shortening). 

Failure by outer fiber yield at the plate center is defined to occur in plates where outer fiber 
yield at the plate center occurs before first membrane yield. For this type of failure it was surprisingly 
found that the elastic load corresponding to first membrane yield at the edge results in a good 
prediction of the failure load, better than the elastic load corresponding to first outer fiber yield in the 
center of the plate. It is possible that taking the first-yield condition not at the surface of the plate but 
at a point positioned somewhat inwards to the middle surface (as proposed by Calladine 1985), will 
result in even better prediction of the ultimate load. 

According to Mahendran (1997), outer fiber yield at the center of the plate will occur before 
first membrane yield if: 

 2
0 081.0086.067.0/ SStw −+≤  (6) 

with  EftbS y /)/(=  (7) 

This formula agreed with the performed finite element simulations and can thus be used to determine 
whether the plate will fail by outer fiber yield or by membrane yield. Note that in the derivation of 
this equation, as well as in the modified strip model it is assumed that outer fiber yield in an area near 
the corners of the plate (point C) does not affect the load-deformation behavior of the plates. 

In the next sections it will be described how the elastic load corresponding to first membrane 
yield (indicated as open triangles in Fig. 2) and the elasto-plastic load corresponding to an average in-
plane strain equal to the yield strain can be determined with a modification of a strip model originally 
proposed by Calladine (1985).  

 4 ELASTIC BEHAVIOR ACCORDING TO THE MODIFIED STRIP MODEL 
The elastic post-buckling behavior of thin plates with initial imperfections is governed by 

Marguerre’s equations. Bakker et al (2006) and Rosmanit and Bakker (2006-a), showed that the 
elastic load-deformation behavior of uniformly compressed square plates under load up to three times 
the critical load can accurately be described by a modification of a large deflection solution given by 
Williams and Walker (1975): 
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where  AF = 0.2356, BF = -0.3140.10-2, Au = 0.5775, Bu = 0.7800.10-2  (11) 
 
For the small deflection range (loads up to 1.5 times the buckling load) the coefficients B may be 
taken zero. The resulting equations then correspond to the equations given by Rhodes (1982). 

Calladine (1985) used a simple two-element model to represent the behavior of a plate (see 
Fig. 3). In this model there are two edge strips with a total width bed that always remain straight, and 
one central strip with a width bce = b - bed which behaves like a classical Euler column (i.e. it buckles 
at constant stress, equal to the buckling stress σcr of the full plate). According to this model the total 
load carried by the plate can be calculated as: 
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Fig.3: a) Strip and b) deformed strip model of the compressed plate by Calladine (1985). 

The strain of the central strip can be calculated as the sum of the elastic compressive strain and the 
geometric strain εg: 
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where εg is calculated from the shortening u of the central strip due to out-of-plane deflections (in the 
shape of a half-sine wave): 
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The central strip behaves like an Euler column, so that the imperfection amplification factor  
ξ = wce / w0;ce can be determined as: 
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Eq. (16) can be used to calculate the membrane stress in the central strip as a function of the out-of-
plane deflection of the plate: 
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Calladine (1985) assumed that the maximum lateral deflections w and w0 of the plate are equal 
to the maximum lateral deflections wce and w0;ce of the central strip. In this paper it will be assumed 
that the maximum deflection (respectively maximum initial deformation) of the central strip can be 
related to the plate deformations by a scalar √Cw as: 

 wCw wce =  (19) 

 0;0 wCw wce =  (20) 

Using eqs. (15), (18), (19) and (20), eq. (14) can be rewritten to give: 
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Calladine’s model was developed for the small-deflection range. It can be shown that for elastic edge 
strip and elastic central strip behavior the modified strip model and the small-deflection model (eqs. 
(8) and (9), with BF = Bu = 0) give identical strains if: 
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Compatibility requires that the strain in the edge strip equals the strain in the central strip: 
 avxceed ;εεε ==  (23) 

The stress in the edge strip can be calculated as: 
 eded Eεσ =  (24) 

Using eqs. (18) to (24), eq. (13) can be written as: 
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Comparing Eq. (25) with eq. (8) in the small deflection range (taking BF = 0), it can be seen that these 
two equations give identical results if: 
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The modified strip model can also be used in the large-deflection range by using eq. (9) instead of 
(21) to describe the strain, resulting in: 
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Eqs. (27) and (8) give identical results if: 
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Thus it can be concluded that the modified strip method gives identical results to eqs. (8) and (9). 
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 5 PREDICTION OF ELASTIC LOAD CORRESPONDING TO FIRST 
MEMBRANE YIELD 
In section 4 the membrane stresses are assumed to be constant over the width of the strips. 

A more accurate membrane edge stress can be calculated by taking σed and σce equal to the average 
stress over edge and central strip and assuming a linear stress distribution over the edge strip and 
a parabolic stress distribution in the central strip. Note that this model is different from Calladine’s 
(1985) model which assumed that the stress in the edge strip equals the membrane stress at the edges 
of the plate (σed = σx;A), see Fig. 4. 

  
Fig. 4: Model of stress distribution over the central cross section (Calladine, 1985). The stresses at the 

edges of the plate, and the mean stress in the plate, are the same for both continuum and two-
element models. 

By requiring that the stresses and the stress gradients are continuous at the border between central 
strip and edge strip (see Fig. 5), the membrane stress at the edge of the plate can be calculated as: 
 ededAx σσσ Δ+=;  (29) 
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Fig. 5: Two models of stress distribution over the central cross section. 

By using a series expansion of σx;A /σcr around the point η = 0 and leaving out negligible small terms 
eq. (29) can be further simplified to get: 
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where  Aσx;A = 0.8710 and Bσx;A = -0.5223.10-2  (32) 
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From eq. (31) the deflection wfy;A corresponding to first membrane yield (σx;A = fy ) can be solved (by 
trial and error). Then the load corresponding to this deflection can be calculated from eq. (8). The 
thus determined elastic loads F(wfy;A ) are indicated with open triangles in Fig. 2, and can be used to 
predict failure by outer fiber yield as explained in section 3. 

 6 PREDICTION OF ELASTO-PLASTIC LOAD CORRESPONDING TO FIRST 
YIELD STRAIN 
To determine the elasto-plastic load corresponding to an average in-plane strain equal to the 

yield strain the following model is proposed. First the deflection wεy, corresponding to εx;av = εy = fy /E 
is solved (by trial and error) from eq. (9). Using this deflection the elastic load F(wεy ) and the stress 
difference Δσed(wεy ) are calculated from equations (8) respectively (30). Then the stress resultant 
ΔF(wεy ) of all stresses larger than the yield stress is calculated (33). Using this stress resultant the 
elasto-plastic load corresponding to the yield strain can be determined (34). The thus determined 
loads can be used to predict failure by membrane yield as explained in section 3. Elastic strain 
behavior remains valid in a plastic range, see Rosmanit and Bakker 2006-a. 
 )()( 4

1
yededy wtbwF εε σΔ=Δ  (33) 

 )()()( yyyep wFwFwF εεε Δ−=  (34) 

 7 COMPARISON OF RESULTS AND CONCLUSIONS 
The final results are presented in Tab. 2. The first column shows an overview of the results 

from numerical calculations by presenting the ratios of the ultimate loads to the critical loads for the 
full set of performed calculations. The second and third column show the ratios of the elastic loads 
corresponding to first membrane yield (according to (31) and (8)) respectively the elasto-plastic loads 
corresponding to the yield strain (according to (34)) to the ultimate loads calculated by ANSYS. The 
arithmetic means and coefficients of variations are also calculated, one for the shaded and one for the 
non-shaded cells. 

Tab. 2: Errors in calculations of ultimate load. 

  

Fu;ANSYS /Fcr F(wfmy )/Fu;ANSYS Fep(wεy )/Fu;ANSYS  
σcr σcr σcr 

w0 fy 2fy / 3 fy / 2 fy / 4 fy / 8 fy 2fy / 3 fy / 2 fy / 4 fy / 8 fy 2fy / 3 fy / 2 fy / 4 fy / 8 
0.01t 0.94 1.02 1.23 1.86 2.83 1.03 1.06 1.02 0.94 0.93 1.04 1.09 1.09 1.05 1.04 
0.10t 0.82 0.96 1.20 1.85 2.83 1.04 1.03 1.00 0.93 0.92 1.08 1.09 1.07 1.04 1.03 
0.25t 0.75 0.90 1.16* 1.83 2.81 0.99 0.98 0.95* 0.91 0.91 1.06 1.06 1.05* 1.02 1.02 
0.50t 0.68* 0.83 1.11 1.79 2.79 0.90* 0.90 0.89 0.87 0.89 1.02* 1.02 1.02 1.00 1.01 
1.00t 0.59 0.74 1.02 1.73 2.75 0.78 0.79 0.80 0.82 0.86 0.94 0.95 0.96 0.97 0.98 
1.50t 0.54 0.69 0.96 1.66 2.71 0.72 0.73 0.75 0.78 0.83 0.90 0.91 0.93 0.94 0.96 
2.00t 0.50 0.64 0.91 1.61 2.67 0.69 0.70 0.73 0.76 0.81 0.88 0.89 0.91 0.93 0.95 

arithmetic mean 0.99 1.02 0.99 - - 1.05 1.08 1.07 - - 
coefficient of variation 0.07 0.04 0.04 - - 0.03 0.01 0.02 - - 

arithmetic mean 0.73 0.78 0.79 0.86 0.88 0.91 0.94 0.95 0.99 1.00 
coefficient of variation 0.06 0.11 0.09 0.08 0.05 0.04 0.06 0.05 0.05 0.03 

- The shaded cells represent failure by outer fiber yield – according to Mahendran (1997). 
- The non-shaded cells represent failure by membrane yield – according to Mahendran (1997). 
* Marked cells represent failure by membrane yield – according to ANSYS.  



 15

For plates failing by membrane yielding the elasto-plastic load corresponding to the yield 
strain results in a more accurate, less conservative prediction of the ultimate load than the elastic load 
corresponding to first membrane yield (as used in the effective width method). It can be seen that the 
proposed method slightly overestimates the elasto-plastic loads for small initial imperfections and 
slightly underestimates them for large initial imperfections. 

For plates failing by outer fiber yield the elastic load corresponding to first membrane yield 
results in a good prediction of the failure load with respect to the average value. 

To distinguish between failure by membrane yielding and failure by outer fiber yield formulas 
(6) and (7) derived by Mahendran (1997) can be used. As the marked (*) cells in Tab. 2 show, the 
Mahendran formulas for some cases predicts failure by outer fiber yield, where the ANSYS results 
indicate failure by membrane yield. Improvement of the Mahendran formulas may be possible, but 
therefore a more rigorous parameter study is needed. 

Note that some more results on this project can be found in Rosmanit and Bakker (2006-b). 

NOTATION 
Ai, Bi coefficients 
D  plate flexural rigidity factor, see (5) 
E  Young’s modulus of elasticity 

F  load – compression longitudinal force 
Fcr  critical load, see (4) 
K buckling coefficient 
 
a, b plate length/width; for a square plate a = b 
bce, bed width of the centre respectively edge strip, see Figs. 3 and 5 
t  plate thickness 
u, ucr  axial shortening respectively critical axial shortening 
w, w0  total respectively initial out-of-plane deflection at the centre of the plate 
 
εce, εed average strain at centre respectively edge strip according to σce, σed 
εcr  critical strain of the plate, see (2) 
εg  geometric strain, see (15) 
εx;av  average strain in x-direction, εx;av = u/a 
η  dimensionless parameter, depends on w, w0 and t, see (10) 

υ  Poisson’s ratio 
ξ  imperfection amplification factor, see (16) 
σce, σed average membrane stress at centre respectively edge strip, see Fig. 5 
σcr  critical stress of the plate, see (1) 
σi;j  membrane stress on direction i at point j 
σx;av  average stress in x-direction, σx;av = F/(bt) 
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